Spatial and Momentum Tomography of Hadrons and Nuclei INT-17-3 - week 4

August 28th - September 27th, 2017 - INT, Seattle, WA, USA

Lessons learnt on TMD measurements at

Gunar.Schnell @ desy.de

semi-inclusive DIS

probing TMDs in semi-inclusive DIS

G. Schnell

probing TMDs in semi-inclusive DIS

probing TMDs in semi-inclusive DIS

vordinary FF: $D_1^{q \rightarrow h}$

gives rise to characteristic azimuthal dependences

*) semi-inclusive DIS with unpolarized final state

one-hadron production ($ep \rightarrow ehX$)

$$d\sigma = d\sigma_{UU}^{0} + \cos 2\phi \, d\sigma_{UU}^{1} + \frac{1}{Q} \cos \phi \, d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3} + S_{L} \left\{ \sin 2\phi \, d\sigma_{UL}^{4} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{7} \right] \right\} + S_{T} \left\{ \sin(\phi - \phi_{S}) \, d\sigma_{UT}^{8} + \sin(\phi + \phi_{S}) \, d\sigma_{UT}^{9} + \sin(3\phi - \phi_{S}) \, d\sigma_{UT}^{10} + \frac{1}{Q} \left(\sin(2\phi - \phi_{S}) \, d\sigma_{UT}^{11} + \sin \phi_{S} \, d\sigma_{UT}^{12} \right) + \frac{1}{Q} \left(\sin(2\phi - \phi_{S}) \, d\sigma_{LT}^{11} + \sin \phi_{S} \, d\sigma_{UT}^{12} \right) + \lambda_{e} \left[\cos(\phi - \phi_{S}) \, d\sigma_{LT}^{13} + \frac{1}{Q} \left(\cos \phi_{S} \, d\sigma_{LT}^{14} + \cos(2\phi - \phi_{S}) \, d\sigma_{LT}^{15} \right) \right]$$

Beam

Mulders and Tangerman, Nucl. Phys. B 461 (1996) 197 Boer and Mulders, Phys. Rev. D 57 (1998) 5780 Bacchetta et al., Phys. Lett. B 595 (2004) 309 Bacchetta et al., JHEP 0702 (2007) 093 "Trento Conventions", Phys. Rev. D 70 (2004) 117504 INT 17-3 week 4

one-hadron production ($ep \rightarrow ehX$)

$$d\sigma = d\sigma_{UU}^{0} + \cos 2\phi \, d\sigma_{UU}^{1} + \frac{1}{Q} \cos \phi \, d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3}$$

$$+S_{L} \left\{ \sin 2\phi \, d\sigma_{UL}^{4} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{7} \right] \right\}$$

$$+S_{T} \left\{ \sin(\phi - \phi_{S}) \, d\sigma_{UT}^{8} + \sin(\phi + \phi_{S}) \, d\sigma_{UT}^{9} + \sin(3\phi - \phi_{S}) \, d\sigma_{UT}^{10} \right\}$$

$$+\frac{1}{Q} \left(\sin(2\phi - \phi_{S}) \, d\sigma_{UT}^{11} + \sin \phi_{S} \, d\sigma_{UT}^{12} \right)$$

$$+\lambda_{e} \left[\cos(\phi - \phi_{S}) \, d\sigma_{LT}^{13} \right] + \frac{1}{Q} \left(\cos \phi_{S} \, d\sigma_{LT}^{14} + \cos(2\phi - \phi_{S}) \, d\sigma_{LT}^{15} \right) \right] \right\}$$
Mulders and Tangerman, Nucl. Phys. B 461 (1996) 197
Boer and Mulders, Phys. Rev. D 57 (1998) 5780
Bacchetta et al., Phys. Lett. B 595 (2004) 309
Bacchetta et al., JHEP 0702 (2007) 093
"Trento Conventions", Phys. Rev. D 70 (2004) 117504

G. Schnell

4

INT 17-3 week 4

one-hadron production ($ep \rightarrow ehX$)

Boer and Mulders, Phys. Rev. D 57 (1998) 5780 Bacchetta et al., Phys. Lett. B 595 (2004) 309 Bacchetta et al., JHEP 0702 (2007) 093 "Trento Conventions", Phys. Rev. D 70 (2004) 117504 INT 17-3 week 4

HERMES experiment @ DESY

27.6 GeV HERA e^{+}/e^{-} beam

Iongitudinally polarized

HERMES experiment @ DESY

- pure gas targets
- internal to lepton ring
- unpolarized (¹H ... Xe)
- Iong. polarized: ¹H, ²H, ³He
- transversely polarized: ¹H

HERMES schematically

- pure gas targets internal to HERA 27.6 GeV lepton ring
- unpolarized (¹H ... Xe)
- Iong. polarized: ¹H, ²H, ³He
- transversely polarized: ¹H

Particle ID detectors allow for - lepton/hadron separation - RICH: pion/kaon/proton discrimination 2GeV<p<15GeV

hadron multiplicities in DIS

$$\frac{d^{5}\sigma}{dxdydzd\phi_{h}dP_{h\perp}^{2}} \propto \left(1 + \frac{\gamma^{2}}{2x}\right) \{F_{UU,T} + \epsilon F_{UU,L} + \sqrt{2\epsilon(1-\epsilon)}F_{UU}^{\cos\phi_{h}}\cos\phi_{h} + \epsilon F_{UU}^{\cos2\phi_{h}}\cos2\phi_{h}\}$$

$$F_{XY,Z} = F_{XY,Z} (x, y, z, P_{h\perp})$$

[see, e.g., Bacchetta et al., JHEP 0702 (2007) 093]

$$\gamma = \frac{2Mx}{Q}$$
$$\varepsilon = \frac{1 - y - \frac{1}{4}\gamma^2 y^2}{1 - y + \frac{1}{2}y^2 + \frac{1}{4}\gamma^2 y^2}$$

G. Schnell

INT 17-3 week 4

hadron multiplicities in DIS

8

JHEP 0702 (2007) 0931

G. Schnell

multiplicities @ HERMES

- extensive data set on pure proton and deuteron targets for identified charged mesons <u>http://www-hermes.desy.de/</u> <u>multiplicities</u>
- extracted in a multidimensional unfolding procedure
- access to flavor dependence of fragmentation through different mesons and targets
- input to fragmentation function analyses

 $\langle \mathcal{M}(Q^2) \rangle_{Q^2} \neq \mathcal{M}(\langle Q^2 \rangle)$

 even though having similar average kinematics, multiplicities in the two projections are different

 $\langle \mathcal{M}(Q^2) \rangle_{Q^2} \neq \mathcal{M}(\langle Q^2 \rangle)$

- the average along the valley will be smaller than the average along the gradient
- still the average kinematics can be the same

 take-away message: integrate your cross sections over the kinematic ranges dictated by the experiment (and do not simply evaluate it at the average kinematics)
 G. Schnell

integrating vs. using average kinematics

integrating vs. using average kinematics

(by now old)
 DSS07 FF fit to
 z-Q² projection

z-x "prediction" reasonable well when using integration over phase-space limits (red lines)

integrating vs. using average kinematics

(by now old)
 DSS07 FF fit to
 z-Q² projection

z-x "prediction" reasonable well when using integration over phase-space limits (red lines)

significant changes
 when using
 average
 kinematics

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

transverse momentum dependence

- multi-dimensional analysis allows going beyond collinear factorization
- Ilavor information on transverse momenta via target variation and hadron ID

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

helicity distribution

- extensive data set on collinear extraction of helicity PDF published in <u>PRD 71 (2005) 012003</u>
- here: (not so significant) transverse momentum dependence

chiral-odd distributions

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

 $ec{S}_{\perp}$

transversely polarized quarks?

- Iook at characteristic azimuthal dependence of single-hadron lepto-production cross section
 - many of the systematics of polarizationaveraged observables cancel in spin asymmety

k

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

transversely polarized quarks?

- transverse polarization of quarks leads to large effects!
- opposite in sign for charged pions

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

transversely polarized quarks?

- transverse polarization of quarks leads to large effects!
- opposite in sign for charged pions
- disfavored Collins FF large and opposite in sign to favored one

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

transversely polarized quarks?

- transverse polarization of quarks leads to large effects!
- opposite in sign for charged pions
- disfavored Collins FF large and opposite in sign to favored one

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

Collins effect for kaons and (anti) protons

positive Collins SSA amplitude for positive kaons

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Collins effect for kaons and (anti) protons

positive Collins SSA amplitude for positive kaons

• consistent with zero for negative kaons and (anti)protons

Schnell vanishing sea-quark transversity and baryon Collins effect? INT 17-3 week 4

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Transversity through 2-hadron fragmentation

 $A_{UT} \sim \sin(\phi_{R\perp} + \phi_S) \sin\theta h_1 H_1^{\triangleleft}$

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Transversity through 2-hadron fragmentation

 $A_{UT} \sim \sin(\phi_{R\perp} + \phi_S) \sin\theta h_1 H_1^{\triangleleft}$

- not only strong invariant-mass dependence, experimental challenges also because of
 - transverse-momentum dependence
 - theta dependence
- 9 vs. 6 (for single hadrons) dependences, too many to analyze simultaneously (at least with presently available data)
 G. Schnell

Transversity through 2-hadron fragmentation

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

systematics include

- incomplete integration over transverse momentum (negligible)
- contribution from higher partial waves in (unpolarized) denominator
- integration over other variables, e.g., A(<kin.>) ≠ <A(kin.)>

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

- Transversity through 2-hadron fragmentation
- HERMES, COMPASS: for comparison scaled HERMES data by depolarization factor and changed sign
- ²H results consistent with zero

[A. Airapetian et al., JHEP 06 (2008) 017] COMPASS 2007: [C. Adolph et al., Phys. Lett. B713 (2012) 10] COMPASS 2010: [C. Braun et al., Nuovo Cimento C 035 (2012) 02]

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

Transversity through 2-hadron fragmentation

HERMES, COMPASS: for comparison scaled HERMES data by depolarization factor and changed sign

²H results consistent with

Zero -0.15

m, [GeV/c²

G. Schnell

[A. Airapetian et al., JHEP 06 (2008) 017] COMPASS 2007: [C. Adolph et al., Phys. Lett. B713 (2012) 10] COMPASS 2010: [C. Braun et al., Nuovo Cimento C 035 (2012) 02]

data from e⁺e⁻ by BELLE

INT 17-3 week 4
	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Transversity through 2-hadron fragmentation

HERMES, COMPASS: for comparison scaled HERMES data by depolarization factor and changed sign

 $\sin \theta$

 $\langle A_{UT,p}^{\sin \varphi_{RS}}\, _S$

²H results consistent with zero

[A. Airapetian et al., JHEP 06 (2008) 017] COMPASS 2007: [C. Adolph et al., Phys. Lett. B713 (2012) 10] COMPASS 2010: [C. Braun et al., Nuovo Cimento C 035 (2012) 02]

data from e⁺e⁻ by BELLE allow first (collinear) extraction of transversity (compared to Anselmino et al.)

updated analysis exists, not part of this talk INT 17-3 week 4

Transversity's friends

G. Schnell

INT 17-3 week 4

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, {h_{1T}^\perp}$

Worm-Gear I

[PLB 562 (2003) 182-192]

 $\boldsymbol{e} \: \overrightarrow{\boldsymbol{d}} \to \boldsymbol{e} \: \pi \: \boldsymbol{X}$ 0.06 π^+ 0.04 π **π**⁰ 0.02 A^{sin2¢} UL 0 0 -0.02 -0.04 $e \; \overrightarrow{d} \to e \; K^{+} \; X$ 0.06 K⁺ 0.04 0.02 A^{sin2¢} UL 0 Г 0 -0.02 -0.04 0.1 0.2 0.3 0 Χ

- again: chiral-odd
- consistent with zero both for proton and deuteron

	Meson	Deuterium target	Proton target [2,3]
$A_{\rm UL}^{\sin 2\phi}$	π^+ π^0 π^- K^+ -	$\begin{array}{c} 0.004 \pm 0.002 \pm 0.002 \\ 0.009 \pm 0.005 \pm 0.003 \\ 0.001 \pm 0.003 \pm 0.002 \\ -0.005 \pm 0.006 \pm 0.003 \end{array}$	$-0.002 \pm 0.005 \pm 0.003$ $0.006 \pm 0.007 \pm 0.003$ $-0.005 \pm 0.006 \pm 0.005$
		[F	PLB 562 (2003) 182-192]

cross section without beam/target polarization

$$\frac{d^5\sigma}{dxdydzd\phi_h dP_{h\perp}^2} \propto \left(1 + \frac{\gamma^2}{2x}\right) \left\{F_{UU,T} + \epsilon F_{UU,L}\right\}$$

$$+\sqrt{2\epsilon(1-\epsilon)}F_{UU}^{\cos\phi_h}\cos\phi_h + \epsilon F_{UU}^{\cos2\phi_h}\cos2\phi_h\}$$

$$\begin{split} \gamma &= \frac{2Mx}{Q} \\ \varepsilon &= \frac{1 - y - \frac{1}{4}\gamma^2 y^2}{1 - y + \frac{1}{2}y^2 + \frac{1}{4}\gamma^2 y^2} \end{split}$$

[see, e.g., Bacchetta et al., JHEP 0702 (2007) 093]

cross section without beam/target polarization $\vec{k} \neq \vec{k}$

$$\frac{d^5\sigma}{dxdydzd\phi_h dP_{h\perp}^2} \propto \left(1 + \frac{\gamma^2}{2x}\right) \{F_{UU,T} + \epsilon F_{UU,L}\}$$

$$+\sqrt{2\epsilon(1-\epsilon)}F_{UU}^{\cos\phi_h}\cos\phi_h + \epsilon F_{UU}^{\cos2\phi_h}\cos2\phi_h\}$$

(Implicit sum over quark flavours)

extraction I - event migration

- migration correlates yields in different bins

- can't be corrected properly in bin-by-bin approach

G. Schnell

extraction I - event migration $\mathcal{Y}^{\exp}(\Omega_i) \propto \sum_{j=1}^N S_{ij} \int_j d\Omega \, d\sigma(\Omega) + \mathcal{B}(\Omega_i)$

- experimental yield in ith bin depends on all Born bins j ...
- In and on BG entering kinematic range from outside region
- smearing matrix S_{ij} embeds information on migration
- determined from Monte Carlo independent of physics model in limit of infinitesimally small bins and/or flat acceptance/cross-section in every bin
- In real life: dependence on BG and physics model due to finite bin sizes
- inversion of relation gives Born cross section from measured yields

extraction II - unf_{ϕ} [ding_{ϕ}]

fully differential analysis
 in (x,y,z,P_{h⊥},φ)

 multi-dimensional unfolding: correction for finite acceptance, QED radiation, kinematic smearing, detector resolution

x bin=1 x bin=2x bin=3 x bin=4 x bin=5W First y bin **Ф**_h probability that an event generated with a certain kinematics is measured with a different kinematics $n_{EXP} = S \quad n_{BORN} + n_{Bg}$ $n_{BORN} = S^{-1} \left| n_{EXP} - n_{Bg} \right|$ includes the events smeared

into the acceptance

extraction III - projecting

signs of Boer-Mulders

 $\left| \begin{array}{c|c|c} \mathrm{U} & \mathrm{L} & \mathrm{T} \\ \mathrm{U} & f_1 & h_1^{\perp} \\ \mathrm{L} & g_{1L} & h_{1L}^{\perp} \\ \mathrm{T} & f_{1T}^{\perp} & g_{1T} & h_1, h_{1T}^{\perp} \end{array} \right|$

[Airapetian et al., PRD 87 (2013) 012010]

 \circ cos2 ϕ modulations are not zero!

signs of Boer-Mulders

[Airapetian et al., PRD 87 (2013) 012010]

- $\cos 2\phi$ modulations are not zero!
- opposite sign for charged pions with larger magnitude for π^-

- cos2\$\u03c6\$ modulations are not zero!
- opposite sign for charged pions with larger magnitude for π^-
- intriguing behavior for kaons

- $\cos 2\phi$ modulations are not zero!
- opposite sign for charged pions with larger magnitude for $\pi^{\scriptscriptstyle -}$
- intriguing behavior for kaons
- available in multidimensional binning, e.g., before projecting: <u>http://www-hermes.desy.de/cosnphi/</u>

- no dependence on hadron charge was expected for Cahn effect
- ➡ flavor dependence of transverse momentum
- \Rightarrow sign of Boer-Mulders in cos ϕ modulation
- additional "genuine" twist-3 contributions?

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, {h_{1T}^\perp}$

Worm-Gear

- first direct evidence
 for worm-gear g₁T on
 - ³He target at JLab
 - H target at HERMES

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, rac{h_{1T}^\perp}{}$

Worm-Gear

- chiral even
- first direct evidence
 for worm-gear g₁T on
 - ³He target at JLab
 - H target at HERMES
- results for protons and antiprotons consistent with zero

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, rac{h_{1T}^{\perp}}{}$

Sivers amplitudes for pions

 $\sum_{q} e_q^2 f_1^q(x, p_T^2) \otimes D_1^q(z, k_T^2)$ π^+ dominated by u-quark

 $\sum_{q} e_q^2 f_{1T}^{\perp,q}(x,p_T^2) \otimes_{\mathcal{W}} D_1^q(z,k_T^2)$

scattering:

$$-\frac{f_{1T}^{\perp,u}(x,p_T^2)\otimes_{\mathcal{W}}D_1^{u\to\pi^+}(z,k_T^2)}{f_1^u(x,p_T^2)\otimes D_1^{u\to\pi^+}(z,k_T^2)}$$

u-quark Sivers DF < 0</p>

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, rac{h_{1T}^{\perp}}{}$

Sivers amplitudes for pions

 $\frac{\sum_{q} e_{q}^{2} f_{1T}^{\perp,q}(x,p_{T}^{2}) \otimes_{\mathcal{W}} D_{1}^{q}(z,k_{T}^{2})}{\sum_{q} e_{q}^{2} f_{1}^{q}(x,p_{T}^{2}) \otimes D_{1}^{q}(z,k_{T}^{2})}$

 π^+ dominated by u-quark scattering:

$f_{1T}^{\perp,u}(x,p_T^2) \otimes_{\mathcal{W}} D_1^{u \to \pi^+}(z,k_T^2)$)
$f_1^u(x, p_T^2) \otimes D_1^{u \to \pi^+}(z, k_T^2)$	

u-quark Sivers DF < 0</p>

d-quark Sivers DF > 0 (cancelation for π⁻)

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, rac{h_{1T}^\perp}{h_{1T}}$

Sivers amplitudes for mesons

 $\sum_{q} e_q^2 f_{1T}^{\perp,q}(x,p_T^2) \otimes_{\mathcal{W}} D_1^q(z,k_T^2)$

Iarger amplitudes for positive kaons vs. pions

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

Sivers amplitudes - 3d binning

- 3d analysis: 4x4x4 bins in $(x,z, P_{h\perp})$
- much reduced systematics
- disentangle correlations
- isolate phase-space region with strong signal strength

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

Sivers amplitudes - 3d binning

- 3d analysis: 4x4x4 bins in $(x,z, P_{h\perp})$
- much reduced systematics
- disentangle correlations
- isolate phase-space region with strong signal strength
- allows more detailed comparison with calculations (e.g., "unofficial" results from Torino 10.1103/PhysRevD.86.014028 fit
 - courtesy M. Boglione)

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Sivers amplitudes - 3d binning

- Iarge K⁺ amplitudes O(20%) seen at large values of (x, z)
- region of purest "u-quark probe"

TMD factorization scale

 $Q^2 \gg P_{h+}^2 / z^2$

less stringent requirement fulfilled in basically all bins

• more stringent requirement violated at low z & large $P_{h\perp}$ (especially @ low x) G. Schnell 39 INT 17-3 week 4

TMD factorization scale

 $Q^2 \gg P_{h+}^2 / z^2$

less stringent requirement fulfilled in basically all bins

• more stringent requirement violated at low z & large $P_{h\perp}$ (especially @ low x) G. Schnell 39 INT 17-3 week 4

subleading twist

in experiments: target polarized w.r.t. beam direction [Diehl&Sapeta EPJC41 (2005)]

- small transverse component w.r.t. ritual-photon direction when longitudinally polarized
- mixing of transverse and longitudinal target-spin asymmetries

$$= \begin{pmatrix} \cos \theta_{\gamma^*} & -\sin \theta_{\gamma^*} & -\sin \theta_{\gamma^*} \\ \frac{1}{2} \sin \theta_{\gamma^*} & \cos \theta_{\gamma^*} & 0 \\ \frac{1}{2} \sin \theta_{\gamma^*} & 0 & \cos \theta_{\gamma^*} \end{pmatrix} \begin{pmatrix} \left\langle \sin \phi \right\rangle_{UL}^{\mathsf{q}} \\ \left\langle \sin(\phi - \phi_S) \right\rangle_{UT} \\ \left\langle \sin(\phi + \phi_S) \right\rangle_{UT} \end{pmatrix}$$

($\cos \theta_{\gamma^*} \simeq 1$, $\sin \theta_{\gamma^*}$ up to 15% at HERMES energies)

G. Schnell

$$\left\langle \sin\phi \right\rangle_{UL}^{\mathsf{q}} = \left\langle \sin\phi \right\rangle_{UL}^{\mathsf{l}} + \sin\theta_{\gamma^*} \left(\left\langle \sin(\phi + \phi_S) \right\rangle_{UT}^{\mathsf{l}} + \left\langle \sin(\phi - \phi_S) \right\rangle_{UT}^{\mathsf{l}} \right)$$

- experimental A_{UL} dominated by twist-3 contribution
 - correction for AUT
 contribution increases purely
 longitudinal asymmetry for
 positive pions
 - consistent with zero for π^-

- significant non-zero signal observed for negatively charged mesons
- vanishes in inclusive limit, e.g. after integration over $P_{h\perp}$ and z, and summation over all hadrons

- significant non-zero signal observed for negatively charged mesons
- vanishes in inclusive limit, e.g. after integration over $P_{h\perp}$ and z, and summation over all hadrons
- various terms related to transversity, worm-gear, Sivers etc.:

$$\begin{split} \left(\mathbf{x} \mathbf{f}_{\mathbf{T}}^{\perp} \mathbf{D}_{1} - \frac{\mathbf{M}_{\mathbf{h}}}{\mathbf{M}} \mathbf{h}_{1} \frac{\tilde{\mathbf{H}}}{\mathbf{z}} \right) \\ \mathcal{W}(\mathbf{p}_{\mathbf{T}}, \mathbf{k}_{\mathbf{T}}, \mathbf{P}_{\mathbf{h}\perp}) \left[\left(\mathbf{x} \mathbf{h}_{\mathbf{T}} \mathbf{H}_{1}^{\perp} + \frac{\mathbf{M}_{\mathbf{h}}}{\mathbf{M}} \mathbf{g}_{1\mathbf{T}} \frac{\tilde{\mathbf{G}}^{\perp}}{\mathbf{z}} \right) \\ - \left(\mathbf{x} \mathbf{h}_{\mathbf{T}}^{\perp} \mathbf{H}_{1}^{\perp} - \frac{\mathbf{M}_{\mathbf{h}}}{\mathbf{M}} \mathbf{f}_{1\mathbf{T}}^{\perp} \frac{\tilde{\mathbf{D}}^{\perp}}{\mathbf{z}} \right) \right] \\ \text{INT 17-3 week 4} \end{split}$$

INT 17-3 week 4

nonzero amplitudes mainly at large $P_{h\perp}$ in case of negative pions

• positive amplitudes at low $P_{h\perp}$ also for positive pions
Subleading twist II - $\langle sin(\phi_s) \rangle_{UT}$

nonzero amplitudes mainly at large $\mathsf{P}_{h\perp}$ in case of negative pions

positive amplitudes at low $P_{h\perp}^{x}$ also for positive pions

0.04

Subleading twist III - $(\phi)_{LU}$

significant positive amplitudes for (in particular positive) pions

0.4

Х

G. Schnell

0.2

0.1

-0.1

-0.2

0.05

0.1

0.15

0.6

0.8

Ζ

0.5

P_{hT} [GeV]

Subleading twist III - $\langle sin(\phi) \rangle_{LU}$ $\frac{M_h}{Mz} h_1^{\perp} E \oplus xg^{\perp} D_1 \oplus \frac{M_h}{Mz} f_1 G^{\perp} \oplus xeH_1^{\perp}$

mostly consistent w/ zero for other hadrons (except maybe K⁺)

Subleading twist III - $\langle sin(\phi) \rangle_{LU}$

 opposite behavior at HERMES/CLAS of negative pions in z projection due to different x-range probed

CLAS more sensitive to e(x)Collins term due to higher x probed?
 G. Schnell
 49
 INT 17-3 week 4

Subleading twist III - $\langle sin(\phi) \rangle_{LU}$

consistent behavior for charged pions / hadrons at HERMES / COMPASS for isoscalar targets

G. Schnell

Subleading twist IV - $(\phi)_{LL}$

"polarized" Cahn effect largely consistent with zero

Semi-inclusive hadrons

Semi-inclusive hadrons

click here if (likely) out of time

Inclusive hadron electro-production

virtual photon going into the page

$$\psi \simeq \phi_h - \phi_S$$

"Sivers angle"

lepton beam going into the page

Inclusive hadron electro-production

- scattered lepton undetected
 lepton kinematics unknown
- dominated by quasi-real photo-production (low Q²)
 hadronic component of photon relevant?
- Cross section proportional to S_N (k x p_h) ~ sinψ

$$A_{\rm UT}(P_T, x_F, \psi) =$$

$$A_{\rm UT}^{\sin \psi}(P_T, x_F) \sin \psi$$

$$ep^{\uparrow} \rightarrow hX$$

$$\equiv \frac{\int_{\pi}^{2\pi} d\psi \ \sigma_{\rm UT} \sin \psi - \int_{0}^{\pi} d\psi \ \sigma_{\rm UT} \sin \psi}{\int_{0}^{2\pi} d\psi \ \sigma_{\rm UU}}$$
$$= -\frac{2}{\pi} A_{\rm UT}^{\sin \psi}$$

 $A_{\rm N}$

1D dependences of A_{UT} sinv amplitude

[Airapetian et al., Phys. Lett. B 728, 183-190 (2014)] [∻] ¹⁵ **×** 0.1 clear left-right asymmetries K for pions and positive kaons 0000000 0 000 • increasing with x_F (as in pp) -0.1 8.8% scale uncertainty 000000000000 P_T [GeV] 0.8 0000000 0.6 0.4 0.2 0.4 0.2 0.4 [≿] 10 10 ¥ 0.1 ● K⁺ ○ K initially increasing with P_T with a fall-off at larger P_T -0.1 8.8% scale uncertainty μ 0.3 × 0.2 000 0.2 000000 0.1 1.5 0.5 1.5 2 0.5 2 0 P₊ [GeV]

INT 17-3 week 4

1D dependences of A_{UT} sinv amplitude

- clear left-right asymmetries for pions and positive kaons
- increasing with x_F (as in pp)

- initially increasing with P_T with a fall-off at larger P_T
- x_F and P_T correlated
 look at 2D dependences

Inclusive hadrons: 2D dependences

56

Asymmetries of subprocesses

G. Schnell

INT 17-3 week 4

all available data coming from **p p** scattering

in SIDIS (large Q²) proportional to polarizing FF D_{1T}^{\perp} (naive T-odd, chiral-even)

in SIDIS (large Q^2) proportional to polarizing FF D_{1T}^{\perp} (naive T-odd, chiral-even)

 $ep \to \Lambda^{\uparrow} X$

chiral-odd(sc.2)

1.0

0.8

0.6

 $S=400 \text{ GeV}^2$

I_T=2.0 GeV

G. Schnell

INT 17-3 week 4

Iarger in backward direction w.r.t. incoming lepton

 consistent with x_F dependence of twist-3 calculation (note: opposite sign conventions for x_F!)
 G. Schnell

larger in backward direction w.r.t. incoming lepton

distinct p_T dependences in forward and backward directions: rising with p_T in backward direction as in pp G. Schnell INT 17-3 week 4 62

conclusions before the summary

- HERMES conceived almost 3 decades ago in order to solve the "spin crisis"
 - measure precisely the quark-spin and somewhat the gluon spin contribution to the proton spin
 - no orbital angular momentum on the menu
 - no real transverse-spin physics

up to g₂ and the Burkhardt-Cottingham S.R. ...
 ... and that mainly to have a more precise g₁ measurement

conclusions before the summary out new paths

- HERMES conceived almost 3 decades the "spin crisis"
 - measure precisely the quo spin contribution to
 - **×**0 no orbital angy on the menu
 - oin physics no real

The Burkhardt-Cottingham S.R. ...

nat mainly to have a more precise g1 measurement

alway

somewhat the gluon

