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Introduction
• Measures of Hadron Structure and Lattice QCD 
• 1-D hadron Structure - Parton Distribution Functions 

and Form Factors 
• 3-D Measures: (Moments of) 

– Generalized Parton Distributions 
– TMDs 

• New Developments in LQCD: LaMET, Quasi-
distributions, Pseudo-Distributions 

• Summary



Lattice QCD

• Generate an ensemble of gauge configurations  

• Calculate observable

Observables in lattice QCD are then expressed in terms of the path 
integral as
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Importance 
Sampling

Integrate out the Grassmann variables: 
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This is REAL for Euclidean space 
QCD - but see later



Wigner distributions5D

1D

3D

Measures of Hadron Structure

Generalized Parton 
Distributions (GPDs)

Transverse Momentum 
Dependent Distributions 
(TMDs)

Bjorken-x and impact parameterBjorken-x and 
transverse 
momentum



Hadron Structure

Resolution of unity – insert states
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One-Dimensional 
Structure



1D Structure - Charges
M Constantinou, arXiv:1511.00214

• Governs beta-decay rate 
• Important for proton-proton fusion 

rate in solar models 
• Benchmark for lattice QCD 

calculations of hadron structure

e.g. novel interactions probed in ultra-
cold neutron decay
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Systematic Uncertainties
Yoon et al., Phys. Rev. D 93, 114506 (2016)

Failure to isolating ground state leads to important systematic uncertainty.

Variational 
Method



Renormalized Charges

ID Lattice Theory a fm M⇡(MeV) gu�d
A gu�d

S gu�d
T gu�d

V

a127m285 2+1 clover-on-clover 0.127(2) 285(6) 1.249(28) 0.89(5) 1.023(21) 1.014(28)
a12m310 2+1+1 clover-on-HISQ 0.121(1) 310(3) 1.229(14) 0.84(4) 1.055(36) 0.969(22)
a094m280 2+1 clover-on-clover 0.094(1) 278(3) 1.208(33) 0.99(9) 0.973(36) 0.998(26)
a09m310 2+1+1 clover-on-HISQ 0.089(1) 313(3) 1.231(33) 0.84(10) 1.024(42) 0.975(33)
a091m170 2+1 clover-on-clover 0.091(1) 166(2) 1.210(19) 0.86(9) 0.996(23) 1.012(21)
a09m220 2+1+1 clover-on-HISQ 0.087(1) 226(2) 1.249(35) 0.80(12) 1.039(36) 0.969(32)
a09m130 2+1+1 clover-on-HISQ 0.087(1) 138(1) 1.230(29) 0.90(11) 0.975(38) 0.971(32)

Consistency between different actions Matrix Elements of 1st excited state?

Yoon et al., Phys. Rev. D 95, 074508 (2017)



Feynman-Hellman Method

Berkowitz et al, arXiv:1704.01114

Calculation using Feynman-Hellman 
Theory 

H = H0 + �H�

@En

@�
= hn | H� | ni

Reduces to calculation of energy-shift of 
two-point functions but repeat the 
calculation for each operator



Isovector Moments of PDFs

Abdel-Rehim et al, Phys. Rev. D 93, 
039904 (2016)



1D Structure: EM Form Factors
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Hadron structure at nearly-
physical quark masses

Green et al (LHPC), Phys. Rev. D 90, 074507 (2014)

Wilson-clover lattices from BMW

Large Q2 behavior: Hall C at JLab to 15 GeV2 



Sea Quark Contributions

13

J. Green, K. Orginos et al., Phys. 
Rev. D 92, 031501 (2015); Phys. Rev. 
D 95, 114502 (2017

Using Hierarchical Probing - A. 
Stathopoulos, J. Laeuchli, K. Orginos 
(2013)

Combination measured in expt



Generalized Parton Distributions
• Measured in Deeply-Virtual Compton Scattering (DVCS) and Exclusive 

Meson Production.
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GPDs - II
• Light-cone distributions not accessible in Euclidean-

space QCD
Z 1

�1
dx xn�1


H(x, ⇠, t)
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Generalized Form Factors

• Related to matrix elements of local operators

Oµ1...µn = in�1 ̄�{µ1Dµ2 . . . Dµn}�
a

2
 

Higher Moments restricted by hypercubic symmetry



Different Regimes in Different Experiments

Form Factors 
transverse quark 
 distribution in  

Coordinate space

Structure Functions 
longitudinal 

quark distribution 
in momentum space

GPDs 
Fully-correlated 

quark distribution in  
both coordinate and  
momentum space



Parametrizations of GPDs

Comparison with Diehl et al, 
hep-ph/0408173

Provide phenomenological guidance for 
GPD’s
–  CTEQ, Nucleon Form Factors, 

Regge 

Important Role for LQCD

LHPC, Haegler et al., Phys. Rev. D 
77, 094502 (2008); 
Phys.Rev.D82:094502,2010



Flattening of GFFs with increasing n

Lattice results consistent with 
narrowing of transverse size with 
increasing x

Transverse radii

Charge Radius of GFFs
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GPDs and Orbital Angular Momentum
• Form factors of energy momentum tensor - quark and gluon 

angular momentum

1
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=
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1

2
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(Aq
20(t = 0) +Bq
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20(t = 0) +Bg
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)

“q̄�µD⌫q”

X.D. Ji, PRL 78, 610 (1997)

X

q

✓
1

2
�⌃q + Lq

◆

Decomposition 
• Gauge-invariant 
• Renormalization-scale dependent 
• Handle on Quark orbital angular momentum

Mathur et al., Phys.Rev. D62 (2000) 114504



Origin of Nucleon Spin

HERMES, PRD75 (2007)

• Total orbital angular momentum 
carried by quarks small 
• Orbital angular momentum carried 
by individual quark flavours 
substantial. LHPC, Haegler et al., 

Phys. Rev. D 77, 094502 
(2008); arXiv.1001.3620
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Origin of Nucleon Spin - II

M Constantinou, arXiv:1511.00214



Energy-Momentum Tensor

• Quark masses contribute only 1% to mass 
of proton: binding through gluon 
confinement 

• Gluon spin and orbital angular momentum 
to spin of proton largely unknown

22

Tµ⌫ =
1

4
 ̄�(µD⌫) +Gµ↵G⌫↵ � 1

4
�µ⌫G

2; hP | Tµ⌫ | P i = PµP⌫/M

“Understanding the Glue That 
Binds Us All: The Next QCD 
Frontier in Nuclear Physics”

Yang, Trento 2017

Trace Anomaly: Tµµ = �(1 + �m)

¯  +

�(g)

2g
G2



Spin and Momentum Decomposition
Twisted-Mass Fermions: C.Alexandrou et al, arXiv:1706.02973

➙ Momentum and Spin Sum Rules Satisfied



Gluon Spin

~

Sg = 2

Z
d

3
xTr( ~Ec ⇥ ~

Ac)

Yang et al, Phys. Rev. Lett. 118, 102001 (2017)

�G in large p limit



time

incoming electr
on

incoming proton

fragmenting proton remnant

hadronizing quark

jet of hadrons

jet of hadrons

pick a hadron and measure its momentum

Ph

final state 
interactions

Bernhard Musch 2011

   Transverse momentum distributions (TMDs) 

final state interactions!
explain large asymmetries otherwise forbidden!

signature of QCD!

from experiment, e.g., SIDIS (semi-inclusive deep inelastic scattering) + DY

HERMES,  COMPASS,  JLab 12 GeV , RHIC-spin, EIC, DY

25

Slide: B. Musch



�� =

Z
d(n · k)

Z
d4l
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Z
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Z
d4l
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TMDs in Lattice QCD

TUM/T39-09-08, MIT-CTP 4056

Intrinsic quark transverse momentum in the nucleon from lattice QCD

Ph. Hägler,1 B.U. Musch,1 J.W. Negele,2 and A. Schäfer3
1
Institut für Theoretische Physik T39, Physik-Department der TU München, 85747 Garching, Germany

⇤

2
Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

3
Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany

(Dated: December 22, 2009)

A better understanding of transverse momentum (k?-) dependent quark distributions in a hadron
is needed to interpret several experimentally observed large angular asymmetries and to clarify the
fundamental role of gauge links in non-abelian gauge theories. Based on manifestly non-local gauge
invariant quark operators we introduce process-independent k?-distributions and study their prop-
erties in lattice QCD. We find that the longitudinal and transverse momentum dependence approx-
imately factorizes, in contrast to the behavior of generalized parton distributions. The resulting
quark k?-probability densities for the nucleon show characteristic dipole deformations due to cor-
relations between intrinsic k? and the quark or nucleon spin. Our lattice calculations are based on
Nf=2+1 mixed action propagators of the LHP collaboration.

Introduction.— Already 30 years ago, it has been
noted that intrinsic transverse momentum, k?, of par-
tons gives rise to azimuthal asymmetries in unpolarized
semi-inclusive deep inelastic scattering (SIDIS), for ex-
ample e�+p⇤e�+⇤+X, nowadays known as the Cahn
e⌅ect [1]. Since then, significant progress has been made
in understanding intrinsic k? e⌅ects and their relation
to the eikonal phases that quark fields acquire in hadron
scattering processes due to initial and final state inter-
actions [2]. The eikonal phases, given by gauge links
(Wilson lines), turn out to be process-dependent and lead
to, e.g., the Sivers and Collins asymmetries [3, 4] in po-
larized SIDIS, which have attracted a lot of attention
and were already observed in experiments at HERMES,
COMPASS and Je⌅erson Lab [5]. Theoretically, these

⊥k

u

d

zP

z

zxP

u

yk

xk

FIG. 1: Illustration
of the transverse mo-
mentum distribution of
quarks in the proton.

can be described in the
framework of QCD factoriza-
tion using transverse momen-
tum dependent parton distri-
bution functions (tmdPDFs)
[4, 6], an approach that goes
beyond the usual collinear
approximation and operator
product expansion involving
(moments of) PDFs. In addi-
tion to their phenomenolog-
ical importance, tmdPDFs
provide essential information
about the internal structure
of hadrons in the form of
probability densities in the transverse momentum plane,
⌅(x,k?), as illustrated in Fig. 1 [7], where x is the lon-
gitudinal momentum fraction carried by the quark.

In this work, we introduce process-independent k?-
distributions and calculate these in lattice QCD. We il-
lustrate our results by presenting k?-densities of quarks
in the nucleon, with a focus on possible correlations be-
tween k? and the transverse quark and nucleon spins,
resulting in deformations from a spherically symmetric

distribution. It is interesting to compare this approach
with generalized parton distributions (GPDs) in impact
parameter (b?-) space [8], which allows one to study the
spatial distribution of partons in hadrons in form of prob-
ability densities ⌅(x, b?) [9]. Lattice QCD studies of the
latter revealed characteristic non-spherical shapes of the
pion and the nucleon in the case of transversely polar-
ized quarks [10, 11]. We stress, however, that tmdPDFs
and GPDs provide fundamentally di⌅erent and comple-
mentary insight into hadron structure, since they are not
related by Fourier transformation and k? and b? are not
conjugate variables.

To introduce the di⌅erent tmdPDFs, we first define the
momentum-space correlators ⇤�=⇤�(x,k?;P, S),

⇤� =
�

d(n̄·k)
�

d4l

2(2⇤)4
e�ik·l⇥⇤�(l;P, S)

=
�

d(n̄·k)
�

d4l

2(2⇤)4
e�ik·l⇧P, S|q̄(l)�Uq(0)|P, S⌃ .(1)

with nucleon states |P, S⌃ depending on momentum and
spin, and where the Wilson line U=UC(l,0), defined by a
path ordered exponential, ensures gauge invariance of the
non-local quark operator q̄(l) . . . q(0). For the vector (un-
polarized), �µ

V =�µ, axial-vector (polarized), �µ
A=�µ�5,

and tensor (quark helicity flip), �µ⇥
T =i⇧µ⇥�5, cases, the

correlators in Eq. 1 can be parametrized by the twist-2
tmdPDFs [12]:

nµ⇤µ
V = f1 + Si�?ijkj

1
mN

f?1T

nµ⇤µ
A = ⇥g1 +

k? · S?
mN

g1T

nµ⇤µj
T = �Sjh1 �

�?jiki

mN
h?1

� ⇥kj

mN
h?1L �

(2kjki � k2
?⇥ji)Si

2m2
N

h?1T , (2)

where the distributions f, g, h depend on x and k? and
⇥ is the nucleon helicity. The light-cone vectors n and
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B. Musch, PhD Thesis; Haegler, Musch, 
Negele, Schafer arXiv:0908.1283

Introduce Momentum-space correlators

Choice of path - retain gauge invariance

gauge link operator U

⇤P | q(⇥) �U q(0) |P ⌅ is gauge invariant.

continuum

U ⇥ P exp

�
�ig

⇤ �

0
d�µAµ(�)

⇥

along path from 0 to ⇥

lattice

product of link variables

factorization in SIDIS :
path runs to infinity and back

here (up to now):
straight path

gauge link operator U

⇤P | q(⇥) �U q(0) |P ⌅ is gauge invariant.

continuum

U ⇥ P exp

�
�ig

⇤ �

0
d�µAµ(�)

⇥

along path from 0 to ⇥

lattice

product of link variables

factorization in SIDIS :
path runs to infinity and back

here (up to now):
straight path

SIDIS: path runs to infinity Lattice: equal time slice

gauge link operator U

⇤P | q(⇥) �U q(0) |P ⌅ is gauge invariant.

continuum

U ⇥ P exp

�
�ig

⇤ �

0
d�µAµ(�)

⇥

along path from 0 to ⇥

lattice

product of link variables

factorization in SIDIS :
path runs to infinity and back

here (up to now):
straight path



Worm gears on the lattice
Slide: A. Bacchetta  

P. Hägler, B. U. Musch, J. W. Negele, and A. Schäfer, Europhys. Lett. 88 
(2009) 61001



   Transverse momentum distributions (TMDs) 

Lattice QCD

28

B. Musch et al., Phys.Rev. D85 (2012) 094510; 
M. Engelhardt, Lattice 2014 
Yoon et al, arXiv:1706.03606



Direct Calculation of 
Bjorken-x Dependence



Two Challenges….
• Euclidean lattice precludes the calculation of light-cone 

correlation functions 
– So… …Use Operator-Product-Expansion to formulate in 

terms of Mellin Moments with respect to Bjorken x.
q(x, µ) =

Z
d⇠

�

4⇡
e

�ix⇠

�
P

+

hP |  ̄(⇠�)�+e�ig

R ⇠�
0 d⌘

�
A

+(⌘�)
 (0) | P i

hP |  ̄�µ1(�5)Dµ2 . . . Dµn | P i ! Pµ1 . . . Pµna
(n)

• Discretisation, and hence reduced symmetry of the lattice, 
introduces power-divergent mixing for N >3 moment.

– Generalized Parton Distributions (off-forward): GPDs 
– Quark Distribution Amplitudes in exclusive processes: PDAs  
– (Transverse-Momentum-Dependent Distributions): TMDs



IsoVector Distribution 

Higher Moments of Parton Distributions

x(uv(x)� dv(x)) = ax

b(1� x)c(1 + ✏

p
x+ �x)

Need to constrain parameters 
from phenomenology.

Detmold, Melnitchouk, Thomas 
Eur.Phys.J.direct C3:1-15,2001

Use improved, extended operators to reduce power-
divergent mixing. c.f. restoration of rotational symmetry 
for interpolating operators in spectroscopy
Davoudi and Savage, PRD86, 054505 (2012)



Quasi Distributions
• A solution, LaMET (Large Momentum Effective Theory) was proposed by X.Ji

X. Ji, Phys. Rev. Lett. 110 (2013) 262002 

q(x, µ2
, P
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Z
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4⇡
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izkz hP |  ̄(z)�ze�ig
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0 dz0 Az(z0)

 (0) | P >
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, P

z) =
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✓
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z

◆
q(y, µ2) +O(⇤2

/(P z)2,M2
/(P z)2)

• Quasi distributions approach light-cone distributions in limit of large Pz

• Matching and evolution of quasi- and light-cone distributions

Carlson, Freid, arXiv:1702.05775 
Isikawa et al., arXiv:1609.02018 
Monahan and Orginos, arXiv:1612.01584 
Orginos, Radyushkin , et al arXiv:1706.05373 (Pseudo Distributions) 
Briceno, Hansen, Monahan, arXiv:1703.06072 (Euclidean Signature) 

Y-Q Ma and J-W Qiu, arXiv:1404.6860 

• Direct lattice calculation of hadronic tensor

K.F. Liu and S.J.Dong, PRL72, 1790 (1994); arXiv:1703.04690



PDFs

Pz

H-W Lin, arXiv:1612.09366 Iso-vector quasi distributions

Iso-vector light-cone distributions

Yibo Yang, Friday



PDFs - II
Unrenormalized PDFs 
– Twisted-Mass Fermions 
– High Statistics 
– Momentum-Smearing for 

high momenta

Alexandrou et al., arXiv:1610.03689



Pion Distribution Amplitude
• Same operators as in polarized structure functions 
• …BUT two-point function 
• Governs EM form factors at high Q2

�

⇡

(x) =
i

f

⇡

Z
d⇠

2⇡
e

i(x�1)⇠�·P h⇡(P ) |  ̄(0)� · ��5�(0, ⇠� (⇠�) | 0 >

Zhang et al., arXiv:1702.00008

A. Radyushkin, Phys.Rev. D95 (2017) no.5, 056020 



SUMMARY
• Lattice Calculations now have controlled 

uncertainties for certain key benchmark 
quantities, and can confront experiment. 
– Ji’s sum rule 
– TMDs 
– Narrowing of hadron with increasing x 

• Near Frontiers 
–  sea quark and gluonic contributions to 

hadron structure. 
– Direct calculations of Bjorken-x dependence 

• Capitalizing on Expt + LQCD + 
Phenomenology


