Recreating Generalized Parton Distribution Functions From Their Coordinate Space Behavior

August 29, 2017 Institute of Nuclear Theory, Seattle

Abha Rajan Simonetta Liuti University of Virginia

Outline

- Parton Distribution Functions and Generalized Parton Distributions: definitions and symmetries
- Ioffe time
- Reconstructing Parton Distributions using Lattice QCD moments
- Extending to Generalized Parton Distributions
- Pseudo PDFs

Symmetries

$$\begin{split} q(x) &= -\bar{q}(-x) \\ q^+(x) &= q(x) + \bar{q}(x) \\ \Rightarrow q^+(x) &= q^+(-x) \qquad \text{Symmetric in x} \\ q^-(x) &= q(x) - \bar{q}(x) \\ \Rightarrow q^-(x) &= -q^-(-x) \qquad \text{Anti symmetric in x} \end{split}$$

Coordinate Space

Coordinate space picture, loffe Time

- At small z⁻ use Mellin moments to describe the correlator in z⁻ space.
- At large z⁻, large compared to proton size, use Regge behavior.

Braun, Gornicki and Mankiewicz, Phys. Rev. D 1995

Fourier transform to z⁻ space

$$\mathcal{M}(z) = \int_0^1 dx e^{ixz} q(x)$$

= $\int_0^1 dx \cos(xz) q(x) + i \int_0^1 dx \sin(xz) q(x)$
 $M_0 - M_2 \frac{z^2}{2!} + M_4 \frac{z^4}{4!} + \dots \qquad M_1 z - M_3 \frac{z^3}{3!} + M_4 \frac{z^5}{5!} + .$

Can be approximated using Mellin moments for small z.

Large z⁻

CT 10 u val - d val, Im FFT

Imaginary part of Fourier transform of PDF described by Regge part for large z

Large z⁻

CT 10 u val - d val, Im FFT

Imaginary part of Fourier transform of PDF described by Regge part for large z

Small z⁻

 \int^1 $dx\cos(xz)q(x)$ \int_{0}

Small z⁻

 r^1 $dx\sin(xz)q(x)$ \int_{0}

Mellin Moments from Lattice

u - d

W. Detmold et al., Eur.Phys.J.3 (2001), Mod.Phys.Lett. A18 (2003)

Moment u-d µ²= 4 GeV²	Linear extrapolation	Chiral extrapolation	Phenomenology CT10
M ₁	1	1	1
M ₂	0.262	0.18(3)	0.169
M ₃	0.0843	0.05(2)	0.0536
M ₄	0.0340	0.02(1)	0.0221

LHPC (Ph. Hägler et al.) Phys.Rev. D77 (2008)

Moment u-d µ²= 4 GeV²	m _π =352 MeV	Chiral extrapolation	Phenomenology CT10
M ₁	1	1	1
M ₂	0.206(14)	0.157(10)	0.169
M ₃	0.078(16)	/	0.0536
M ₄	/	/	0.0221

Note

• The region between small z and large z is a source of uncertainity, more moments make a big difference.

Reconstructing PDFs using its own moments

u - d

Reconstructing CT10 using 5 of its own moments.

Reconstructing using Lattice QCD moments

More moments give higher precision !

Reconstructing using Lattice QCD moments

Comparison Detmold and Hägler

Generalized Parton Distribution Functions

$$W_{\Lambda\Lambda'}^{\gamma^+}(x,\xi,t) = \int \frac{dz_-}{2\pi} e^{ixP^+z^-} \langle p',\Lambda' \mid \bar{\psi}(-z/2)\gamma^+\psi(z/2) \mid p,\Lambda\rangle_{z^+=z_T=0}$$
$$\xi = \frac{\Delta^+}{P^+} \quad t = \Delta^2 \quad \Delta = p'-p$$

Polynomiality Property of GPDs

$$H^{(n)}(t) = \int_{-1}^{1} dx x^{n} H(x,\xi,t)$$

The x moments of the GPDs depend on ξ and the Generalized Form Factors.

$$H^{(n)}(t) = \sum_{i=0, even}^{n} (2\xi)^{i} A_{n+1,i}(t) + mod(n,2)(2\xi)^{n+1} C_{n+1}(t)$$
$$H^{(0)}(t) = A_{1,0}(t)$$
$$H^{(1)}(t) = A_{2,0}(t) + (2\xi)^{2} C_{2}(t)$$

We can generate the x ξ plane if we know the GFFs.

Lattice Calculations of Generalized From Factors

Hagler et al, Phys. Rev. D (2008)

-t[GeV ²]	A_{10}^{u-d}	B_{10}^{u-d}	A_{20}^{u-d}	B_{20}^{u-d}	C_{20}^{u-d}	A_{30}^{u-d}	B_{30}^{u-d}
0.000	1.000(4)		0.206(14)			0.078(16)	
0.107	1.035(192)	3.055(997)	0.190(45)	0.032(253)	-0.083(435)	0.060(32)	-0.303(221)
0.124	0.850(19)	2.756(233)	0.197(11)	0.331(59)	-0.097(54)	0.070(10)	0.099(46)
0.125	0.829(84)	2.262(376)	0.192(20)	0.284(110)	-0.017(113)	0.072(12)	0.094(62)
0.219	0.868(190)	2.749(823)	0.167(42)	0.182(169)	0.026(130)	0.063(24)	-0.084(109)
0.244	0.767(28)	2.330(193)	0.177(11)	0.298(49)	-0.015(28)	0.063(10)	0.091(34)
0.245	0.733(79)	1.883(328)	0.179(20)	0.137(93)	-0.164(73)	0.068(12)	0.099(64)
0.254	0.678(39)	2.074(219)	0.179(14)	0.273(61)	0.004(43)	0.081(13)	0.067(42)
0.359	0.693(36)	1.910(170)	0.161(12)	0.251(50)	0.005(33)	0.061(12)	0.087(36)
0.379	0.584(40)	1.786(192)	0.158(14)	0.250(52)	0.010(39)	0.067(11)	0.040(36)
0.471	0.617(42)	1.625(185)	0.162(15)	0.140(57)	-0.009(35)	0.064(14)	0.019(50)
0.473	0.551(91)	1.910(448)	0.155(28)	0.116(107)	-0.030(56)	0.077(17)	0.065(67)
0.508	0.602(56)	1.533(172)	0.185(21)	0.227(64)	-0.024(46)		0.044(26)
0.578	0.561(45)	1.447(150)	0.155(15)	0.188(43)	-0.028(20)	0.068(13)	0.031(34)
0.615	0.478(49)	1.324(186)	0.135(17)	0.117(59)	-0.060(34)	0.068(13)	0.012(37)
0.632	0.512(45)	1.268(131)	0.173(18)	0.193(46)	-0.040(25)	0.076(17)	0.002(36)

Lattice Calculations of Coefficients

Hagler et al, Phys. Rev. D (2008)

-t[GeV ²]	A_{10}^{u-d}	B_{10}^{u-d}	A_{20}^{u-d}	B_{20}^{u-d}	C_{20}^{u-d}	A_{30}^{u-d}	B_{30}^{u-d}
0.000	1.000(4)		0.206(14)			0.078(16)	
0.107	1.035(192)	3.055(997)	0.190(45)	0.032(253)	-0.083(435)	0.060(32)	-0.303(221)
0.124	0.850(19)	2.756(233)	0.197(11)	0.331(59)	-0.097(54)	0.070(10)	0.099(46)
0.125	0.829(84)	2.262(376)	0.192(20)	0.284(110)	-0.017(113)	0.072(12)	0.094(62)
0.219	0.868(190)	2.749(823)	0.167(42)	0.182(169)	0.026(130)	0.063(24)	-0.084(109)
0.244	0.767(28)	2.330(193)	0.177(11)	0.298(49)	-0.015(28)	0.063(10)	0.091(34)
0.245	0.733(79)	1.883(328)	0.179(20)	0.137(93)	-0.164(73)	0.068(12)	0.099(64)
0.254	0.678(39)	2.074(219)	0.179(14)	0.273(61)	0.004(43)	0.081(13)	0.067(42)
0.359	0.693(36)	1.910(170)	0.161(12)	0.251(50)	0.005(33)	0.061(12)	0.087(36)
0.379	0.584(40)	1.786(192)	0.158(14)	0.250(52)	0.010(39)	0.067(11)	0.040(36)
0.471	0.617(42)	1.625(185)	0.162(15)	0.140(57)	-0.009(35)	0.064(14)	0.019(50)
0.473	0.551(91)	1.910(448)	0.155(28)	0.116(107)	-0.030(56)	0.077(17)	0.065(67)
0.508	0.602(56)	1.533(172)	0.185(21)	0.227(64)	-0.024(46)		0.044(26)
0.578	0.561(45)	1.447(150)	0.155(15)	0.188(43)	-0.028(20)	0.068(13)	0.031(34)
0.615	0.478(49)	1.324(186)	0.135(17)	0.117(59)	-0.060(34)	0.068(13)	0.012(37)
0.632	0.512(45)	1.268(131)	0.173(18)	0.193(46)	-0.040(25)	0.076(17)	0.002(36)

Can be used to calculate the x and ξ dependence of the GPD H. Also use A32.

Inputs For Reconstructing GPDs

• Reconstruct the loffe time dependence using lattice calculations of GFFs and Regge behavior.

Goldstein, Gonzalez and Liuti Phys. Rev. D (2011)

Reconstructed GPDs

GPD H, t = -.1GeV²

Pseudo PDFs : Going of the light cone

 z^0

Radyushkin, Phys. Lett. B 2017, Phys. Rev. D 2017

Orginos et al., arxiv:1706.05373

$$z^+ = 0, z^2 = 0$$

$$z^{-} = 0, z^{2} = 0$$

 z^3

Pseudo PDFs : Going of the light cone

Radyushkin, Phys. Lett. B 2017, Phys. Rev. D 2017

Orginos et al., arxiv:1706.05373

$$z^+ = 0, z^2 = 0$$

$$z^{0}$$

 $z^{2} \neq 0$
 $z^{-} = 0, z^{2} = 0$

 z^3

Pseudo PDFs : Going of the light cone

 $z_T
ightarrow 0$ PDF limit

Pseudo PDFs in z⁻ space

$$\mathcal{M}(z,0) \to \mathcal{M}(z,z^2) \to \mathcal{M}(z,z_T^2)$$

- z⊤ is conjugate to k⊤
- If the k⊤ dependence factors out, taking a ratio will leave us with the loffe time distribution which is the Fourier transform of PDFs.

$$\mathcal{M}_R = \frac{\mathcal{M}(z, z^2)}{\mathcal{M}(0, z^2)} \qquad \qquad \mathcal{F}(x, k_T) = f(x)K(k_T)$$

Does this actually happen?

Checking in diquark model

Checking in diquark model

Summary

- Lattice QCD moments provide crucial information about PDFs and GPDs, more moments will be very helpful.
- Going to z space allows us to map out which part of x dependence comes from inside the proton and which from the large z.
- What is the significance of some of the GFFs being so small ?
- Pseudo PDFs are a provide a new way of obtaining PDFs from the lattice, we study how well z^T dependence factors out.