Light-front Spectral-function of ³He

Giovanni Salmè

INFN - Rome

In collaboration with:

Emanuele Pace ("Tor Vergata" Rome U.& INFN) Sergio Scopetta (Perugia U.& INFN) Alessio Del Dotto (JLAB & INFN Roma) Leonid Kaptari (JINR Dubna) Matteo Rinaldi IFC (CSIC-Universitat de Valencia)

A. Del Dotto, E. Pace, G. S., S. Scopetta, *Light-front spin-dependent spectral function* and nucleon momentum distributions for a three-body system, PRC 95 (2017) 014001.

Giovanni Salmè (INFN-Rome)

LF Nucleon Spectral Function for ³He

To construct a relativistic description with a fixed number of constituents, besides the Poincaré covariance, one has to take into account

Macrocausality

i.e. if the subsystems which compose a system are brought far apart, the Poincaré generators of the system have to become **the sum of the Poincaré generators** corresponding to the subsystems in which the system is asymptotically separated. We implement macrocausality in the tensor product of a plane wave for the knocked out constituent times a fully interacting intrinsic state for the spectator pair.

Starting point:

The non relativistic three-body mass operator fully complies the requirements (rotational invariance) for a Bakamijan-Thomas construction of interacting Poincaré generators.

LF Nucleon Spectral Function for ³He

$$\mathcal{P}_{\sigma'\sigma}^{\tau}(\kappa^{+},\kappa_{\perp},\epsilon_{S},S_{He}) = \rho(\epsilon_{S}) \sum_{J_{S}J_{zS}\alpha} \sum_{T_{S}\tau_{S}} L_{F}\langle\tau_{S},T_{S},\alpha,\epsilon_{S}J_{S}J_{zS};\tau\sigma',\tilde{\kappa}|\Psi_{0}S_{He}\rangle$$
$$\langle S_{He},\Psi_{0}|\tilde{\kappa},\sigma\tau;J_{S}J_{zS}\epsilon_{S},\alpha,T_{S},\tau_{S}\rangle_{LF}$$

- $ilde{\kappa} \equiv \{\kappa^+, \kappa_\perp\}$
- $\kappa^+ = \xi \mathcal{M}_0(1, 23)$ and

$$\mathcal{M}_{0}^{2}(1,23) = rac{m^{2}+|\kappa_{\perp}|^{2}}{\xi} + rac{M_{S}^{2}+|\kappa_{\perp}|^{2}}{(1-\xi)}$$

 $M_0(1,23)=$ "free mass", value of the total P^+ in the LF intrinsic frame of the (1,23) cluster, in terms of which the spectral function is defined

- $M_S = 2\sqrt{m^2 + m\epsilon_S}$
- ρ(ε_S) ≡ density of the two-body states (1 for the bound state, and m√mε_S/2 for the excited ones)
- Automatically fulfilled both normalization and momentum sum rule

What about the overlap ${}_{LF}\langle \tau_{S}, T_{S}, \alpha, \epsilon_{S}J_{zS}J_{S}; \tau\sigma', \tilde{\kappa}|\Psi_{0}S_{He}\rangle$? LF overlaps for ³*He* from the Instant-form RHD ones

$$\begin{split} {}_{LF}\langle \tau_{5}, T_{5}, \alpha, \epsilon_{5} J_{5} J_{z5}; \tau\sigma, \tilde{\kappa} | \Psi_{0} S_{He} \rangle = \\ = \sum_{\tau_{2}, \tau_{3}} \sum_{\sigma_{1}'} D^{\frac{1}{2}} [\mathcal{R}_{M}^{\dagger}(\tilde{\kappa})]_{\sigma\sigma_{1}'} \int d\mathbf{k}_{23} \sum_{\sigma_{2}, \sigma_{3}} \sqrt{\frac{\kappa^{+} E_{23}}{k^{+} E_{5}}} \sqrt{(2\pi)^{3} k^{+} \frac{\partial k_{z}}{\partial k^{+}}} \times \\ {}_{IF}\langle \tau_{5}, T_{5}, \alpha, \epsilon_{5} J_{5} J_{z5} | \mathbf{k}_{23}; \sigma_{2}, \sigma_{3}; \tau_{2}, \tau_{3} \rangle \langle \tau_{3}, \tau_{2}, \tau_{1}; \sigma_{3}, \sigma_{2}, \sigma_{1}'; \mathbf{k}, \mathbf{k}_{23} | \Psi_{0} S_{He} \rangle_{IF} \end{split}$$

•
$$\mathbf{k}_{\perp} = \boldsymbol{\kappa}_{\perp}$$
, since the ³*H*e transverse momentum is $\mathbf{P}_{\perp} = 0$, by choice
• $k^+ = \xi \ M_0(123) = \kappa^+ \ M_0(123)/\mathcal{M}_0(1,23)$
with $M_0^2(123) = \frac{m^2 + |\boldsymbol{\kappa}_{\perp}|^2}{\xi} + \frac{M_{23}^2 + |\boldsymbol{\kappa}_{\perp}|^2}{(1-\xi)}$

and $M_{23}^2 = 4(m^2 + |\mathbf{k}_{23}|^2)$ the mass of the spectator pair without interaction Recall that in $\mathcal{M}_0(1, 23)$ the spectator pair is interacting, $M_{23} \rightarrow M_S$

•
$$k_z = \frac{1}{2} \left[k^+ - \frac{m^2 + |\kappa_{\perp}|^2}{k^+} \right]$$
, $E_{23} = \sqrt{M_{23}^2 + |\mathbf{k}|^2}$ and $E_S = \sqrt{M_S^2 + |\kappa|^2}$

• In the preliminary results, $\mathcal{M}_0(1,23) = M_0(123)$

In the actual calculations, we have identified the IF overlaps with the NR ones

• Ground state:

 $\langle \tau_3, \tau_2, \tau_1; \sigma_3, \sigma_2, \sigma_1'; \mathbf{k}, \mathbf{k}_{23} | \Psi_0 S_{He} \rangle_{IF} \Rightarrow \langle \tau_3, \tau_2, \tau_1; \sigma_3, \sigma_2, \sigma_1'; \mathbf{k}, \mathbf{k}_{23} | \Psi_0 S_{He} \rangle_{NR}$

• Final state:

 $_{\textit{IF}}\langle \tau_{\textit{S}}, \textit{T}_{\textit{S}}, \alpha, \epsilon_{\textit{S}} \textit{J}_{\textit{S}} \textit{J}_{\textit{zS}} | \mathbf{k}_{23}; \sigma_{2}, \sigma_{3}; \tau_{2}, \tau_{3} \rangle \Rightarrow_{\textit{NR}} \langle \tau_{\textit{S}}, \textit{T}_{\textit{S}}, \alpha, \epsilon_{\textit{S}} \textit{J}_{\textit{S}} \textit{J}_{\textit{zS}} | \mathbf{k}_{23}; \sigma_{2}, \sigma_{3}; \tau_{2}, \tau_{3} \rangle$

Let us stress two important features of our LF spectral function:

 \bigstar the definition of the nucleon momentum $\tilde{\kappa}$ in the intrinsic frame of the cluster (1,23)

 $\star\star$ the use for the calculation of the LF spectral function of the tensor product of a plane wave of momentum \times the state which describes the intrinsic motion of the fully interacting spectator subsystem

These new features allows one to take care of macrocausality and to introduce a new effect of binding in the Spectral Function

Preliminary Results for ${}^{3}He$ EMC effect We have first calculated the contribution from the 2B channel, with the spectator pair in a deuteron state

• Solid line: calculation with the LF Spectral Function.

- Dashed line: as the solid line, but with $\sqrt{k_{23}^2}=136.37~MeV$ for D (AV18).
- Dotted line: LF Momentum Distribution with only two-body contribution

Calculation of $R_2^{He}(x)/R^D(x)$: 2-body and 3-body contributions

• Solid line: LF Spectral Function, with the exact calculation for the 2-body channel, and an average energy in the 3-body contribution: $\langle \bar{k}_{23} \rangle = 113.53 \ MeV \ (proton), \langle \bar{k}_{23} \rangle = 91.27 \ MeV \ (neutron).$

Dotted line: LF momentum distribution U. Oelfke, P. Sauer and F. Coester, NPA 518, 593 (1990)

Within the LF framework normalization and momentum sum rule are fulfilled automatically. \Rightarrow Big difference from the IF approach !

Giovanni Salmè (INFN-Rome)

FSI & SIDIS by polarized ³He