# L/T and flavor separation in π<sup>0</sup> electro-production (Hall A@Jlab)

## J. Roche (Ohio U.)

DVCS2

- M. Mazouz *et al.*, "Rosenbluth separation of the  $\pi^0$  electro-production off the neutron", PRL, Feb `17.
- M. Defurne, M. Mazouz *et al.*, "Rosenbluth separation of the  $\pi^0$  electroproduction", PRL, Aug `16.

DVCS1

• E. Fuchey *et al.*, "Exclusive neutral pion electro-production in the Deeply Virtual Regime", PRC, Mar `10.

Thesis:

- M. Defurne, U of Paris IV, Jun `15.
- E. Fuchey, Clermont U, Apr `11.



## $\gamma/\pi^0$ Production : same GPDs??



|                 | Nucleon Helicity |                     |  |  |  |  |  |
|-----------------|------------------|---------------------|--|--|--|--|--|
|                 | conserving       | non-conserving      |  |  |  |  |  |
| unpolarized GPD | Н                | Е                   |  |  |  |  |  |
| polarized GPD   | - Ĥ              | $	ilde{\mathrm{E}}$ |  |  |  |  |  |

#### **Chiral even GPDs:**

helicity of the parton is conserved

Chiral even GPDs + Chiral-odd GPDs (helicity of the parton can flip in the top part of the process)

Different scaling and additional GPDs

## Hall A/C DVCS is part of a worldwide program

#### Timeline

- Pioneering results from non-dedicated experiments (Hall B and Hermes): ~2001
- Second round of dedicated experiments (Halls A/B): ~2010

#### In the valence region (JLab)

Partially complimentary, overlapping

- Hall A: high accuracy (~5%)
   : limited kinematic
- Hall B: wide kinematic range

: limited accuracy (15+%)



DVCS2

#### The Hall A detector scheme









#### Trigger with at least one cluster in the calo.



Triggers if a group of 2\*2 blocks is above threshold

| DVCS3- kin | 1 cluster | 2 clusters |
|------------|-----------|------------|
| 36_1       | 100       | 23         |
| 36_2       | 100       | 27         |
| 36_3       | 100       | 26         |

In some case, this trigger is by-passed

| 16 |      |    |       |    |    |    |      |     |     |     |     |        |       |   | 4 |
|----|------|----|-------|----|----|----|------|-----|-----|-----|-----|--------|-------|---|---|
|    | _ 15 | 31 | 47    | 63 | 79 | 95 | 111  | 127 | 143 | 159 | 175 | 191    | 207   |   |   |
| 14 | - 14 | 30 | 46    | 62 | 78 | 94 | 110  | 126 | 142 | 158 | 174 | 190    | 206   |   |   |
| 14 | - 13 | 29 | 45    | 61 | 77 | 93 | 109  | 125 | 141 | 157 | 173 | 189    | 205   |   | 3 |
| 10 | - 12 | 28 | 44    | 60 | 76 | 92 | 108  | 124 | 140 | 156 | 172 | 188    | 204   |   |   |
| 12 | - 11 | 27 | 43    | 59 | 75 | 91 | 107  | 123 | 139 | 155 | 171 | 187    | 203   |   | ľ |
|    | - 10 | 26 | 42    | 58 | 74 | 90 | 106  | 122 | 138 | 154 | 170 | 186    | 202   |   |   |
| 10 | - 9  | 25 | 41    | 57 | 73 | 89 | 105  | 121 | 137 | 153 | 169 | 185    | 201   | _ | ź |
|    | - 8  | 24 | 40    | 56 | 72 | 88 | 104  | 120 | 136 | 152 | 168 | 184    | 200   |   |   |
| 8  | -7   | 23 | 39    | 55 | 71 | 87 | 103  | 119 | 135 | 151 | 167 | 183    | 199   |   | 1 |
|    | - 6  | 22 | 38    | 54 | 70 | 86 | 102  | 118 | 134 | 150 | 166 | 182    | 198   |   |   |
| ь  | - 5  | 21 | 37    | 53 | 69 | 85 | 101  | 117 | 133 | 149 | 165 | 181    | 197   | _ |   |
|    | - 4  | 20 | 36    | 52 | 68 | 84 | 100  | 116 | 132 | 148 | 164 | 180    | 196   |   |   |
| 4  | - 3  | 19 | 35    | 51 | 67 | 83 | 99   | 115 | 131 | 147 | 163 | 179    | 195   |   |   |
| _  | - 2  | 18 | 34    | 50 | 66 | 82 | 98   | 114 | 130 | 146 | 162 | 178    | 194   |   |   |
| 2  | - 1  | 17 | 33    | 49 | 65 | 81 | 97   | 113 | 129 | 145 | 161 | 177    | 193   |   | ļ |
| _  | - o_ | 16 | 32    | 48 | 64 | 80 | 96   | 112 | 128 | 144 | 160 | 176    | 192   |   |   |
| °0 | 0 2  |    | 2 4 6 |    |    | 6  | 8 10 |     |     |     | 12  |        |       |   |   |
|    |      |    |       |    |    |    |      |     |     |     |     | Col. n | umber |   |   |

| -      | 16 |      |    |    |    |    |    |     |     |     |     |     |        |       |   | 400 |
|--------|----|------|----|----|----|----|----|-----|-----|-----|-----|-----|--------|-------|---|-----|
| þ      |    | - 15 | 31 | 47 | 63 | 79 | 95 | 111 | 127 | 143 | 159 | 175 | 191    | 207   |   |     |
| mun wa |    | - 14 | 30 | 46 | 62 | 78 | 94 | 110 | 126 | 142 | 158 | 174 | 190    | 206   |   | 050 |
|        | 12 | - 13 | 29 | 45 | 61 | 77 | 93 | 109 | 125 | 141 | 157 | 173 | 189    | 205   |   | 350 |
| ĕ      |    | - 12 | 28 | 44 | 60 | 76 | 92 | 108 | 124 | 140 | 156 | 172 | 188    | 204   |   |     |
|        |    | - 11 | 27 | 43 | 59 | 75 | 91 | 107 | 123 | 139 | 155 | 171 | 187    | 203   |   | 300 |
|        |    | - 10 | 26 | 42 | 58 | 74 | 90 | 106 | 122 | 138 | 154 | 170 | 186    | 202   |   |     |
|        | 10 | - 9  | 25 | 41 | 57 | 73 | 89 | 105 | 121 | 137 | 153 | 169 | 185    | 201   | - | 250 |
|        |    | - 8  | 24 | 40 | 56 | 72 | 88 | 104 | 120 | 136 | 152 | 168 | 184    | 200   |   |     |
|        | 8  | -7   | 23 | 39 | 55 | 71 | 87 | 103 | 119 | 135 | 151 | 167 | 183    | 199   | - | 200 |
|        |    | - 6  | 22 | 38 | 54 | 70 | 86 | 102 | 118 | 134 | 150 | 166 | 182    | 198   |   |     |
|        | ь  | - 5  | 21 | 37 | 53 | 69 | 85 | 101 | 117 | 133 | 149 | 165 | 181    | 197   |   | 150 |
|        |    | - 4  | 20 | 36 | 52 | 68 | 84 | 100 | 116 | 132 | 148 | 164 | 180    | 196   |   |     |
|        | 4  | - 3  | 19 | 35 | 51 | 67 | 83 | 99  | 115 | 131 | 147 | 163 | 179    | 195   | _ | 100 |
|        |    | - 2  | 18 | 34 | 50 | 66 | 82 | 98  | 114 | 130 | 146 | 162 | 178    | 194   |   |     |
|        | 2  | - 1  | 17 | 33 | 49 | 65 | 81 | 97  | 113 | 129 | 145 | 161 | 177    | 193   | _ | 50  |
|        | _  | - o_ | 16 | 32 | 48 | 64 | 80 | 96  | 112 | 128 | 144 | 160 | 176    | 192   |   |     |
|        | °C | )    |    | 2  |    | 4  |    | 6 8 |     | 3   | 1   | 0   | 1      | 2     |   |     |
|        |    |      |    |    |    |    |    |     |     |     |     |     | Col. n | umber |   |     |

Target-Calorimeter distance such that 2 $\gamma$  from  $\pi^0$  are separated by 3 blocks

#### 2-clusters events used for DVCS analysis



## Monitoring and fine adjusting of energy calibration

- First pass: elastic calibration p(e,e'p'): invasive about every 4 weeks
- Second pass: π<sup>0</sup> calibration with about 1 day of data parasitic to DVCS data taking



#### Toward selecting $p(e,e'\pi^0)p'$ for physics



- Software threshold of 500 MeV on each cluster
- Avoid the edge of the calorimeter to ensure full reconstruction of the EM shower.

$$\mathbf{t}_{i} = \mathbf{t}(\mathbf{e'}) - \mathbf{t}(\gamma_{i})$$

- $e'\gamma_1\gamma_2$  all in coincidence
- e'  $\gamma$  in coincidence but not with the other  $\gamma$
- $\gamma_1 \gamma_2$  in coincidence but not with e'
- $e'\gamma_1\gamma_2$  all in random coincidence.



#### Hard Exclusive Meson cross-section

$$\frac{d^{4}\sigma}{dtd\phi dQ^{2}dx_{B}} = \frac{1}{2\pi}\Gamma_{\gamma^{*}}(Q^{2}, x_{B}, E_{e})\left[\frac{d\sigma_{T}}{dt} + \epsilon\frac{d\sigma_{L}}{dt} + \sqrt{2\epsilon(1+\epsilon)}\frac{d\sigma_{TL}}{dt}\cos(\phi) + \epsilon\frac{d\sigma_{TT}}{dt}\cos(2\phi)\right]$$

At first thought, if QCD factorization applies:  $\sigma_L$  expected to dominate with  $\sigma_T$  suppressed by 1/Q.



#### **DVCS1 results**

Fuchey et al. Phys Rev C 83.025201 (2011)

Q<sup>2</sup>= 2.3 GeV<sup>2</sup>  $x_B$ =0.36  $\epsilon$ =0.61

Similar results at:

- CLAS with π0
- HERMES & Hall C with  $\pi$ +





### Why such a large $d\sigma_T$ contribution?

Modified factorization approach proposed by

- Ahmad, Golstein and Liuti (Phys.Rev.D79, 054014 (2009))
- Goloskokov and Kroll (Eur.Phys.J A47, 112(2011))

In these models:

- Factorization is possible because of the specific make up of the mesons (singularities cancellations),
- Twist-3 Distribution amplitudes couple with transversity GPDs.

 $m_{\mu} + m_d$ 



$$\frac{d\sigma_T}{dt} = \frac{4\pi\alpha}{2k'} \frac{\mu_\pi^2}{Q^8} \left[ (1-\xi^2) |\mathcal{H}_T|^2 - \frac{t'}{8m^2} |2\widetilde{\mathcal{H}}_T + \mathcal{E}_T|^2 \right]$$
$$\frac{d\sigma_{TT}}{dt} = \frac{4\pi\alpha}{2k'} \frac{\mu_\pi^2}{Q^8} \frac{t'}{16m^2} |2\widetilde{\mathcal{H}}_T + \mathcal{E}_T|^2,$$
$$\mu_\pi = \frac{m_\pi^2}{2m^2} \simeq 2.5 \text{ GeV} > \text{experimental Q (less than 1.4)}$$

#### **DVCS2 results: fully separated contributions**



G-H-L ('11)

G-K

Small  $d\sigma_L$ , large  $d\sigma_T$ : models ok on these Wrong sign and Q dependence on  $d\sigma_{TL}$  and  $d\sigma_{TT}$  $d\sigma_{TL}$  sizeable =>  $d\sigma_L$  is small but not null

#### DVCS2 results neutron data M. Mazouz PRL 118 (2017) 22, 222002

At  $Q^2=1.75$  GeV<sup>2</sup> and  $x_B=0.36$ , half of the data taken on a LD2 target.

Below the two pions threshold:

From LH2, add Fermi smearing

$$D(e,e'\pi^0)X = d(e,e'\pi^0)d + n(e,e'\pi^0)n + p(e,e'\pi^0)p.$$



Events with missing mass squared below 0.95 GeV<sup>2</sup>:

• are divided in 12 x 2 x 5 x 30 bins in  $\phi$ , E, t and  $M_x^2$ 

 $\varphi,$  E allow for L, T, LT and TT separation  $M_{\rm x}{}^2$  allows for the n/d separation

• fitted with eight cross-section function structure

 $d\sigma^{n,d}_{\Lambda}(t)$  $\mathbf{\Lambda} = \mathrm{T}, \mathrm{L}, \mathrm{LT}, \mathrm{TT}$  $Q^2$ =1.75 GeV<sup>2</sup> and x<sub>B</sub>=0.36 E=4.45 GeV E=5.55 GeV <t'>= 0.025 GeV<sup>2</sup> <t'>=0.021 GeV<sup>2</sup> (µb/GeV<sup>2</sup>) 0.4 <u>20.3</u> 0.2 dtd ∲  $2\pi$ -0.1 100 200 300 100 200 30  $\widetilde{\phi}$  (deg) (deg)



#### **DVCS2n results: fully separated contributions**



#### **DVCS2n results: flavor separation**

$$\left| \langle H_{T}^{p,n} 
angle 
ight|^{2} = rac{1}{2} \left| rac{2}{3} \left\langle H_{T}^{u,d} 
ight
angle + rac{1}{3} \left\langle H_{T}^{d,u} 
ight
angle 
ight|^{2}$$

account for the unknown phase variation between u and the d amplitude  $\gamma^*q \rightarrow q'\pi^0$  convoluted with  $(H,E)_T$ 

Goloskokov and Kroll Eur Phys J A47 (2012)

u quark

d quark



#### E12-06-114: high impact experiment







#### E12-13-010: "DVCS" at 11 GeV in Hall C



#### E12-13-010: electro-production of $\pi^0$ in Hall C



FIG. 3: Projected uncertainties for the  $Q^2$  dependence of  $\sigma_L$  and  $\sigma_T$  at fixed  $x_B=0.36$ , 0.5. The points are plotted assuming the GK model predictions. Also shown are the hard scattering (HS,  $R=\sigma_L/\sigma_T 1/Q^{-2}$ ) and the DIS (DIS,  $R 1/Q^2$ ) expectation, and the model predictions of the VGL (Regge) model. The points at  $Q^2=5.1$  and 6.0 GeV<sup>2</sup> in the right panel are scaled from the  $x_B=0.6$ setting in Table III and include events from the Hall A DVCS experiment [28] for the low beam energy in the L/T separation where appropriate. The point at  $Q^2=5.5$  GeV<sup>2</sup> also includes events from the Hall A experiment for the low beam energy in the L/T separation.

#### Outlook

- Our scheme is to measure electro-production of  $\pi^0$  parasitically to DVCS.
  - We have published  $\pi^0$  data on proton and neutron for all our 6GeV data.
  - We have data on tape at 12 GeV (one energy only).
  - We will take data at 12 GeV with NPS (multiple energies).
- Our data support the dominance of  $\sigma_{\rm T}$  measured by HERMES and CLAS and explained by the modified factorization approach proposed by Liuti and by Kroll

Can experiment provide data that would further "test" this modified factorization scheme?

• We have published a first flavor separation of the <HT> and <ET>. A limiting factor to the precision of this measurement is the relative phase between the u and d amplitudes. This could be mitigated by exclusive  $p(\gamma^*, \eta p)$  data.

Is this worth it?