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The entangled 3D structure of the proton. 
 
Light-front quantized quark and gluon states (partons) play a dominant role in 
high energy scattering processes. The initial pure proton state in these processes 
appears as a mixed ensemble of partons, while any produced pure partonic state 
appears as a mixed ensemble in the 3D world of the detector. The transition 
from collinear hard physics to the 3D structure including partonic transverse 
momenta is related to confinement and might hint at a more fundamental link 
between color and spatial degrees of freedom. Wilson loops, including Wilson 
lines along light-like directions such as used in the studies of transverse 
momentum dependent distribution functions (TMDs) might play a role here, 
establishing a direct link between transverse spatial degrees of freedom and 
gluonic degrees of freedom. They lead to many peculiarities among them single 
spin asymmetries in the physics of TMDs but they also unify and simplify our 
picture for gluons in the low-x domain. 
 
 
 
 
 
 



Introduction 

  Color & QCD 
  Distinct part of Standard Model, decoupling strong interactions 
  Color unvisible: local gauge invariance! No free quarks or gluons! 
  Color visible: valence quarks, N vs 1/N, f x D (distribution x fragmentation), 
color flow (future and past pointing gauge links), …  

  Pragmatic approach: Front form quantization with good fields dominating in OPE 

 
 
  (1) A different view (entanglement & less dimensions) 

          PJM – 1601.00300 

  (2) Impact for strongly interacting matter 
  Example: Wilson loops and gluon TMDs 
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A different view, why? 

  Entanglement 
  Entangled pure multipartite states à ensembles in reduced Hilbert space 

    Kharzeev & Levin (1702.03489): how to get from a proton to parton ensemble 
  Also the other way: pure partonic state à ensemble of hadrons 
(fragmentation) 
  Maximal entanglement (MaxEnt) 

    Cervera-Lierta, Latorre, Rojo & Rottoli (1703.02989): maximally entangled  
    chiral left/right two-particle states are consistent with QED (gA=0) &  
    electroweak (gV=0), at least if sin ΘW = ½ 
  Classical/quantum physics (‘t Hooft – 1405.1548) 

  Less dimensions (1+3 à 1+1) advantageous 
  Convergence in field theory: d[φ] = (d-2)/2 à 0, d[ψ] = (d-1)/2 à½. 

    Stojkovic – 1406.2696: naturalness, … 
  Chirality (R/L) corresponding to right- and left-movers, P+, P- eigenstates 
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Multipartites live in a Hilbert space:                        (possibly identical spaces!) 
 
  For entangled bipartite states there is just 

     one class of entangled (Bell) states (using qubits: R/L) 

 
  For entangled tripartite states there are two classes (Dur, Vidal, Cirac 2000) 

  aligned:                                                      (fragile) 
  mingled:                                                      (robust) 

 
Multipartites and R/L basis states relevant for our purposes: 
  1D field theory:                                   with right/left-movers (chiral states) 

  Tripartite states:  
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Multipartite states (QIT) 

Class: Equivalence 
under local unitary  
transformations: 
 
 
U ⌦ U ⌦ . . .

HA ⌦HB ⌦ . . .

HA ⌦HB ⌦HC
space (3D): leptons, electroweak  
                 (GHZ-class) 
color: quarks in 1D, strong 
          (W-class) 

|Belli = 1p
2
(|RLi+ |LRi) or

1p
2
(|RRi+ |LLi)

|GHZi = 1p
2
(|RRRi+ |LLLi)

|Wi = 1p
3
(|LRRi+ |RLRi+ |RRLi)

H = H⌦x  HR ⇥HL



  Harmonic oscillator levels (SO(3) ßà internal symmetry & more symmetry) 

 
  Quark model: SU(6) x O(3) 

 
  Problematic at a fundamental level 

N configuration SU(6) ⇥ O(3) multiplets
0 (0s)3 [56, 0+]
1 (0s)2(1p) (56, 1�) [70, 1�]
2 (0s)2(2s) (56, 0+) [70, 0+]

(0s)2(2d) (56, 2+) [70, 2+]
(0s)(1p)2 [56, 0+] [56, 2+] (70, 0+) (70, 1+) (70, 2+) [20, 1+]

Multipartites, space-time and internal degrees of freedom 
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level degeneracy (n
x

, n
y

, n
z

) SO(3) (`) SU(3) (n)
0 1 (0,0,0) 0 1
1 3 (1,0,0), . . . 1 3
2 6 (2,0,0), (1,1,0), . . . 0 � 2 6
3 10 (3,0,0), (2,1,0), (1,1,1), . . . 1 � 3 10
4 15 . . . 0 � 2 � 4 15
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We prove a new theorem on the impossibility of combining space-time and internal symmetries in any
but a trivial way. The theorem is an improvement on known results in that it is applicable to infinite-param-
eter groups, instead of just to Lie groups. This improvement is gained by using information about the S
matrix; previous investigations used only information about the single-particle spectrum. We define a sym-
metry group of the Smatrix as a group of unitary operators which turn one-particle states into one-particle
states, transform many-particle states as if they were tensor products, and commute with the S matrix. Let
G be a connected symmetry group of the Smatrix, and let the following five conditions hold: (1) G contains
a subgroup locally isomorphic to the Poincare group. (2) For any M&0, there are only a finite number of
one-particle states with mass less than M. (3) Elastic scattering amplitudes are analytic functions of s and t,
in some neighborhood of the physical region. (4) The S matrix is nontrivial in the sense that any two one-
particle momentum eigenstates scatter (into something), except perhaps at isolated values of s. (5) The gen-
erators of G, written as integral operators in momentum space, have distributions for their kernels. Then,
we show that G is necessarily locally isomorphic to the direct product of an internal symmetry group and
the Poincard group.

I. INTRODUCTION
lNT&L a few years ago, most physicists believed
that the exact or approximate symmetry groups

of the world were (locally) isomorphic to direct products
of the Poincare group and compact Lie groups. This
world-view changed drastically with the publication of
the first papers on SU(6)'; these raised. the dazzling
possibility of a relativistic symmetry group which was
not simply such a direct product. Unfortunately, all
attempts to And such a group came to disastrous ends,
and the situation was finally settled by the discovery of
a set of theorems' which showed that, for a wide class
of Lie groups, any group which contained the Poincare
group and admitted supermultiplets containing finite
numbers of particles was necessarily a direct product.
However, although these theorems served their

polemic purposes, they are in many ways displeasing:
Their statements involve many unnatural and artificial
assumptions, typically concerning the normality of the
translation subgroup. Even worse, they are restricted
to Lie groups —this despite the fact that in6nite-
parameter groups have been proposed in the literature.
The theories based on these groups were destroyed not
by general theorems but by particular arguments.
Typically, these arguments showed that these groups
do not allow scattering except in the forward and back-
ward directions. ' Thus, if one accepts the usual dogma
on the analyticity of scattering amplitudes, they allow
no scattering at all.
The purpose of this paper is to tie up these loose ends.

We prove the following theorem: Let G be a connected

*Work supported in part by the U. S. Air Force Ofhce of
Scientific Research under Contract AF49 (638)—1380.
t Alfred P. Sloan Research Fellow.
$ National Science Foundation Postdoctoral Fellow.' B. Sakita, Phys. Rev. 136, B1756 (1964); F. Gursey and L.

Radicati, Phys. Rev. Letters 13, 299 (1964).
2 S. Coleman, Phys. Rev. 138, 81262 (1965);S.Weinberg, ibid.

139, 8597 (1965); L. Michel and 8. Sakita, Ann. Inst. Henri
Poincare 2, 167 (1965).

3 T. F. Jordan, Phys. Rev. 140, B766 (1965).

symmetry group of the S matrix, which contains the
Poincare group and which puts a finite number of
particles in a supermultiplet. Let the S matrix be non-
trivial and let elastic scattering amplitudes be analytic
functions of s and t in some neighborhood of the physical
region. Finally, let the generators of G be representable
as integral operators in momentum space, with kernels
that are distributions. Then 0 is locally isomorphic to
the direct product of the Poincare group and an in-
ternal symmetry group. (This is a loose statement of
the theorem; a more precise one follows below. )
We believe that all of the assumptions in this theorem

are physical, except for the last one, which, although
weak, is ugly. We hope that it can be eliminated with
suKciently careful analysis; to date we have been
unable to do so.
We emphasize that our theorem has application only

to groups which are symmetries of the S matrix. There-
fore it has nothing to say about symmetry groups arising
from the saturation of current commutators; these
groups generate symmetries of form factors only.
The remainder of this section contains a precise state-

ment of the theorem and some remarks about its impli-
cations. Section II contains the proof. Although at
times this attains mathematical levels of obscurity, we
make no claim for corresponding standards of rigor.

A. Statement of the Theorem

We begin by briefly reviewing some of the funda-
mental definitions of scattering theory. The Hilbert
space of scattering theory, K, is an infinite direct sum
of subspaces,

X=K"'Q+BC&'&Q+

X&"' is called the n-particle subspace. It is a subspace
(determined by the generalized exclusion principle) of
the direct product of e Hilbert spaces, each isomorphic
to R&'&. The S matrix S is a unitary operator on K.
A unitary operator U on X is said to be a symmetry
125i
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  Hilbert space 
 
  Supercharges 

  For boson and fermion fields 

  Implement symmetries via constraints F 
     ... and a nontrivial vacuum 

 

8 

[a, a†] = 1, {b, b†} = 1{(a†)n|0i, b†|0i}

Basic symmetries including SUSY 

Q†
ik = bi a

†
k and Qik = b†iak

a†k
Qik�! b†i a†k

Q†
ik � b†i hamiltonian/number operators (i=j, k=l) 

                              & unitary rotations  

{Q†
ik, Qjl} = 1

2 �ij{a
†
l , ak}+

1
2 �kl[b

†
i , bj ]

' =
1p
2!

�
a+ a†

�
and ⇠ =

1p
2

�
b+ b†

�

iD = i@ + gA

[Q,'] = ⇠ {Q, ⇠} = {Q, [Q,']} = F = iD'

[Q,F ] = [Q, {Q, ⇠}] = iD⇠

Free fields 

unitary rotations 

Q =
p
!(a†b� b†a)

�(x) = exp(�i

x

s
0
ds

µ

D

µ

)�

F = [', H] = M'

iD' = M' = i'̇



  Real/Majorana: 
    

     (1D Wess-Zumino à 1D gauge theory) 
  1D:    

     
  3D:   

 
  and .... 

    in order to match space-time and field symmetries (Haag-Luposzanski-Sohnius) 
    and avoid Coleman-Mandula when moving K into P(1,1) and SO(3) into P(1,3)  
 

 

 

Fields 
Generators 
Space-time     &    Internal 

  H 
  P+, P-             K, SU(3)  

 
  H, P, K           SU(3) = 

                          [SO(3),SU(2)xU(1)] 
 
 
  H, P, K, J       SU(2)xU(1) 
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Emerging symmetries of standard model 

n�
± �! nµ

↵ �� =


0 n�

�
n�
+ 0

�
�! �µ =


0 �̄µ

�µ 0

�

iD��
i = i@��

i + g0
X

a=1,...8

Aa
�(Ta)

i
j�

j

iDµ�
i = i@µ�

i + g
X

a=1,2,3,8

Aa
µ(Ta)

i
j�

j

�S Aa
k  

� ⇠ and h�i = 1
�R/L ⇠R/L and h�Ri = h�Li = 1/

p
2

�S �P Aa
3  



  Basis of each of the Hilbert spaces: P(1,1) x SU(3):  
  Assign Y-I3 using the SU(3) symmetry. 

  3D and P(1,3): aligned tripartite states  
     built on vacuum |0,0,0> (SO(3) invariant) 

  generated by SU(2) x U(1) from vacuum (nonzero vev) 
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1D bosonic basis states and aligned tripartites 

~� = (�1,�2,�3), . . .

-1/2 1/2 

1 

Y 

I3 

-1/2 1/2 
I3 

1 

Y 

φL
+

φL
− φL

0

φR
+φR

0

φR
−

φL
0

-1/2 1/2 

1 

Y 

I3 

φL
−

φR
+φR

0�R =

1p
2

exp

�
+

i
2

X

a=1,2,3,8

✓a�a

�
2

4
1 + 'H

0

0

3

5

�L =

1p
2

exp

�
� i

2

X

a=1,2,3,8

✓a�a

�
2

4
0

1 + 'H

0

3
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Bosonic excitations electroweak symmetry breaking and XQCD 

  3D Electroweak symmetry breaking is SU(2) x U(1) à U(1)QED    
 

 
  SU(3) embedding for electroweak gives embarrasingly good ‘zeroth order’ results: 

  Implies weak mixing angle sin θ W = 1/2 (Weinberg 1972) 
  g0 = M/2, g2 = 3/8 (use M = Mtop) 
  gives ΜΗ

2 = M2/2, MW
2 = 3MZ

2/4, MZ = M/2 
  e = g/2 = (3/32)1/2  or 1/α = 134 

  1D strong sector:  
     8 instantaneous gluons and a scalar field, resembling XQCD1+1 (Kaplan 1306.5818) 
     and dynamics governed by                                via Wilson loop 
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iDµ� = i@µ�+
g

2

✓ 3X

i=1

W i
µ�i +Bµ�8

◆
�

= i@µ�+
gp
2

�
W+

µ I� +W�
µ I+

�
�+

�
gW 0

µI3 +
g

2
p
3
BµY

�
�

W [C] = exp

✓
�ig

I

C
dsµAµ(s)

◆gF⌧� = �W [C]/��⌧�

L = 1
2@

µ'S@µ'S � 1
4 F

µ⌫Fµ⌫ +  (i /D �M � g0 'S) 



  Basis of each of the Hilbert spaces: P(1,1) x SU(3):  
  Assign Y-I3 using the SU(3) symmetry. 

 
 
 
  3D and P(1,3): aligned tripartite states 

     leptons: electrons & neutrinos 
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1D fermionic states & aligned tripartites 

-1/2 1/2 
I3 

1 

Y 

ξL
+

ξL
− ξL

0

-1/2 1/2 

1 

Y 

I3 

ξR
+ξR

0

ξR
−

~⇠ = (⇠1, ⇠2, ⇠3), . . .

-1/2 1/2 
I3 

1 

Y 

eL
+

eL
− eL

0

-1/2 1/2 

1 

Y 

I3 

eR
+eR

0

eR
−



Bosonic and fermionic excitations: lepton families 

  3D embedding fermions is straightforward:  

 
  Families linked to three singlets of Z(3): 

  Lepton masses? Just note: M/8π2 = 2 GeV (factor from SO(3) group measure) 
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�5 =


1 0
0 �1

�
�µ =


0 �µ

�µ 0

�

-1/2 1/2 
I3 

1 

Y 

ξL
+

ξL
− ξL

0

-1/2 1/2 

1 

Y 

I3 

ξR
+ξR

0

ξR
−

hb� ifam =

2

64

1p
3
1p
3
1p
3

3

75 , hb� iew =

2

4
0
1
0

3

5

Qmass = U†
Q Qew UQ U †

Q =

2

4
1p
2

0 1p
2

0 1 0
ip
2

0 �ip
2

3

5 W =
1p
3

2

4
1 1 1
!2 1 !
! 1 !2

3

5

Qew =

2

4
1 0 0
0 0 0
0 0 �1

3

5 Qmass =

2

4
0 0 �i
0 0 0
i 0 0

3

5
hb� ifam = W hb� iew

Qfam = WQewW
† = WUQ Qmass U

†
QW

† UHPS = WUQ =

2

4

p
2/3

p
1/3 0

�
p
1/6

p
1/3 �

p
1/2

�
p
1/6

p
1/3

p
1/2

3

5



Fermionic excitations: leptons and quarks 

  Tripartite states (R: 1 2 3 & L: 1 2 3)  

  Aligned (RRR, LLL) GHZ states 
  SO(3) à asymptotic/space 

    I, U, and V allowed 
  Three A(4) singlets à families 

 
  Mingled (RRL, RLL) W-states 

  non-asymptotic 
    I, U, or V allowed 
  Three A(4) triplets 
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222 

223 

213 

233 

123 

222 

333 

333 

221 

211 111 

231 

111 

311 

331 

333 

312 

333 

133 

111 

222 

332 

113 

123 

132 

322 

111 

112 

122 

222 

I3 

U3 V3 

I3=1/2 I3=�1/2 

V3=�1/2 

U3=1/2 

U3=�1/2 

V3=1/2 



Fermionic excitations: electroweak quantum numbers 
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eL

eR

uR

uR

uR

dR

dR

dRdL dL

dLuL

uL

uL

uL

uL

uL

dL

dL

dLuR

uRuR

dR

dR

dR

⌫R

⌫LeL

eR
Y g

Y b

Ib3

Ig3 Qg

Qb

Qr

Ir3 = I3

Y r = Y

  LEPTONS 
     Aligned (RRR, LLL) 

  SO(3) à asymptotic/space 
    I, U, and V allowed 
  Three A(4) singlets à families 
  Family mixing is  

    tri-bimaximal 
  QUARKS 

     Mingled (RRL, RLL) 
  non-asymptotic 

    I, U, or V allowed 
  Three A(4) triplets 
  Just one heavy quark! 

 
 

 
 
 

                                                                           
 



Electroweak particle content of standard model 
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particle space isospin hypercharge charge color

L T1 T2 I I3 Y Q c
⌫L ⇠0L ⇠0L ⇠0L 1/2 +1/2 �1 0 1

e�L ⇠�L ⇠�L ⇠�L 1/2 �1/2 �1 �1 1

e+L ⇠+L ⇠+L ⇠+L 0 0 +2 +1 1

⌫R ⇠0R ⇠0R ⇠0R 1/2 �1/2 +1 0 1

e+R ⇠+R ⇠+R ⇠+R 1/2 +1/2 +1 +1 1

e�R ⇠�R ⇠�R ⇠�R 0 0 �2 �1 1

uL ⇠0L (⇠+R ⇠+R) 1/2 +1/2 +1/3 +2/3 3

dL ⇠�L (⇠0R ⇠0R) 1/2 �1/2 +1/3 �1/3 3

uL ⇠0L (⇠�L ⇠�R ) 0 0 �4/3 �2/3 3

⇤

dL ⇠+L (⇠0L ⇠0R) 0 0 +2/3 +1/3 3

⇤

uR ⇠0R (⇠�L ⇠�L ) 1/2 �1/2 �1/3 �2/3 3

⇤

dR ⇠+R (⇠0L ⇠0L) 1/2 +1/2 �1/3 +1/3 3

⇤

uR ⇠0R (⇠+L ⇠+R) 0 0 +4/3 +2/3 3

dR ⇠�R (⇠0L ⇠0R) 0 0 �2/3 �1/3 3

Resembles rishon model (Harari & Seiberg 1982), but no compositeness! 



Standard model particle content 
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Y 

+1 

-1 

I3 

uR

eR
−

eL
+

dL

νR eR
+

dL

uR

eL
−

dR

uL

dR

uL

ν L

-1/2 +1/2 W +
γZ 0W −

H 0



TMDs: matrix elements (with gauge links) 

  quark-quark:  

 
 
 
  gluon-gluon: 

 
 
 
 
 
  Relevant matrix elements at high energies project on ‘good’ fermion and 

transverse gauge fields and naturally represent densities of these. 
  Noncollinearity requires nontrivial Wilson lines / gauge links. 
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�[U ]
ij (x, pT ;n) =

Z
d ⇠·P d

2
⇠T

(2⇡)3
e

ip·⇠hP ,S| j(0)U[0,⇠] i(⇠)|P ,Si
��
⇠·n=0

�[U,U 0]µ⌫(x, pT ;n) =

Z
d ⇠·P d

2
⇠T

(2⇡)3
e

ip·⇠ hP ,S|Fnµ(0)U[0,⇠] F
n⌫(⇠)U 0

[⇠,0] |P ,Si
��
⇠·n=0

ψi (ξ ) ψ j (0)

Γαβ ( p)

ui(k)uj(k) =)

✏↵(k)✏�⇤(k) =)



Using 1D to 3D transition (plan)  

  Parton distribution functions: collinear PDFs to TMDs and role of Wilson loop 
     (with Daniel Boer, Tom van Daal, Sabrina Cotogno) 
  Dominance of gluons at low x (dipole picture, color glass condensate, ...) 

     (with Elena Petreska) 
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TMDs and color gauge invariance (gauge links) 

  Gauge invariance in a non-local situation requires a gauge link U(0,ξ) 

 
  Introduces path dependence in 

 
 
  ‘Dominant’ paths: along lightcone connected at lightcone infinity (staples) 

 
  Reduces to ‘straight line’ for Φ(x)  

     (no gluon dynamics)  
 
  Be aware that one needs all orders in g to obtain full U(0,ξ) 
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0

(0, ) exp ig ds AU
ξ

µ
µξ −

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∫P
ψ(0)ψ(ξ ) = 1

n!
ξ µ1 ...

n
∑ ξ µNψ(0)∂µ1 ...∂µNψ(0)

ψ(0)U (0,ξ )ψ(ξ ) = 1
n!
ξ µ1 ...

n
∑ ξ µNψ(0)Dµ1

...DµN
ψ(0)

0
ξ.P 

ξΤ ξ

Φ[U ](x, pT ) ⇒ Φ(x)

A+(⌘)
A↵

T (⌘)�A↵
T (1)

Φ[U ](x, pT )
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u  Gauge links associated with dimension zero (not suppressed!) collinear An = A+ 
gluons, leading for TMD correlators to process-dependence: 

Non-universality because of process dependent gauge links 

Φij
q[C ](x, pT ;n) =

d(ξ .P)d 2ξT
(2π )3∫ ei p.ξ P ψ j (0)U[0,ξ ]

[C ] ψi (ξ ) P ξ .n=0

Φ[-] Φ[+] 

Time reversal 

TMD 

… A+ … 
… A+ … 
(resummation) 

   SIDIS  DY 

path dependent gauge link  

Belitsky, Ji, Yuan, 2003; Boer, M, Pijlman, 2003 
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Non-universality because of process dependent gauge links 

Φg
αβ[C ,C '] (x, pT ;n) =

d(ξ .P)d 2ξT
(2π )3∫ ei p.ξ P U[ξ ,0]

[C ] Fnα (0)U[0,ξ ]
[C '] Fnβ (ξ ) P

ξ .n=0

u  The TMD gluon correlators contain two links, which can have different paths. 
Note that standard field displacement involves C = C’  

u  Basic (simplest) gauge links for gluon TMD correlators: 

u  Collinear gluon PDFs: straight line ‘octet’ link 

[ ] [ ]
[ , ] [ , ]( ) ( )C CF U F Uαβ αβ
η ξ ξ ηξ ξ→

Φg
[+,+] Φg

[-,-] 

Φg
[+,-] Φg

[-,+] 

   gg è H 

 in gg  è QQ  
Bomhof, M, Pijlman, 2006; Dominguez, Xiao, Yuan, 2011 



Gluon correlators in a polarized target (up to spin ½) 

Unpolarized target 

  Vector polarized target 

  ...... 
     (talk of Sabrina Cotogno) 
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�ij[U ](x, kT ) =
x

2

⇢
�g

ij
T f

[U ]
1 (x, k2T ) +

k

ij
T

M

2
h

? [U ]
1 (x, k2T )

�

�ij[U ]
L (x, kT ) =

x

2

⇢
i✏

ij
T SLg

[U ]
1 (x, k2T ) +

✏

{i
T ↵k

j}↵
T

M

2
SLh

? [U ]
1L (x, k2T )

�

�ij[U ]
T (x, kT ) =

x

2

⇢
g

ij
T ✏

kST
T

M

f

?[U ]
1T (x, k2T )�

i✏

ij
T kT ·ST

M

g

[U ]
1T (x, k2T )

� ✏

k{i
T S

j}
T + ✏

ST {i
T k

j}
T

4M
h1(x, k

2
T )�

✏

{i
T ↵k

j}↵ST

T

2M3
h

?
1T (x, k

2
T )

�



Structure of gluon TMDs in targets (up to spin 1) 
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Gluons at low x – link color-space 

  Interestingly, there is a Wilson loop linking transverse spatial structure and 
transverse gluons 
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  Matrix element of single Wilson loop correlator just represents a ‘TMD’ 

 
  Relevant for diffraction and as xà0 limit of TMDs 

     Even without color exchange interactions can be induced 
     Link with dipole picture used at small x 
  Differentiation gives Γ[+-] gluon TMD for zero momentum (x = 0) 

 
 
 
 

Γ0( pT )

Hatta, Xiao, Yuan, PRL 116 (2016) 202301, ArXiv 1601.01585 

D Boer, S Cotogno, T van Daal, PJM, Y Zhou, JHEP 1610 (2016) 013, ArXiv 1607.01654 



Small x physics in terms of TMDs 

  Note limit x à 0 for gluon TMDs linked to Wilson loop correlator Γ0  

 
  Dipole correlators: at small x only two structures for unpolarized and 

transversely polarized nucleons: pomeron & odderon structure 
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Summary and implications for standard model & QCD 

  ‘Different view’ does not invalidate the standard model field theoretical results 
  it may affect way that (QCD+EW) loop corrections are implemented  
  It does away with the confinement issue: quarks are not asymptotic states.  
  Only for color singlet composites, rotational invariance can be employed in 
analogy to the lepton sector, implying that for valence quarks and 
antiquarks in hadrons a swap has to be made from SU(3)local in 1D to 
SU(3)global in 3D 

  Provides a new view for many phenomena in QCD (confinement, Bloom-Gilman 
duality, separation of hard/soft modes in SCET, jet physics, color-kinematic 
duality, multitude of effective models for QCD, CFT approaches a la Brodsky, de 
Téramond, Dosch, Lorcé getting to effective SUSY for baryons/mesons) 

  It could shed light on the transition from collinear à 3D picture  
  At level of partons/good fields: transition from PDFs to TMDs with staple 
gauge links 
  Role of Wilson loops in unifying dipole and TMD pictures at small x 

  Many open ends remain! 
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