Lattice Calculations of 3D Structure

David Richards

Jefferson Laboratory

28th Aug 2017
INT Program "Spatial and Momentum Tomography of Hadrons and Nuclei"

Introduction

- Measures of Hadron Structure and Lattice QCD
- 1-D hadron Structure Parton Distribution Functions and Form Factors
- 3-D Measures: (Moments of)
 - Generalized Parton Distributions
 - TMDs
- New Developments in LQCD: LaMET, Quasidistributions, Pseudo-Distributions
- Summary

Lattice QCD

Observables in lattice QCD are then expressed in terms of the path integral as

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \prod dU_{\mu}(n) \prod d\psi(n) \prod d\bar{\psi}(n) \mathcal{O}(U, \psi, \bar{\psi}) e^{-\left(S_G[U] + S_F[U, \psi, \bar{\psi}]\right)}$$

Integrate out the Grassmann variables:

$$\langle \mathcal{O} \rangle = rac{1}{Z} \prod_{n,\mu} dU_{\mu}(n) \mathcal{O}(U,G[U]) \det M[U] e^{-S_G[U]}$$

Importance Sampling

where
$$G(U,x,y)^{ij}_{\alpha\beta} \equiv \langle \psi^i_\alpha(x) \bar{\psi}^j_\beta(y) \rangle = M^{-1}(U)$$

Generate an ensemble of gauge configurations

$$P[U] \propto \det M[U]e^{-S_G[U]}$$

 $P[U] \propto \det M[U] e^{-S_G[U]}$ This is REAL for Euclidean space QCD - but see later

Calculate observable

$$\langle \mathcal{O} \rangle = \frac{1}{N} \sum_{n=1}^{N} \mathcal{O}(U^n, G[U^n])$$

Measures of Hadron Structure

Hadron Structure

$$C_{3\mathrm{pt}}(t_{sep},t;\vec{p},\vec{q}) = \sum_{\vec{x},\vec{y}} \langle 0 \mid N(\vec{x},t_{\mathrm{sep}}) V_{\mu}(\vec{y},t) \bar{N}(\vec{0},0) \mid 0 \rangle e^{-i\vec{p}\cdot\vec{x}} e^{-i\vec{q}\cdot\vec{y}}$$
 Resolution of unity – insert states

$$\longrightarrow \langle 0 \mid N \mid N, \vec{p} + \vec{q} \rangle \langle N, \vec{p} + \vec{q} \mid V_{\mu} \mid N\vec{p} \rangle \langle N, \vec{p} \mid \bar{N} \mid 0 \rangle e^{-E(\vec{p} + \vec{q})(t_{\text{sep}} - t)} e^{-E(\vec{p})t}$$

One-Dimensional Structure

1D Structure - Charges

M Constantinou, arXiv:1511.00214

- · Governs beta-decay rate
- Important for proton-proton fusion rate in solar models
- Benchmark for lattice QCD calculations of hadron structure

e.g. novel interactions probed in ultracold neutron decay

$$H_{eff} \supset G_F \Big[\varepsilon_S \, \overline{u} d \times \overline{e} (1 - \gamma_5) v_e + \varepsilon_T \, \overline{u} \, \sigma_{\mu\nu} d \times \overline{e} \, \sigma^{\mu\nu} (1 - \gamma_5) v_e \Big]$$

$$\mathbf{g}_{\mathrm{S}} = \mathbf{Z}_{\mathrm{S}} \langle p | \overline{u} d | n \rangle \quad \mathbf{g}_{\mathrm{T}} = \mathbf{Z}_{\mathrm{T}} \langle p | \overline{u} \sigma_{\mu\nu} d | n \rangle$$

R Gupta, 2014

Systematic Uncertainties

Yoon et al., Phys. Rev. D 93, 114506 (2016)

Failure to isolating **ground state** leads to important systematic uncertainty.

Renormalized Charges

Yoon et al., Phys. Rev. D 95, 074508 (2017)

	-						
ID	Lattice Theory	$a~{ m fm}$	$M_{\pi}({ m MeV})$	$\int g_A^{u-d}$	g_S^{u-d}	g_T^{u-d}	g_V^{u-d}
a127m285	2+1 clover-on-clover	0.127(2)	285(6)	1.249(28)	0.89(5)	1.023(21)	1.014(28
a12m310	2+1+1 clover-on-HISQ	0.121(1)	310(3)	1.229(14)	0.84(4)	1.055(36)	0.969(22
a094m280	2+1 clover-on-clover	0.094(1)	278(3)	1.208(33)	0.99(9)	0.973(36)	0.998(26
a09m310	2+1+1 clover-on-HISQ	0.089(1)	313(3)	1.231(33)	0.84(10)	1.024(42)	0.975(33
a091m170	2+1 clover-on-clover	0.091(1)	166(2)	1.210(19)	0.86(9)	0.996(23)	1.012(21)
a09m220	2+1+1 clover-on-HISQ	0.087(1)	226(2)	1.249(35)	0.80(12)	1.039(36)	0.969(32
a09m130	2+1+1 clover-on-HISQ	0.087(1)	138(1)	1.230(29)	0.90(11)	0.975(38)	0.971(32
'	ı						

Consistency between different actions

Matrix Elements of 1st excited state?

ID	Type	$\langle 0 \mathcal{O}_A 1\rangle$	$\langle 0 \mathcal{O}_S 1\rangle$	$\langle 0 \mathcal{O}_T 1\rangle$	$\langle 0 \mathcal{O}_V 1\rangle$	$\langle 1 \mathcal{O}_A 1\rangle$	$\langle 1 \mathcal{O}_S 1\rangle$	$\langle 1 \mathcal{O}_T 1\rangle$	$\langle 1 \mathcal{O}_V 1 \rangle$
		-0.179(21)		0.182(16)		-0.9(2.4)		-0.2(1.2)	
			-0.35(4)		-0.014(2)		0.6(1.1)		0.80(34)
a127m285	S_5S_5	-0.172(18)	-0.37(4)	0.210(15)	-0.015(2)	0.75(48)	0.8(9)	0.42(27)	0.87(28)
		-0.295(58)	-0.45(15)	0.167(40)	-0.014(6)	1.5(3.0)	1.8(1.4)	0.54(86)	0.86(55)
		-0.295(57)	-0.45(15)	0.166(47)	-0.014(6)	1.46(54)	1.8(1.4)	0.54(41)	0.86(28)

Feynman-Hellman Method

Berkowitz et al, arXiv:1704.01114

Calculation using Feynman-Hellman Theory

$$H = H_0 + \lambda H_{\lambda}$$

$$\frac{\partial E_n}{\partial \lambda} = \langle n \mid H_{\lambda} \mid n \rangle$$

Reduces to calculation of energy-shift of two-point functions *but* repeat the calculation for each operator

Isovector Moments of PDFs

Abdel-Rehim et al, Phys. Rev. D 93, 039904 (2016)

1D Structure: EM Form Factors

Large Q² behavior: Hall C at JLab to 15 GeV²

Wilson-clover lattices from BMW

Green et al (LHPC), Phys. Rev. D 90, 074507 (2014)

Hadron structure at nearlyphysical quark masses

Sea Quark Contributions

J. Green, <u>K. Orginos</u> et al., Phys. Rev. D 92, 031501 (2015); Phys. Rev. D 95, 114502 (2017 Using *Hierarchical Probing -* A. Stathopoulos, J. Laeuchli, <u>K. Orginos</u> (2013)

Combination measured in expt

Generalized Parton Distributions

 Measured in Deeply-Virtual Compton Scattering (DVCS) and Exclusive Meson Production.

$$\bar{u}(P')\left(\gamma^{+}H(x,\xi,t) + i\frac{\sigma^{+k}\Delta_{k}}{2m}E(x,\xi,t)\right)u(P) = \int_{-\infty}^{\infty} \frac{d\omega^{-}}{4\pi}e^{-i\xi P^{+}\omega^{-}}\langle P' \mid T\bar{\psi}(0,\omega^{-},O_{\mathrm{T}})W(\omega^{-},0)\gamma^{+}\frac{\lambda^{a}}{2}\psi(0) \mid P\rangle$$

GPDs - II

 Light-cone distributions not accessible in Euclideanspace QCD

$$\int_{-1}^{1} dx \, x^{n-1} \left[\begin{array}{c} H(x,\xi,t) \\ E(x,\xi,t) \end{array} \right] = \sum_{k=0}^{(n-1)/2} (2\xi)^{2k} \left[\begin{array}{c} A_{n,2k}(t) \\ B_{n,2k}(t) \end{array} \right] \pm \delta_{n,\text{even}} (2\xi)^{n} C_{n}(t)$$

Generalized Form Factors

Related to matrix elements of local operators

$$\mathcal{O}^{\mu_1 \dots \mu_n} = i^{n-1} \bar{\psi} \gamma^{\{\mu_1} D^{\mu_2} \dots D^{\mu_n\}} \frac{\lambda^a}{2} \psi$$

Higher Moments restricted by hypercubic symmetry

Different Regimes in Different Experiments

Form Factors
transverse quark
distribution in
Coordinate space

Structure Functions
longitudinal
quark distribution
in momentum space

GPDs

Fully-correlated quark distribution in both coordinate and momentum space

Parametrizations of GPDs

LHPC, Haegler et al., Phys. Rev. D 77, 094502 (2008); Phys.Rev.D82:094502,2010

Provide phenomenological guidance for GPD's

CTEQ, Nucleon Form Factors,
 Regge
 Comparison with Diehl et al,
 hep-ph/0408173

Important Role for LQCD

Charge Radius of GFFs

Lattice results consistent with narrowing of transverse size with increasing x

Flattening of GFFs with increasing n

 $f(x,b_1)$

GPDs and Orbital Angular Momentum

• Form factors of energy momentum tensor - quark and gluon angular momentum

$$\begin{split} \frac{1}{2} &= \sum_{q} J^q + J^g \\ \textbf{X.D. Ji, PRL 78, 610 (1997)} \\ &= \frac{1}{2} \left\{ \sum_{q} \left(A_{20}^q(t=0) + B_{20}^q(t=0) \right) + A_{20}^g(t=0) + B_{20}^g(t=0) \right\} \\ &\sum_{q} \left(\frac{1}{2} \Delta \Sigma^q + L^q \right) \end{split}$$

Decomposition

- Gauge-invariant
- Renormalization-scale dependent
- Handle on Quark orbital angular momentum

Mathur et al., Phys.Rev. D62 (2000) 114504

Origin of Nucleon Spin

- Total orbital angular momentum carried by quarks small
- Orbital angular momentum carried by individual quark flavours substantial.

HERMES, PRD75 (2007)

 $J^{q} = 1/2 \left(A_{20}^{q}(t=0) + B_{20}^{q}(t-0) \right)$ $\Delta \Sigma^{q}/2 = \tilde{A}_{10}^{q}(t=0)/2$ $\frac{1}{2} = \frac{1}{2} \Delta \Sigma^{u+d} + L^{u+d} + J^{g}$

> LHPC, Haegler et al., Phys. Rev. D 77, 094502 (2008); arXiv.1001.3620

Disconnected contributions neglected.

Origin of Nucleon Spin - II

 m_{π}^2 (GeV²)

 m_{π}^2 (GeV²)

Energy-Momentum Tensor

"Understanding the Glue That Binds Us All: The Next QCD Frontier in Nuclear Physics"

- Quark masses contribute only 1% to mass of proton: binding through gluon confinement
- Gluon spin and orbital angular momentum to spin of proton largely unknown

$$T_{\mu\nu} = \frac{1}{4} \bar{\psi} \gamma_{(\mu} D_{\nu)} \psi + G_{\mu\alpha} G_{\nu\alpha} - \frac{1}{4} \delta_{\mu\nu} G^2; \langle P \mid T_{\mu\nu} \mid P \rangle = P_{\mu} P_{\nu} / M$$

Trace Anomaly: $T_{\mu\mu} = -(1 + \gamma_m)\bar{\psi}\psi + \frac{\beta(g)}{2a}G^2$

Yang, Trento 2017

Spin and Momentum Decomposition

Twisted-Mass Fermions: C.Alexandrou et al, arXiv:1706.02973

→ Momentum and Spin Sum Rules Satisfied

Gluon Spin

$$\vec{S}_g = 2 \int d^3x \operatorname{Tr}(\vec{E}_c \times \vec{A}_c)$$

Yang et al, Phys. Rev. Lett. 118, 102001 (2017)

 ΔG in large p limit

Transverse momentum distributions (TMDs)

from experiment, e.g., SIDIS (semi-inclusive deep inelastic scattering) + DY

HERMES, COMPASS, JLab 12 GeV, RHIC-spin, EIC, DY

TMDs in Lattice QCD

B. Musch, PhD Thesis; Haegler, Musch, Negele, Schafer arXiv:0908.1283

Introduce Momentum-space correlators

$$\Phi_{\Gamma} = \int d(n \cdot k) \int \frac{d^4l}{2(2\pi)^4} e^{-ik \cdot l} \tilde{\Phi}_{\Gamma}(l; P, S)$$

$$= \int d(n \cdot k) \int \frac{d^4l}{2(2\pi)^4} e^{-ik \cdot l} \langle P, S | \bar{q}(l) \Gamma \mathcal{U} q(0) | P, S \rangle$$

continuum $\mathcal{U} \equiv \mathcal{P} \exp \left(-ig \int_0^\ell d\xi^\mu A_\mu(\xi)\right)$ along path from 0 to ℓ

Choice of path - retain gauge invariance

SIDIS: path runs to infinity

Lattice: equal time slice

Worm gears on the lattice

P. Hägler, B. U. Musch, J. W. Negele, and A. Schäfer, Europhys. Lett. 88 (2009) 61001

Transverse momentum distributions (TMDs)

Lattice QCD

B. Musch et al., Phys.Rev. D85 (2012) 094510;
M. Engelhardt, Lattice 2014
Yoon et al, arXiv:1706.03606

Direct Calculation of Bjorken-x Dependence

Two Challenges....

- Euclidean lattice precludes the calculation of light-cone correlation functions
 - So... Use Operator-Product-Expansion to formulate in terms of Mellin Moments with respect to Bjorken x.

$$q(x,\mu) = \int \frac{d\xi^{-}}{4\pi} e^{-ix\xi^{-}P^{+}} \langle P \mid \bar{\psi}(\xi^{-})\gamma^{+}e^{-ig\int_{0}^{\xi^{-}}d\eta^{-}A^{+}(\eta^{-})}\psi(0) \mid P \rangle$$

$$\langle P \mid \bar{\psi}\gamma_{\mu_1}(\gamma_5)D_{\mu_2}\dots D_{\mu_n}\psi \mid P \rangle \to P_{\mu_1}\dots P_{\mu_n}a^{(n)}$$

- Generalized Parton Distributions (off-forward): GPDs
- Quark Distribution Amplitudes in exclusive processes: PDAs
- (Transverse-Momentum-Dependent Distributions): TMDs
- Discretisation, and hence reduced symmetry of the lattice, introduces power-divergent mixing for N >3 moment.

Higher Moments of Parton Distributions

$$x(u_v(x) - d_v(x)) = ax^b(1-x)^c(1+\epsilon\sqrt{x}+\gamma x)$$

IsoVector Distribution

Need to constrain parameters from phenomenology.

Detmold, Melnitchouk, Thomas Eur.Phys.J.direct C3:1-15,2001

Use **improved**, **extended operators** to reduce powerdivergent mixing. c.f. restoration of rotational symmetry for interpolating operators in spectroscopy

Davoudi and Savage, PRD86, 054505 (2012)

Quasi Distributions

A solution, LaMET (Large Momentum Effective Theory) was proposed by X. Ji, Phys. Rev. Lett. 110 (2013) 262002

$$q(x, \mu^{2}, P^{z}) = \int \frac{dz}{4\pi} e^{izk^{z}} \langle P \mid \bar{\psi}(z) \gamma^{z} e^{-ig \int_{0}^{z} dz' A^{z}(z')} \psi(0) \mid P > + \mathcal{O}((\Lambda^{2}/(P^{z})^{2}), M^{2}/(P^{z})^{2}))$$

Quasi distributions approach light-cone distributions in limit of large P^z

$$q(x, \mu^2, P^z) = \int_x^1 \frac{dy}{y} Z\left(\frac{x}{y}, \frac{\mu}{P^z}\right) q(y, \mu^2) + \mathcal{O}(\Lambda^2/(P^z)^2, M^2/(P^z)^2)$$

Y-Q Ma and J-W Qiu, arXiv:1404.6860

Matching and evolution of quasi- and light-cone distributions

Carlson, Freid, arXiv:1702.05775

Isikawa et al., arXiv:1609.02018

Monahan and Orginos, arXiv:1612.01584

Orginos, Radyushkin, et al arXiv:1706.05373 (Pseudo Distributions)

Briceno, Hansen, Monahan, arXiv:1703.06072 (Euclidean Signature)

Direct lattice calculation of hadronic tensor

K.F. Liu and S.J.Dong, PRL72, 1790 (1994); arXiv:1703.04690

PDFs

PDFs - II

Alexandrou et al., arXiv:1610.03689

Unrenormalized PDFs

Twisted-Mass Fermions
 'ligh Statistics
 Momentum-Smearing for
 nigh momenta

Pion Distribution Amplitude

- Same operators as in polarized structure functions
- ...BUT two-point function

A. Radyushkin, Phys.Rev. D95 (2017) no.5, 056020

Governs EM form factors at high Q²

$$\phi_{\pi}(x) = \frac{i}{f_{\pi}} \int \frac{d\xi}{2\pi} e^{i(x-1)\xi\lambda \cdot P} \langle \pi(P) \mid \bar{\psi}(0)\lambda \cdot \gamma\gamma_{5}\Gamma(0,\xi\lambda\psi(\xi\lambda) \mid 0 > 0)$$

Zhang et al., arXiv:1702.00008

SUMMARY

- Lattice Calculations now have controlled uncertainties for certain key benchmark quantities, and can confront experiment.
 - Ji's sum rule
 - TMDs
 - Narrowing of hadron with increasing x
- Near Frontiers
 - sea quark and *gluonic* contributions to hadron structure.
 - Direct calculations of Bjorken-x dependence
- Capitalizing on Expt + LQCD + Phenomenology

