lessons learnt at HERMES
on technical aspects of
TMD measurements

- the devil is in the deftail -




Disclaimers

@ contains a number of trivial, but hopefully still useful,

statements

@ can not offer a general recipe, though hopefully some

guidance



Prelude: role of acceptance in
experiments



an unfortunate Lemma

@ "No particle-physics experiment has'a perfect
acceptance!”

@ obvious for detectors with gaps/holes

@ but also for “4n”, especially when looking at
complicated final states



an unfortunate Lemma

[P. van der Nat, Ph.D. thesis, Vrije Universiteit (2007)]



an unfortunate Lemma

[C. Adolph, arXiv:1401.6284]

maybe “2n" around

beam axis, but not
around virtual-photon |

axis because of lower
limit on O


http://arxiv.org/abs/arXiv:1401.6284
http://arxiv.org/abs/arXiv:1401.6284

an unfortunate Lemma

Pn >1GeV/c — Pn >3 GeV/c
P_>2GeV/c sin(0)
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momentum requirements
strongly distort kinematic
.. |distributions even for
=5 | “4m” acceptance

[P. van der Nat, Ph.D. thesis,
Vrije Universiteit (2007)]




an unfortunate Lemma

@ "No particle-physics experiment has'a perfect
acceptance!”

@ obvious for detectors with gaps/holes

@ but also for “4n”, especially when looking at
complicated final states

@ How acceptance effects are handled is one of the
essential questions in experiments!



some acceptance effects

@ acceptance , .g.,
azimuthal coverage in extraction of
azimuthal moments

@ acceptance
, e.g., due to limited statistics not being
able to do fully differential analysis

@ event due to smearing



a common misconception

@ "acceptance cancels in asymmetries”



a common misconception

@ “acceptance cancels in asymmetries” . [

Acceptance does not cancel in general when integrating
' numerator and denominator over (large) ranges in kinematic
!{ variables!

X




.. geometric acceptance



.. geometric acceptance

"Aus Differenzen und Summen
kirzen nur die Dummen.”



.. geometric acceptance

"Aus Differenzen und Summen
kirzen nur die Dummen.”

Cross-section model does NOT CANCEL in general
when integrating numerator and denominator over
(large) ranges in kinematic variables!



"Classique” Example: (cosg),,

Fake modulations
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generated vs. extracted Aur
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Extraction method works welll
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Aut inclusive hadrons

ep! =t +X

ep! = x +X

ep! - K" +X

ep! = K +X

Inclusive (MC)

b 0.30 <x.<0.55

input model

(fit to data)




Aut inclusive hadrons
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Aut inclusive hadrons
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similar problem: di-hadron Ayr

NT(i)(quJquS?eaMﬂ‘ﬂ‘) X /dxdded2PhJ_€($7y727PhJ_a¢RJ_7¢5767M7T7T) X

X oUt(l) (CE, Y, %, Pp, quJ_a ¢Sa 97 M7r7r)7

[A. Bacchetta and M. Radici, Phys. Rev. D74 (2006) 114007]




.. event migration ...
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- migration correlates yields in different bins
- can't be corrected properly in bin-by-bin approach



.. event migration -> unfoldinc

@ experimental yield in i™ bin depends on all Born bins j ..

@ .. and on BG entering kinematic rangé from outside region

@ smearing matrix  embeds information on migration

@ determined from Monte Carlo - independent of physics model in
limit of infinitesimally small bins and/or flat acceptance/cross-
section in every bin

@ in real life: dependence on BG and physics model due fo finite bin
sizes

@ inversion of relation gives Born cross section from measured yields



Mulfi-D vs. 1D unfolding

[S.J. Joosten, PhD thesis UTUC (2013)]
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Multi-D vs. 1D unfolding

=== [nside acceptance

—~———= Generated in 47




Multi-D vs. 1D unfolding

‘ === [nside acceptance
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define your measurement
wisely and clearly!

@ data point interpreted as asymmetry/multiplicity
@ at the average kinematics given
@ integrated over kinematic ranges

@ results in different systematics -> select the one with
smallest systematics?

@ try to go fully differential to minimize biases



more "pitfalls” in dlhadrﬁ_f‘_
Fragmenfa’rlon

P_> 1 GeV/c — P_> 3 GeV/c
P_>2GeV/c - sin(0)
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W . {4
appetizer

@ dihadron FFs: alternative path to extract (collinear) transversity

@ exploit orientation of hadrons relative momentum, correlate
with target polarization

@ complication: SIDIS cross section now differential in 9(!)
variables

@ integration over polar angle eliminates, in theory, a number of
contributing FFs (partial waves)

@ experimental constraints limit acceptance in polar angle, most
prominently the minimum-momentum requirements



simple case study

/

@ dihadron pair with equal-mass hadrons; here: pions

@ e*e” annihilation, thus energy fractions z translates
directly to energy/momentum of particles/system as
primary energy is *fixed”

(-> simplifies Lorentz boost)

@ without loss of generality, focus on B factory and use
primary quark energy Eo = 5.79GeV

® minimum energy of each pion in lab frame: 0.1 Eo
(i.e., Zmin = O.].)



application of Lorentz boost

@ can easily apply Lorentz boost using the invariant mass of the
dihadron M and its energy zEo to arrive at condition on 0, e.q.,

polar angle of pions in center-of-mass frame:

@ as both pions have to fulfill the constraint on the minimum energy:

thus:

@ translates to a symmetric range around /2



impact of znin=0.1 on accepted
polar range

@ (again without loss of generality) lets assume M=0.5 GeV :

@ all theta below curve (and above its mirror curve relative to
dashed line) are excluded

@ clearly limited, especially at low z



partial-wave expansion

partial-wave expansion worked ouft in

 for the particular case here, use , in
particular Eq. (12), and (later on) Figure 5:

it is the first contribution (Di,) that is used in “collinear extraction” of
transversity

@ it is also the only one surviving the integration over 6

' the Dy, contribution vanishes upon integration over ) as long as the
theta range is symmetric around 7/2

the Dy term, however, will in general contribute in case of only partial
infegration over 6 — the question is how much?



Diu contribution to DIFF

@ Dy is unknown and cant be calculated using ﬁrs’r principles

,e

@ it can not be extracted from cross sections m’regm’red over O

@ upon (partial) integration there is no way to dlsen’rangle the two
contributions |

@ in PRD74 (2006) 114007, a model for dihadron iéfagmen’ra’rion was
tuned fto PYTHIA and used to estimate the various partial-wave
contributions 4

@ its Figure 5 gives an indication about the relative size of Dy vs. Dy
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effect of partial integration

D

as both contributions — Dy and Di,, — Will be affected by the
partial integration, look at relative size of the Dy to Dio
modulations when subjected to integration:

e % dcosf +(3cos? 0 — 1)

cos(m—0p)

s N e

cos(m—0g)

= —i(l = cos 0g)
without limit in the polar-angular range (6o =0) -> no contribution
from Dy (sanity check!)

the relative size of the partial integrals reaches a maximum of
25% for z=0.2 (i.e., pions at 90 degrees in center-of-mass system)

in order to estimate the D;; contribution, one “just” needs the
relative size of Dy, vs. Dio, €.g., Figure 5 of

lets take for that size 0.5 (rough value for M=0.5 GeV)



effect of partial integration

® ... Diu/ Dioo ~0.5 results in an up to O(10%) effect on the measured
cross section:
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@ depending on the sign of Dy, the partial integration thus leads to a
systematic underestimation (positive D) or overestimation (negative
D1u) of the “integrated” dihadron cross section

o leads to overestimate/underestimate of extracted transversity



back fo experiment

@ how precisely can we measure FFs, e.g., how
precisely can we deal with other-than-uds
contributions
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