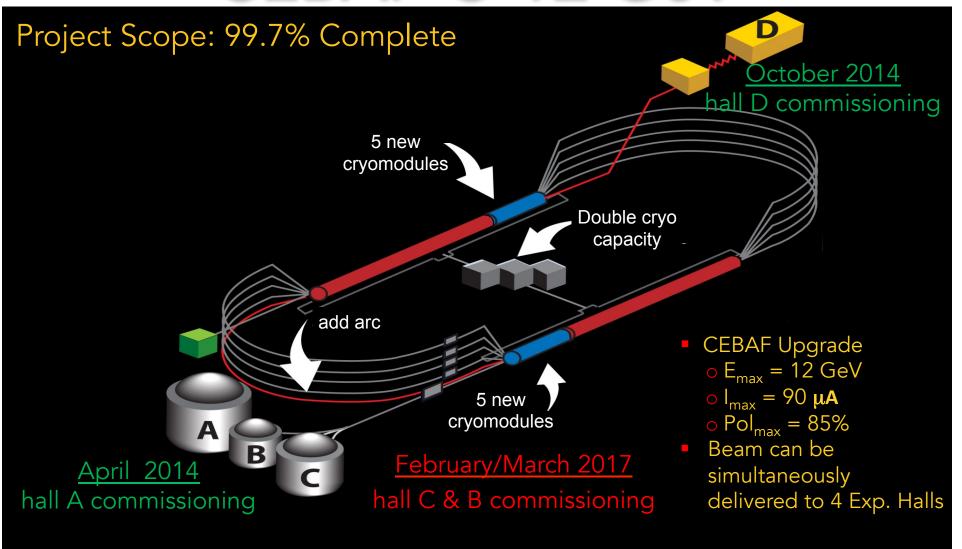
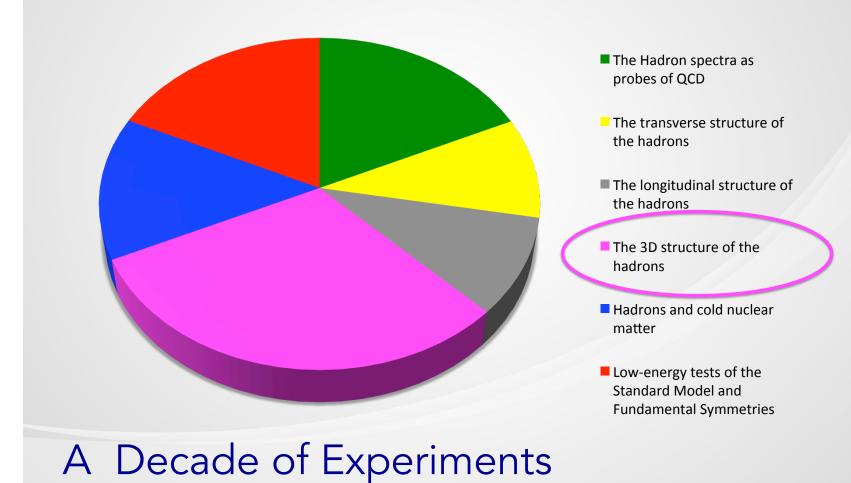


SIDIS Measurements at JLab12

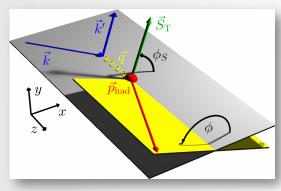
Patrizia Rossi Jefferson Lab/LNF-INFN


INT-17-3, Spatial and Momentum Tomography of Hadrons and Nuclei Seattle, Washington - September 18, 2017


Outline

- The JLab SIDIS program at @ 12 GeV: some selected measurements
- Impact on existing and future measurements
 - Investigation in the valence quark region
 - Precise data in a wide phase space
 - Multi-dimensional mapping of 3D PDFs using CLAS12, SoLID
 - Different targets species with different polarization
 - Flavor tagging
- Nucleon structure: from measuring to understanding
- Conclusions

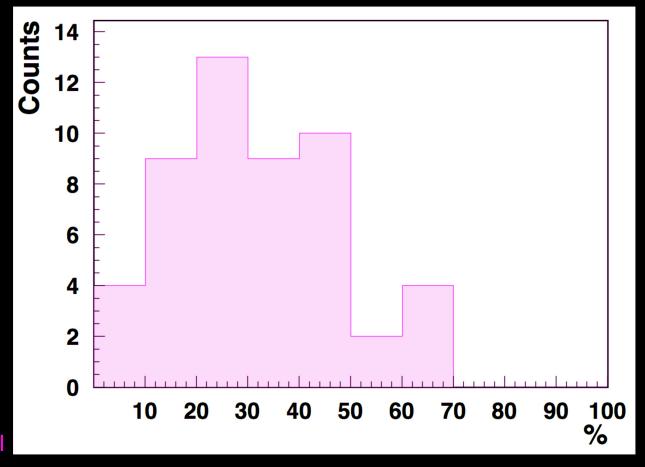
CEBAF @ 12 GeV


12 GeV Program: Approved PAC Days

4

Quark-parton Model Interpretation of SIDIS: Transverse Momentum Dependent PDFs (TMDs)

$$l+N \rightarrow l'+h+X$$


- Two scales
 - high Q hard scale
 - Low p_T sensitive to confining scale
- Two planes:
 - Lepton scattering plane and hadron production plane
 - The angular modulation allows TMD separation

Leading Order – Leading Twist					
N/q	U	L	T		
U	$\mathbf{f_1}$		h_1^{\perp}		
ho		$\mathbf{g_1}$	h_{1L}^{\perp}		
T	f_{1T}^{\perp}	g_{1T}	$\mathbf{h_1} \ h_{1T}^{\perp}$		

Higher Twist				
N/q	U	L	T	
U	f^{\perp}	g^{\perp}	h, \mathbf{e}	
L	f_L^{\perp}	g_L^\perp	$\mathbf{h_L}, e_L$	
T	f_T, f_T^{\perp}	$\mathbf{g_T}, g_T^{\perp}$	$h_T, e_T, h_T^{\perp}, e_T^{\perp}$	

The nucleon is a complex object!

How much do we know about the structure of the nucleon?

P. Rossi's poll

A Multi-Hall SIDIS Program

Start Hall B & C: spring 2018

SBS Hadron Arm

Target

BigBite

SoLID

GEM

CLAS12

Unpolarized and polarized H & D targets

- → cross sections, single & double-spin asymmetries
- → start kaon SIDIS program with RICH detector

Hall C: SHMS + HMS

Unpolarized target

Precision magnetic-spectrometer setup, π and K, high luminosity,

- → L/T separations in SIDIS
- \rightarrow precision cross sections and ratios of π^+ and π^- (and K⁺, K⁻)

Hall A: Solenoidal Large Intensity Device (SoLID) & SBS

Longitudinal & transversely polarized ³He

- → Access to n structure at high-x and high-Q²
- → pion & kaon run with BigBite and SBS

Unpolarized TMDs

- Unpolarized TMDs are not yet constrained in a satisfactory way
- They are present in all measurements
 - → it is not sufficient to describe their qualitative features
 - → precision is required
- Transverse momentum dependence of the **Multiplicities** provides leverage in the quest to unfold, from the transverse hadron momentum P_{hT} , the intrinsic quark p_T and fragmentation k_T
 - Access the shape of the unpolarized TMD
 - Constrain TMD models and calculations

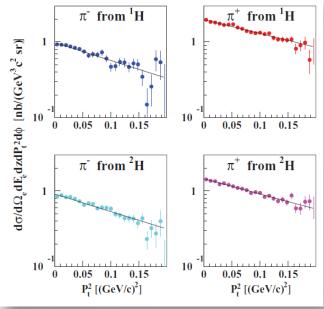
Unpolarized SIDIS

$$\frac{d\sigma}{dx_B\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} = \int_1 \otimes D_1 \quad \text{HT}$$

$$\frac{\alpha^2}{x_B\,y\,Q^2} \frac{y^2}{2\,(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x_B}\right) \left\{F_{UU,T} + \varepsilon\,F_{UU,L} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\cos\phi_h\,F_{UU}^{\cos\phi_h} + \varepsilon\,\cos(2\phi_h)\,F_{UU}^{\cos2\phi_h} + \lambda_e\,\sqrt{2\,\varepsilon(1-\varepsilon)}\,\sin\phi_h\,F_{LU}^{\sin\phi_h}\right\},$$

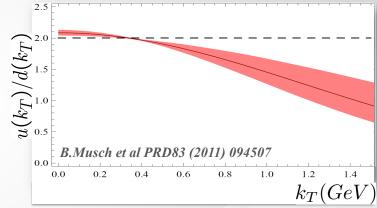
$$h_1^\perp \otimes H_1^\perp \quad \text{HT}$$

 BM TMD describes correlation between the transverse momentum and transverse spin of quarks, requires FSI or ISI


$$F_{UU}^{cos\phi_h}cos\phi_h$$
 $F_{UU}^{cos2\phi_h}cos2\phi_h$ Cahn + BM BM + h.t. Cahn

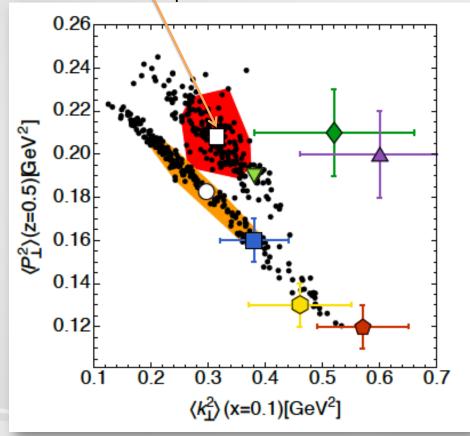
- Nontrivial modulations from the Cahn and Boer-Mulders effects
- → under intensive studies worldwide, including experiments, model calculations, lattice simulations

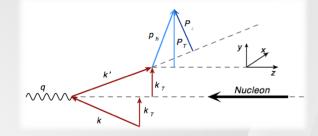
Flavor dependence of k_T-distributions


$$\left\langle \mathbf{P_{hT}^2} \right\rangle = \mathbf{z^2} \big\langle \mathbf{k_T^2} \big\rangle + \left\langle \mathbf{p_T^2} \right\rangle$$

JLab 6 GeV Hall C

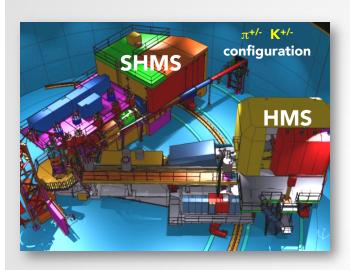
R. Asaturyan et al. PRC 85, 015202 (2012)


From the transverse hadron momentum P_{hT} \rightarrow information on the intrinsic k_T and the p_T generated during fragmentation

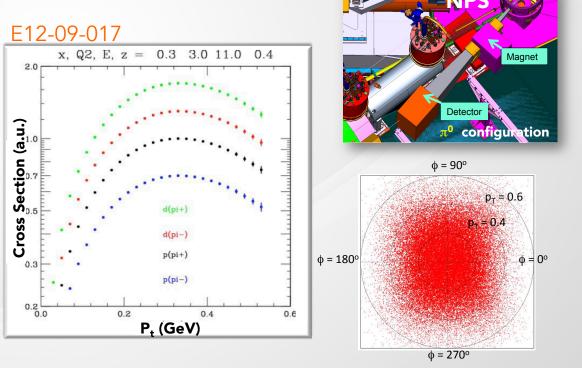

- Higher probability to find more d-quarks at large k_T
- Data (assuming only valence quarks) indicate that k_{T} -width of u-quarks is larger than for d-quarks
- Indications from both experimental data and theory (lattice, χCQM) of the k_T dependence of quark flavor distribution

Global analysis fitting

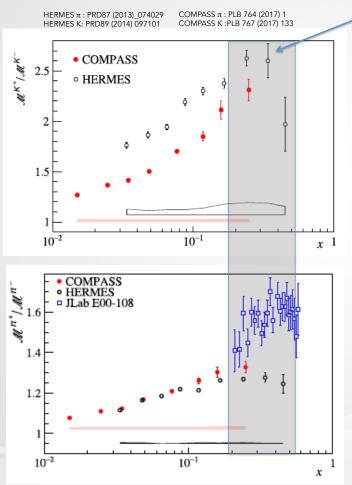
Pavia Group results, $Q^2 = 1 \text{ GeV}^2$



arXiv:1703.10157v1

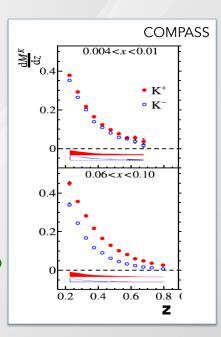

- Fit simultaneously SIDIS (HERMES, COMPASS), DY, and Z boson data
- Factorized functional form with Gaussian dependence on the intrinsic transverse momentum
- o Flavor-indipendent TMDs
- TMD evolution at NLL
- More experimental data needed to extend the coverage in x, z, Q^2
- →The 12 GeV physics program at JLab will be very important to constrain TMD distributions at large x
- Multiplicities alone may not be enough to separate $\langle k_{\perp} \rangle$ from $\langle p_{\perp} \rangle$

Hall C: SHMS + HMS (+ NPS)



- High momentum capability & resolution
- Setup optimal for longitudinaltransverse separations and ratios of charged-meson cross sections (unique amongst the Hall experimental setups)

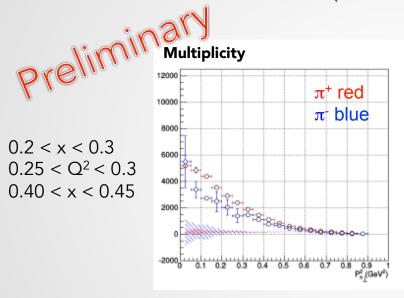
• Precise measurements of absolute cross-sections (O 1%) and p_T dependence $\pi^{+/-/0}$ and $K^{+/-}$ on p & d In the range: 0.2 < x < 0.5, 2 < Q^2 < 5 GeV², 0.3 < z < 0.5, P_t < 0.5 GeV

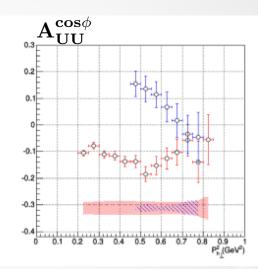


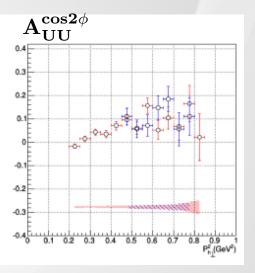
π^+/π^- & K⁺/K⁻ Ratios

JLab data @ 12 GeV

- COMPASS and HERMES pion multiplicity ratios are found in good agreement
- COMPASS kaon results are systematically lower than those of HERMES.
- COMPASS & HERMES data integrated over z, JLab data (E00-108) at z=0.55
- High statistics and high precision Hall C data @ 12 GeV can be compared with HERMES and COMPASS data in the x overlapping points at the same averaged z and P_T to help understand the discrepancy for the k+/k- ratio

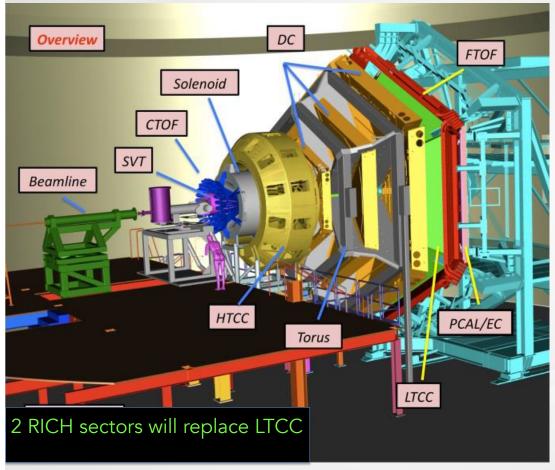



Unpolarized SIDIS x-section from CLAS @ 6 GeV


$$a(1 + bcos\phi_h + ccos2\phi_h)$$

N. Harrison

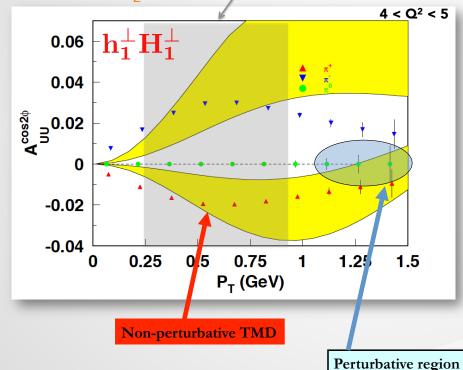
0.2 < x < 0.3 $0.25 < Q^2 < 0.3$ 0.40 < x < 0.45



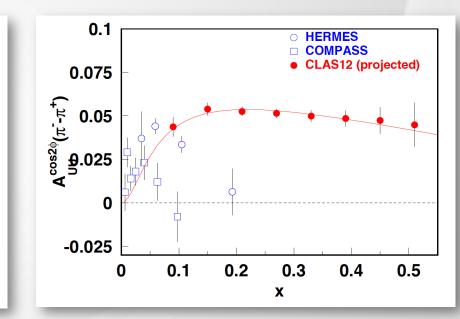
$$F_{UU}^{cos\phi_h} = \frac{2M}{Q} C \left[\frac{\hat{h} \cdot p_T}{zM_h} \frac{k_T^2}{M^2} h_1^{\perp} H_1^{\perp} - \frac{\hat{h} \cdot k_T}{M} z f_1 D_1 \right]$$

- $<\cos \phi>$ is more sensitive to the intrinsic k_T
- Symmetric behaviour indicates large BM contribution

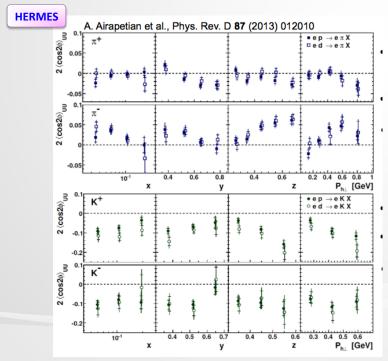
Hall B: CLAS12

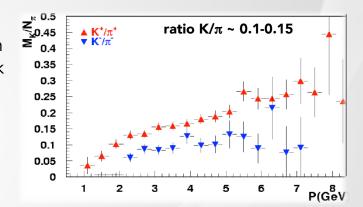

- Approved experiments
 2 GeV will continue these studies in a wider
 2 and P_T range.
- Very Large Acceptance
- Full PID
- Moderately high luminosity (10³⁵cm⁻²s⁻¹)

15


Unpolarized SIDIS x-section with CLAS12

6 GeV coverage


 P_T-dependence of BM asymmetry allows studies of transition from non-perturbative to perturbative description (Unified theory by Ji et al)

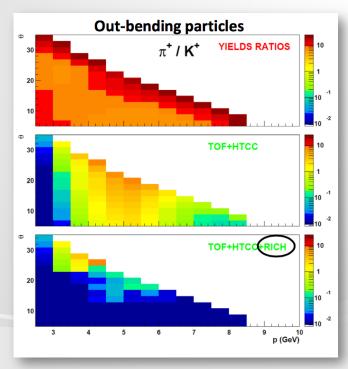


• Competing mechanisms (Cahn, Berger terms) and perturbative and radiative contributions to first order are expected to be "flavor blind" \rightarrow in the first approximation, those effects cancel in the difference of the asymmetries for π^- and π^+

Spin-orbit Correlations of the Strange Quarks

- SIDIS with $K^{+/-}$ as leading particles, are of high interest.
- Kaon detection is generally challenged by the about one order of magnitude larger flux of pions → very little is known about the spin-orbit correlations related to the strange quark

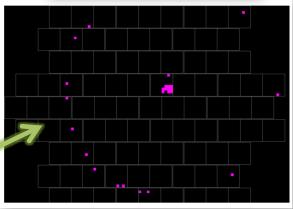
- HERMES and COMPASS results for Boer-Mulders asymmetries, despite the limited statistical accuracy, show surprising results
 - unexpectedly large Boer-Mulders asymmetries for kaons compared to pions
 - opposite signs for π^- and K^-


$$K^{+\{u\bar{s}\}} \qquad \pi^{+\{u\bar{d}\}} \qquad \xrightarrow{?} \qquad \frac{H_{1}^{\perp,u\to K^{+}}}{D_{1}^{u\to K^{+}}} > \frac{H_{1}^{\perp,u\to\pi^{+}}}{D_{1}^{u\to\pi^{+}}}$$

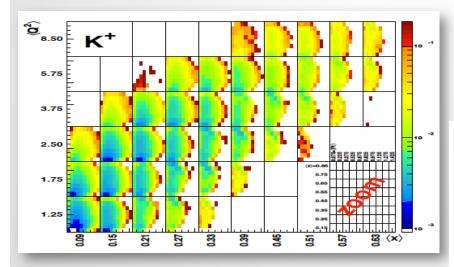
Relative sign H_1^{\perp} fav / H_1^{\perp} unfav for π and K inconstistent


Kaon Identification with CLAS12

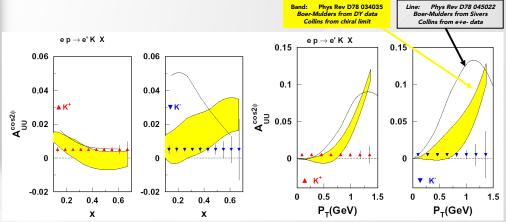

 These puzzling issues will be addressed with CLAS12 thanks to the improved PID obtained with the RICH detector


Hadron identification @ CLAS12

- Pion contamination in kaon sample from ×5-10 to ~1% ⇒ 1: 500 rejection factor (4σ separation) can be achived in full momentum range.
- Results confirmed at the CERN test beam with a RICH prototype (Eur. Phys. J. A (2016) 52: 23)

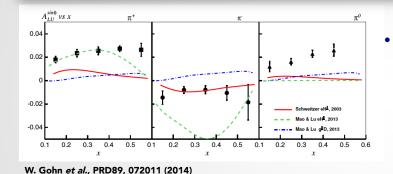


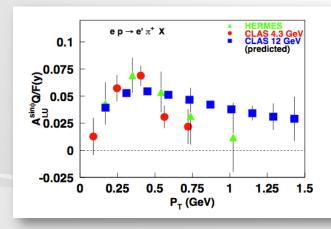
Boer – Mulders with CLAS12

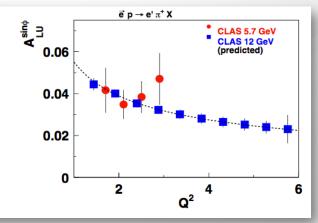

E12-06-112 + E12-09-008

High precision data set on π and K azimuthal asymmetries in SIDIS with unpolarized hydrogen and deuterium targets in the region $0.06 \le x$ 0.8, $0 \le P_T \le 1.5$, $0.2 \le z \le 0.8$

- pions vs kaons
 - Different exclusive background
 - Different higher twist effects
 - Different hadronization effects

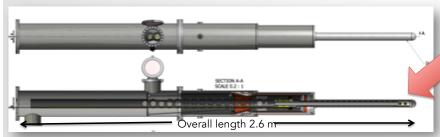

Excellent precision vs model uncertainties

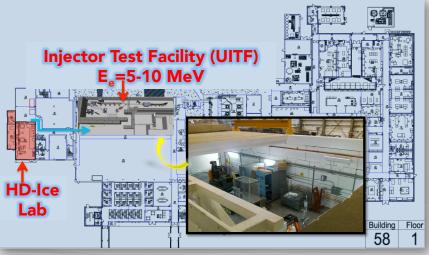

Higher Twist

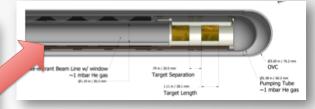

$$F_{LU}^{\sin\phi} \propto \frac{M}{Q} \sum_{a} e_{a}^{2} (e^{a} H_{1|}^{\perp a} + f_{1}^{a} \tilde{G}^{\perp a} + g^{\perp a} D_{1}^{a} + h_{1}^{\perp a} \tilde{E}^{a}).$$

- SF related to quark-gluon-quark correlations
- Presently no satisfactory understanding of how much each function contributes

- A_{LU} measured with CLAS @ 5.5 GeV with better than 1% statistical precision over a large range of z, P_T , x_B , Q^2
 - permits comparison with several reaction models
 - the commonly used Wandzura-Wilczek approximation is not applicable as it would demand that the entire asymmetry be zero

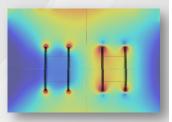

E12-06-112


 A_{LU} vs P_T and Q² at fixed x_B and z with CLAS12


Measurements with Polarized Targets @ CLAS12

Longitudinally polarized proton (NH₃) and deuteron (ND₃)

(Dynamic Nuclear Polarization)

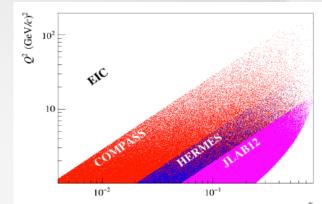


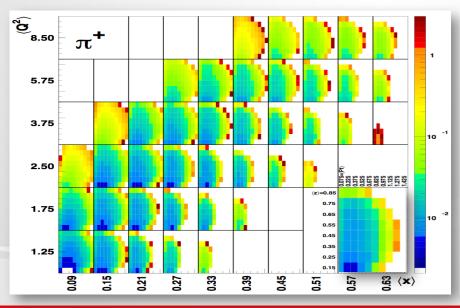
Improvement with respect to 6 GeV

- Can handle higher luminosity
- Double-cell target : Two target samples at opposing polarizations with a single μwave frequency → reduced systematic effects

Estimated completion date: Dec. 2018

HD-Ice target

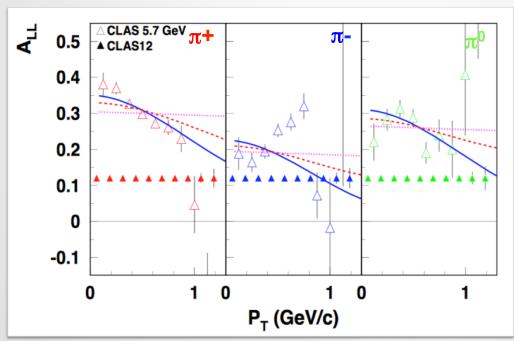



Solid HD material in a frozen spin state → requires only modest (~1 T)•short (~15 cm) field to hold spin in-beam


• Work in progress: 1) to test the target in the UITF 2) to operate it in transverse pol. mode in the CLAS12 Solenoid

CLAS12: A_{UT} with Transverse Proton Target

- Large acceptance of CLAS12 allows studies of P_T and Q^2 -dependence of SSAs in a wide kinematic range
- Comparison of JLab12 data with HERMES, COMPASS and EIC will pin down the Q^2 evolution of Sivers asymmetry

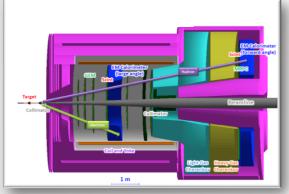


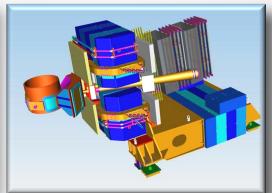
CLAS12: K_T Helicity Dependence

$$A_1(\pi) \propto \frac{\sum_q e_q^2 g_1^q D_1^{q \to \pi(z)}}{\sum_q e_q^2 f_1^q D_1^{q \to \pi(z)}} e^{z^2 P_T^2 \frac{(\mu_0^2 - \mu_2^2)}{(\mu_D^2 + z^2 \mu_0^2)(\mu_D^2 + z^2 \mu_2^2)}} \\ = \sum_q e_q^2 f_1^q D_1^{q \to \pi(z)} e^{z^2 P_T^2 \frac{(\mu_0^2 - \mu_2^2)}{(\mu_D^2 + z^2 \mu_0^2)(\mu_D^2 + z^2 \mu_2^2)}} \\ = \sum_q e_q^2 f_1^q D_1^{q \to \pi(z)} e^{z^2 P_T^2 \frac{(\mu_0^2 - \mu_2^2)}{(\mu_D^2 + z^2 \mu_0^2)(\mu_D^2 + z^2 \mu_2^2)}} \\ = \sum_q e_q^2 f_1^q D_1^{q \to \pi(z)} e^{z^2 P_T^2 \frac{(\mu_0^2 - \mu_2^2)}{(\mu_D^2 + z^2 \mu_0^2)(\mu_D^2 + z^2 \mu_2^2)}} \\ = \sum_q e_q^2 f_1^q D_1^{q \to \pi(z)} e^{z^2 P_T^2 \frac{(\mu_0^2 - \mu_2^2)}{(\mu_D^2 + z^2 \mu_0^2)(\mu_D^2 + z^2 \mu_2^2)}} \\ = \sum_q e_q^2 f_1^q D_1^{q \to \pi(z)} e^{z^2 P_T^2 \frac{(\mu_0^2 - \mu_2^2)}{(\mu_D^2 + z^2 \mu_0^2)(\mu_D^2 + z^2 \mu_2^2)}} \\ = \sum_q e_q^2 f_1^q D_1^{q \to \pi(z)} e^{z^2 P_T^2 \frac{(\mu_0^2 - \mu_2^2)}{(\mu_D^2 + z^2 \mu_0^2)(\mu_D^2 + z^2 \mu_2^2)}} \\ = \sum_q e_q^2 f_1^q D_1^{q \to \pi(z)} e^{z^2 P_T^2 \frac{(\mu_0^2 - \mu_2^2)}{(\mu_D^2 + z^2 \mu_0^2)(\mu_D^2 + z^2 \mu_2^2)}} \\ = \sum_q e_q^2 f_1^q D_1^{q \to \pi(z)} e^{z^2 P_T^2 \frac{(\mu_0^2 - \mu_2^2)}{(\mu_D^2 + z^2 \mu_0^2)(\mu_D^2 + z^2 \mu_2^2)}} \\ = \sum_q e_q^2 f_1^q D_1^{q \to \pi(z)} e^{z^2 P_T^2 \frac{(\mu_0^2 - \mu_2^2)}{(\mu_D^2 + z^2 \mu_0^2)(\mu_D^2 + z^2 \mu_2^2)}} \\ = \sum_q e_q^2 f_1^q D_1^{q \to \pi(z)} e^{z^2 P_T^2 \frac{(\mu_0^2 - \mu_2^2)}{(\mu_D^2 + z^2 \mu_0^2)(\mu_D^2 + z^2 \mu_2^2)}} \\ = \sum_q e_q^2 f_1^q D_1^{q \to \pi(z)} e^{z^2 P_T^2 \frac{(\mu_0^2 - \mu_2^2)}{(\mu_D^2 + z^2 \mu_0^2)(\mu_D^2 + z^2 \mu_2^2)}} \\ = \sum_q e_q^2 f_1^q D_1^{q \to \pi(z)} e^{z^2 P_T^2 \frac{(\mu_0^2 - \mu_2^2)}{(\mu_0^2 - \mu_2^2)}} \\ = \sum_q e_q^2 f_1^q D_1^{q \to \pi(z)} e^{z^2 P_T^2 \frac{(\mu_0^2 - \mu_2^2)}{(\mu_0^2 - \mu_0^2)(\mu_0^2 + z^2 \mu_2^2)}} \\ = \sum_q e_q^2 f_1^q D_1^{q \to \pi(z)} e^{z^2 P_T^2 \frac{(\mu_0^2 - \mu_0^2)}{(\mu_0^2 - \mu_0^2)}} \\ = \sum_q e_q^2 f_1^q D_1^{q \to \pi(z)} e^{z^2 P_T^2 \frac{(\mu_0^2 - \mu_0^2)}{(\mu_0^2 - \mu_0^2)}} \\ = \sum_q e_q^2 f_1^q D_1^{q \to \pi(z)} e^{z^2 P_T^2 \frac{(\mu_0^2 - \mu_0^2)}{(\mu_0^2 - \mu_0^2)}} \\ = \sum_q e_q^2 f_1^q D_1^{q \to \pi(z)} e^{z^2 P_T^2 \frac{(\mu_0^2 - \mu_0^2)}{(\mu_0^2 - \mu_0^2)}} \\ = \sum_q e_q^2 f_1^q D_1^{q \to \pi(z)} e^{z^2 P_T^2 \frac{(\mu_0^2 - \mu_0^2)}{(\mu_0^2 - \mu_0^2)}} \\ = \sum_q e_q^2 f_1^q D_1^q e^{z^2 P_T^2 \frac{(\mu_0^2 - \mu_0^2)}{(\mu_0^2 - \mu_0^2)} \\ = \sum_q e_q^2 f_1^q$$

$$f_1^q(x,k_T) = f_1(x) \frac{1}{\pi \mu_0^2} e^{-\frac{k_T^2}{\mu_0^2}}$$
 $g_1^q(x,k_T) = g_1(x) \frac{1}{\pi \mu_0^2} e^{-\frac{k_T^2}{\mu_0^2}}$
 $D_1^q(z,p_T) = D_1(z) \frac{p_T^2}{\pi \mu_D^2} e^{\frac{p_T^2}{\mu_D^2}}$
 μ_0^2 =0.25GeV²
 μ_0^2 =0.2GeV²

Curves are calculated using different k_T widths for helicity distributions



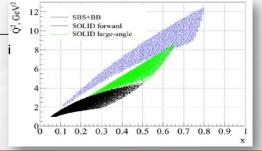

- A_{LL} (π) sensitive to difference in k_T distributions for f_1 and g_1
- Wide range in P_T allows studies of transition to perturbative approach

Hall A: SoLID & SBS

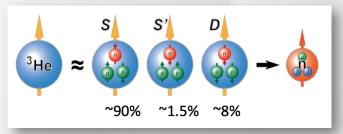
SoLID: Long Term

SBS: Near Term

- Large acceptance (2π)
- Moderately large P_T coverage
- Quite high luminosity (10³⁶ cm⁻²s⁻¹)


(e e' $\pi^{+/-}$) on Transversely Polarized ³He (e e' $\pi^{+/-}$) on Longitudinally Polarized ³He (e e' $\pi^{+/-}$) on Transversely polarized NH₃ Dihadron with Transversely Pol. ³He

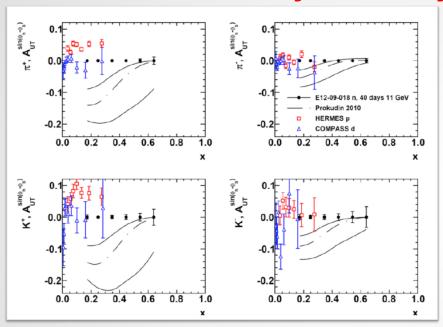
CLEO Solenoid at JLab; Pre-CDR


- Moderately large acceptance
- Full PID (π and k)

(e e' $\pi^{+/-}$ & K+/-) on Transversely Polarized ^{3}He

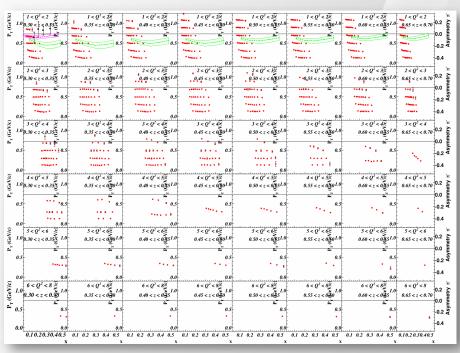
Under Construction; Physics > 2019

3He : effective polarized neutron target


- 60 μA on 60 cm
- $L \sim 6.6 \times 10^{36} \text{ cm}^{-2} \text{s}^{-1}$
- Polarization ~60%

SoLID & SBS:

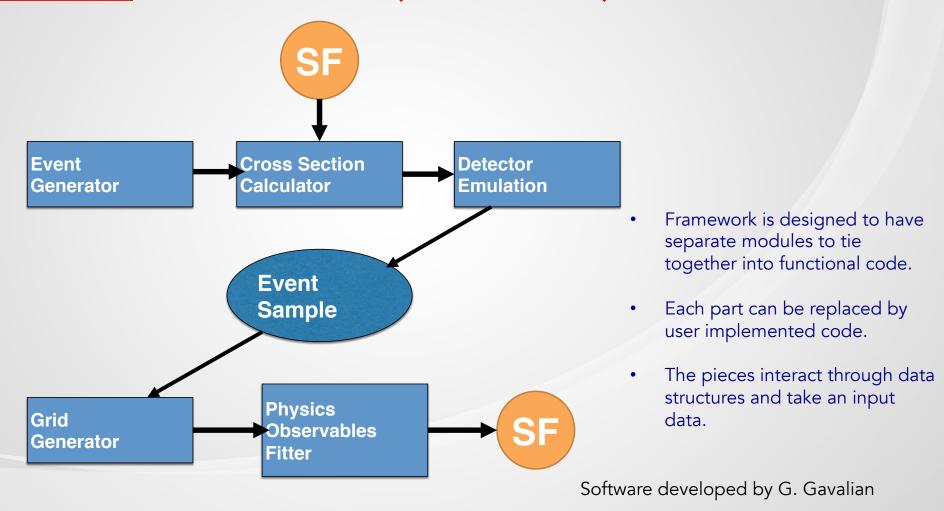
Complementary Kinematics


Sivers Asymmetry with SBS e SoLID

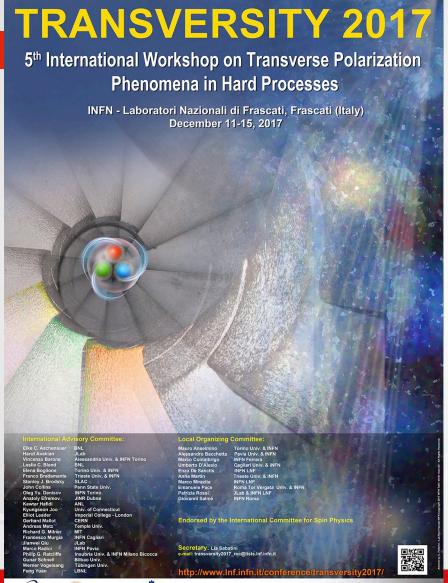
SBS

- will achieve statistical FOM for the neutron ~100X better than HERMES proton data and ~1000X better than JLab E06-010 neutron data
- Kaon and neutral pion data will aid flavor decomposition, and understanding of reactionmechanism effects.

Power of **SoLID**



E12-10-006


Extraction and Validation framework

- The forthcoming years will be a time of unprecedented high precision and high volume data.
- Measurements from different experiments, different reactions at different energies will be soon available and the realization of a universal analysis framework to enable the **extraction** and the **interpretation** of the 3D PDFs, is mandatory.
 - The unambiguous interpretation of any SIDIS experiment (JLab in particular) in terms of leading twist TMDs requires:
 - understanding of evolution properties
 - control of various subleading 1/Q² corrections
 - radiative corrections
 - · knowledge of involved transverse momentum dependent FF
 - understanding of hadronic backgrounds not originating from current quarks
- This effort requires a comprehensive approach combining experimental, theoretical/ phenomenological and computational efforts.
- The analysis framework will be used to both extract the 3D PDFs from measured and from models of 3D PDFs to prediction of observables.
- The framework will allow testing different extraction procedures and estimating systematics related to different assumptions and models used in the extraction procedure.

Framework (work flow)

27

December 11th to 15th, 2017

INFN Frascati National Laboratories (Italy)

http://www.lnf.infn.it/conference/transversity2017

Local Organizing Committee

Mauro Anselmino Torino Univ. & INFN
Alessandro Bacchetta
Marco Contalbrigo Umberto D'Alesio Torino Univ. & INFN
Pavia Univ. & INFN
INFN-Ferrara
Cagliari Univ. & INFN

Enzo De Sanctis INFN-LNF

Anna Martin Trieste Univ. & INFN
Marco Mirazita INFN-LNF (co-chair)
Emanuele Pace Rome Tor Vergata & INFN

Patrizia Rossi Jefferson Lab & INFN-LNF (co-chair)

Giovanni Salmè INFN-Rome

Conclusions

- A comprehensive SIDIS program at 12 GeV is in place:
 - Wide kinematic coverage and large acceptance
 - Precise un-polarized cross-sections and their kinematic dependence
 - Study leading and sub-leading twist TMDs
 - Many modulations will be extracted in more than one experimental hall, equipped with complementary performing detectors
- Flavor separation will be performed analyzing asymmetries with different target/ beam polarization combinations on both neutron and proton targets
- A consistent procedure for extraction of TMDs from data with controlled systematic errors has started.