

eic

Argonne's EIC Activities

José Repond Argonne National Laboratory

Spatial and Momentum Tomography of Hadrons and Nuclei University of Washington September 24 – 29, 2017

It all started

a year ago (October 2016) With the support of an LDRD Project

- 1) Accelerator
- 2) Theory
- 3) Simulation
- 4) Detector R&D

Collaboration between Physics & HEP Divisions

Arrington, John **Bodwin, Geoffrey** Chekanov, Sergei Cloet, Ian Hafidi, Kawtar Hattawy, Mohammad Potterveld, David **Metcalfe, Jessica Erin** Mezrag, Cedric Mustapha, Brahim Repond, José Armstrong, Whitney Xie, Junqi Conway, Zachar Ye, Zhihong

Simulation Theory Simulation Theory Coordination Simulation Simulation Detector Theory Accelerator **Coordination, simulation, detector** Simulation, detector Detector Accelerator Simulation

New hires

David Blyth

Theory Simulation Simulation. detector Accelerator

ANL Accelerator R&D Related to the JLEIC

Injector Linac Design

Supported by DOE R&D funds for the EIC

Alternative Ion Accelerator Complex for the JLEIC

Supported by ANL LDRD for the EIC

Characterization of pulsed Quarter-Wave Resonators (QWR)

Supported by ANL LDRD for the EIC

Effort

José Marin, Brahim Mustapha, and Zacharias Conway

Ion Injector Linac Design

Features

Initial section at room temperature, then superconducting Two separate Radio-Frequency Quadrupoles (RFQs) for light and heavy ions

Heavy ions

Injector Linac design adequate: good beam dynamics and no beam loss

Light ions

Design revised to

Reduce emittance growth in the RFQ -> Higher RFQ injection energy (15 keV/u -> 20 keV/u) Avoid beam loss in the DTL (Drift Tube Linac) -> Larger aperture (1.25 -> 1.50 cm)

Due to the large emittance of negatively charged polarized beams, the beam will be collimated at the source to produce smaller emittance

Alternative Ion Accelerator Complex

Showed this is feasible

Recently

E-ring was adapted for ion acceleration Beam optics studied for the proton beam

Characterization of pulsed Quarter-Wave Resonators (QWRs)

QWRs and HWRs

Needed for the ion accelerator complex for acceleration in the range of β from 0.1 to 0.5 Recently, ANL produced QWRs and HWRs which are operating in continuous wave mode

Operation in pulsed mode

Required for the EIC

(to be operated at record high voltages: 4 - 5 MV)

-> Reduces cryogenic refrigeration requirements -> Increases resonator operating gradient

Disadvantage/risk: dynamic mechanical deformation leading to detuning

-> Needs to be tested/characterized

Theory: GPDs for Light Nuclei

Work by Adam Freese and Ian Cloët

Aim

Calculate Generalized Parton Distributions (GPDs) for light nuclei

Use a simple theory to start

The Nambu-Jona-Lasinio (NJL) model

(Model of the nucleon which can provide form factors, structure functions...) Build a manifestly covariant Bethe-Salpeter vertex to calculate deuteron structure

Fit of deuteron elastic form factors

Elastic Structure Functions

Fit quite reasonable, but fail at high Q² (necessity long-range pion-exchange?)

Tensor polarization

Calculation of Deuteron PDFs

Deuteron PDFs related to nucleon PDFs through convolution formula

$$q_{i/d}^{(\lambda)}(x_A, Q^2) = \sum_{N=p,n} \int_{x_A}^2 \frac{dy}{y} q_{i/N}\left(\frac{x_A}{y}, Q^2\right) f_{N/d}^{(\lambda)}(y)$$

Good agreement with DIS data for the deuteron

Next steps

The formalism for calculating **deuteron GPDs** is in place

-> Just technical matter to calculate some inverse Mellin transforms -> These GPDs are also ρ GPDs in the NJL model

Calculate GPDs for ³H and ³He, and then more light nuclei

Implement into event generator

Stay tuned

For more details, see Adam Freese talk on September 26

Simulation Software

Goal

Work by W Armstrong, D Blyth, S Chekanov, A Freese, M Hattawy, S Johnston, J Repond

Build a maintainable, modular, flexible, consistent, user friendly simulation tool kit for EIC (and other) detectors

Tools

HepSim (Repository with Monte Carlo simulations for particle physics) GEANT4 (A toolkit for the simulation of the passage of particles through matter) ROOT (An object-oriented framework for large-scale data analysis) LCIO (Data model)

DD4HEP (A detector description toolkit, including calibration, alignment...) Marlin (Modular application framework for analysis and reconstruction code)

Collection of many Marlin processors)

ProIO (in the future: persistency tool)

Full simulation and reconstruction chain

Data Models

LCIO

Developed by the ILC community Good start, but manually coded Mostly linked to C++, other implementations (e.g. Java, GO) lagging behind Not backwards compatible

ProIO

Developed at Argonne by David Blyth

Requires no manual coding to extend data model

Is fast and space efficient

Can be easily extended to almost any language (C++, Python, GO already done) Requires only lightweight dependencies

Full ProIO -> Root conversion available

HepSim

A database and interface for detector simulations

http://atlaswww.hep.anl.gov/hepsim/ Developed at Argonne by Sergei Chekanov Used for various projects

LHC, FCC, CLIC, ILC, and now EIC

A documentation and organizational tool

Stores and documents input MC data (from EG) Stores input configurations

Geometry, digitization and reconstruction parameters

Stores and documents full detector simulation Stores tagged containers of the full software tool-chain

HepSi	m
Repository with	Monte Carlo simulations for particle physics
Summary of "	gev35ep_lepto6ard_dislowq2"
Name:	aev35ep lepto6ard dislowa2
Collisions:	e-p
CM Energy:	0.035 TeV
Entry ID:	276
Topic:	SM
Generator: Calculation levels	LEPTO/AKIADNE
Process:	DIS events at 0251 GeV2 and W254 GeV2
Total events:	25000000
Number of files:	500
Cross section (o):	: 4.376E+05 ± 1957.1871 pb
Luminosity (L):	57.1245 pb ⁻¹ (or) 0.0571 fb ⁻¹ (or) 5.712E-05 ab ⁻¹
Format:	ProMC
Download URL:	http://mc1.hep.anl.gov/web/hepsim/events/ep/35gev/lepto6ard_dislowq2/
Status:	Available
	http://eicsim01.jlab.org/hepsim/events/ep/35gev/lepto6ard_dislowq2/
Mirrors:	http://mc.hep.anl.gov/asc/hepsim/events/ep/35gev/lepto6ard_dislowq2/
EV/GEN size:	15 896 CB
EVOLIV SIZE.	🔖 Tags:
Fast simulation:	
	rfull058 Lipfo
Full simulation:	519 / 13.03 GB 484 / 15.50 GB 496 / 12.43 GB
	06/28/2017 06/19/2017 05/17/2017
Fast/Full size:	40.96 GB
Record slimmed:	No
Events weighted:	No
Submission time:	Wed May 17 16:30:14 CDT 2017
the debughters.	Man 30 24 14 44 EC CDT 2017

Sho

8 TeV

13 Te¹ 14 Te¹ 27 Te¹ 33 Te¹

100 T

1 TeV 3 TeV

 $\mu^{+}-$

1 TeV 5 TeV 10 TeV 20 TeV

40 Te

DD4hep

The solution to the geometry problem

Single source of geometry

Full concept detector described in human readable text file

In future, will include handling of conditions and alignment

Nuclear Physics Detector Library (NPDet)

Collection of **parametrized** detectors which can be developed into full concepts

Data-flow Map

Detector philosophy...

Goal

-> Measure neutral hadrons (essential for charged currents, background rejection...)

Beam tracking/calorimeters

-> Measurement of forward particles (photons, charged leptons, hadrons, nuclei, neutrons)

Implementation: the SiEIC Concept

Definition: Particle Flow Algorithms (PFAs)

Measure each particle individually with the system providing the best E/p resolution

Based on the SiD concept: optimized for PFAs

High precision silicon tracker (5 vertex + 5 outer layers) Calorimeters with extremely fine segmentation (Silicon, RPCs)

In general

Hermetic enclosure of interaction region Concept not yet optimized for the EIC environment Reduced magnetic field (5 – 2.5 T) Reduced depths of calorimeters Longer barrel (increased forward detection)

Data Analysis

Complete

Simulation, digitization, reconstruction, analysis chain

Generation of

Single particles (photons, pions, Kaons, protons...), DIS events

Study of single particle resolutions

Electrons, photons

Study of timing requirements for PID

Electrons, pions, kaons, protons

Validation of entire simulation/reconstruction/analysis chain

Reconstruction of F₂

In future

Dedicated physics analyses: DVCS, DVVM...

Single particle studies: photon energy resolution

Generation of

1 – 30 GeV photonsCovering uniformly the solid angle

Results

First iteration with 15 layer ECAL

-> Poor resolution

Increased thickness to 20 layers

-> Acceptable results

(DVCS studies forthcoming: requirement on resolution?)

Single particle studies: pion tracking efficiency

0.5

0.5

2

1.5

1.5

2.5

2.5

3

 Θ_{gen}

2

 $\frac{3}{\Theta_{gen}}$

Study of Timing Requirements for PID

Generation of single particles into the barrel

Electrons, pions, kaons, protons with E < 10 GeV/c

Reconstruction of track parameters

Calculation of track length up to a given sensor

Linear fit

Timing in sensor versus track length Assumption track starts at (0,0)

Study of timing resolution

Smearing of times by Gaussian with a fixed width

Performance as function of momentum

With the (0,0) constraint (fit event vertex using all tracks: not entirely unrealistic)

 σ = 5.0 ps 10.0 ps 20.0 ps ₹100 **№**100 HOH HODH ¹⁰⁰ HÐ-HOH HØH HŵH HO -m-HØ2-Kaons Kaons HØH Kaons 75 75 HODE 75 H HÐH юн HOH 50 50 50 1-00-25 25 25 Pions Pions Pions HOH 0 10 n 2 5 6 8 9 9 1 3 Momentum [GeV/c] Momentum [GeV/c] Momentum [GeV/c]

> Excellent pion/kaon separation for p < 7 GeV/c 10 ps timing resolution desirable Identification of electrons and protons easy

Reconstruction of F₂

Goals

Exercise the whole simulation/digitization/reconstruction/analysis chain Find bugs/bottle necks...

Identify areas where improvements are necessary

Starting point

5 GeV electron beam 60 GeV proton beam $\sqrt{s} = 34.64 \text{ GeV}$ SiEIC detector concept

Generator

Lepto-Ariadne 250,000 events (fully simulated) Cross section $\sigma = 414,900 \text{ pb}$ Luminosity = N/ σ ~ 0.6 pb⁻¹

Analysis chain

Electron Method

Results

works quite well in general -> In particular for Q² and at low-x

Poor resolution

at large-x or small-y (here other methods are better)

Define bins in the (x,Q²) – plane: MSTW PDF

Bin #	C	2 ²	x	
Bin #	Lower bound	Upper bound	Lower bound	Upper bound
0	1.0	1.5	0.002	0.006
1			0.006	0.020
2			0.020	0.060
3			0.060	0.200
4	1.5	3.0	0.002	0.006
5			0.006	0.020
6			0.020	0.060
7			0.060	0.200
8	3.0	8.0	0.006	0.020
9			0.020	0.060
10			0.060	0.200
11	8.0	30.0	0.020	0.060
12			0.060	0.200

Correct for F_L $F_2(x,Q^2) = \frac{1}{2-2y+y^2} \frac{xQ^4}{2\pi\alpha^2} \frac{d^2\sigma}{dxdQ^2} \frac{1}{(\hbar c)^2} + \frac{y^2}{2-2y+y^2} F_L(x,Q^2)$

-> Small correction < 1%

Repeat analysis with other PDF: CTEQ

Note: depletion of events at low y

 Reason at the moment unknown (CTEQ looking into this)

Correct MSTW results using CTEQ sample

Line

Input $F_2(x,Q^2)$

Points

Reconstructed $F_2(x,Q^2)$ Simple bin-by-bin correction $N_i^{corr-MSTW}(rec) = N_i^{MSTW}(rec) \frac{N_i^{CTEQ}(gen)}{N_i^{CTEQ}(rec)}$

Error bars

Statistical and due to correction

Low – y bins

Problems due to lack of events (CTEQ)

Detector R&D

W Armstrong, D Blyth, J Metcalfe, J Repond, J Xie

Development of photo sensors for TOF and Cerenkov detectors

Development of Ultra-fast Silicon sensors

Development of a Time Distribution system

Development of photo sensors

Based on the Argonne Large Area Picosecond Photo Detector (LAPPD) Aim to adapt for operation in magnetic field Reduction of a) MCP pore sizes and b) vertical dimensions Tests in the **Argonne Magnetic Field Test Facility**

Status

Designed and fabricated fixture to hold and orient sensors in magnetic field Developing software for data acquisition First measurements on standard 6 x 6 cm² tiles

Ultra-fast Silicon Sensors

Application

In a silicon tracker and a silicon-tungsten electromagnetic calorimeter

Ultra-fast timing sensors

With timing resolutions of the order of 10 picosecond: particle ID up to 7 GeV/c

Current state of the art

27 ps resolution has been obtained with LGAD sensors Further optimization possible

Status

Argonne already involved in sensor testing at Fermilab (ATLAS experiment) Plans to set-up a test station at Argonne Effort in its infancy....still collecting ideas...Plans to ramp up effort in FY2018

Time Distribution System

Needed for synchronizing times across detector

Jitters smaller than 10 ps

Currently preferred solution

RF technology

First tests

Phase noise measurements on transmission lines --

Acquisition of

RF source Spectral analyzer ps laser Scope

Effort only just started...

Summary

Argonne EIC effort started in earnest in September 2016

Tackling 4 different areas

Accelerator design, theory, simulation, detector R&D

Effort is still growing

Adding more detector R&D

Collaboration with other institutions

Very eager to do so

