W

European Research Council

INT 17-03, Seattle, 26 Sept 2017

The entangled 3D structure of the proton

P.]J. Mulders

— Pl
N W O N I!!ef V U %AMSTERDAM

Netherlands Organisation
for Scientific Research

p.j.g.mulders@vu.nl



Abstract
R
P.J. Mulders
Nikhef Theory Group and Faculty of Science, VU
Amsterdam

The entangled 3D structure of the proton.

Light-front quantized quark and gluon states (partons) play a dominant role in
high energy scattering processes. The initial pure proton state in these processes
appears as a mixed ensemble of partons, while any produced pure partonic state
appears as a mixed ensemble in the 3D world of the detector. The transition
from collinear hard physics to the 3D structure including partonic transverse
momenta is related to confinement and might hint at a more fundamental link
between color and spatial degrees of freedom. Wilson loops, including Wilson
lines along light-like directions such as used in the studies of transverse
momentum dependent distribution functions (TMDs) might play a role here,
establishing a direct link between transverse spatial degrees of freedom and
gluonic degrees of freedom. They lead to many peculiarities among them single
spin asymmetries in the physics of TMDs but they also unify and simplify our
picture for gluons in the low-x domain.



Introduction
o
m Color & QCD
m Distinct part of Standard Model, decoupling strong interactions

m Color unvisible: local gauge invariance! No free quarks or gluons!

m Color visible: valence quarks, N vs 1/N, f x D (distribution x fragmentation),
color flow (future and past pointing gauge links), ...

m Pragmatic approach: Front form quantization with good fields dominating in OPE
%’y_’ﬁw and g%“’AZ

m (1) A different view (entanglement & less dimensions)
PJM - 1601.00300

m (2) Impact for strongly interacting matter
m Example: Wilson loops and gluon TMDs



| A different view, why?

o
m Entanglement
m Entangled pure multipartite states - ensembles in reduced Hilbert space

Kharzeev & Levin (1702.03489): how to get from a proton to parton ensemble

m Also the other way: pure partonic state > ensemble of hadrons
(fragmentation)

m Maximal entanglement (MaxEnt)
Cervera-Lierta, Latorre, Rojo & Rottoli (1703.02989): maximally entangled
chiral left/right two-particle states are consistent with QED (g,=0) &
electroweak (g,=0), at least if sin ©,, = 2

m Classical/quantum physics ('t Hooft — 1405.1548)

m Less dimensions (1+3 = 1+1) advantageous
m Convergence in field theory: d[¢] = (d-2)/2 = 0, d[y] = (d-1)/2 > -.
Stojkovic — 1406.2696: naturalness, ...
m Chirality (R/L) corresponding to right- and left-movers, P*, P~ eigenstates



-/ Multipartite states (QIT)

Multipartites live in a Hilbert space: H4 @ HE & ... (possibly identical spaces!)

Class: Equivalence

For entangled bipartite states there is just under local unitary

one class of entangled (Bell) states (using qubits: R/L) transformations:
Bell) = = (IRL) +|LR)) or ~5(IRR)+|LL)) UelU®...

For entangled tripartite states there are two classes (Dur, Vidal, Cirac 2000)
= aligned: |GHZ) = %(|RRR> + |LLL)) (fragile)
= mingled: W) = J=(ILRR) + |[RLR) + |RRL)) (robust)

Multipartites and R/L basis states relevant for our purposes:
m 1D field theory: H = H®® « H® x H" with right/left-movers (chiral states)

space (3D): leptons, electroweak
= Tripartite states: H4 @ #P @ ”H,C{ (GHZ-class)
color: quarks in 1D, strong
(W-class)



W/

Multipartites, space-time and internal degrees of freedom

m Harmonic oscillator levels (SO(3) €< - internal symmetry & more symmetry)

level | degeneracy (ng, Ny, ny) SO(3) (¢) SU(3) (n)
0 1 (0,0,0) 0 1
1 3 (1,0,0), ... 1 3
2 6 (2,0,0), (1,1,0), ... 0@ 2 6
3 10 (3,0,0), (2,1,0), (1,1,1), ... 1@ 3 10
4 15 0p2d4 15

»

m Quark model: SU(6) x O(3)

N | configuration

SU(6) x O(3) multiplets

0 (05)3 56,07]
1| (0s2(p) | (56,17 70,17
2 (0s)%(2s) (56,07) [70,07]
(0s)2(2d) | (56,2+) [70,27]
0s)(1p)* | [56,0%] [56,27] (70,0%) (70,17) (70,27) [20,17]

m Problematic at a fundamental level



All Possible Symmetries of the S Matrix™

SipNEY COLEMANT AND JEFFREY MANDULAJ
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachuseits
(Received 16 March 1967)

We prove a new theorem on the impossibility of combining space-time and internal symmetries in any

but a trivial way. The theorem is an improvement on known results in that it is applicable to infinite-param-
eter groups, instead of just to Lie groups. This improvement is gained by using information about the S
matrix; previous investigations used only information about the single-particle spectrum. We define a sym-
metry group of the S matrix as a group of unitary operators which turn one-particle states into one-particle
states, transform many-particle states as if they were tensor products, and commute with the S matrix. Let
G be a connected symmetry group of the .S matrix, and let the following five conditions hold: (1) G contains
a subgroup locally isomorphic to the Poincaré group. (2) For any M >0, there are only a finite number of
one-particle states with mass less than M. (3) Elastic scattering amplitudes are analytic functions of s and ¢,
in some neighborhood of the physical region. (4) The S matrix is nontrivial in the sense that any two one-
particle momentum eigenstates scatter (into something), except perhaps at isolated values of s. (5) The gen-
erators of G, written as integral operators in momentum space, have distributions for their kernels. Then,
we show that G is necessarily locally isomorphic to the direct product of an internal symmetry group and
the Poincaré group.

I. INTRODUCTION symmetry group of the .S matrix, which contains the
Poincaré group and which puts a finite number of
particles in a supermultiplet. Let the .S matrix be non-
trivial and let elastic scattering amplitudes be analytic
functions of s and ¢ in some neighborhood of the physical
region. Finally, let the generators of G be representable
as integral operators in momentum space, with kernels
that are distributions. Then G is locally isomorphic to

NTIL a few years ago, most physicists believed
that the exact or approximate symmetry groups

of the world were (locally) isomorphic to direct products
of the Poincaré group and compact Lie groups. This
world-view changed drastically with the publication of
the first papers on SU(6)!; these raised the dazzling
possibility of a relativistic symmetry group which was

not simply such a direct product. Unfortunately, all the direct product of the Poincaré group and an in-

ternal symmetry group. (I'his 1S a loose statement ol
the theorem; a more precise one follows below.)

attempts to find such a group came to disastrous ends,
and the situation was finallv settled hv the discoverv nf



A

\, J Basic symmetries including SUSY

m Hilbert space

{(a")"10),b7|0)} a,a’l =1, {b,b"} =1
m Supercharges
Qi = biaj, and Qix = bjay {Ql, Qin} = 3 05{al, an} + 3 9 lb], b
i
a,t Qik, ot aL Sk g hamiltonian/number operators (i=j, k=)
1 1

.. & unitary rotations
m For boson and fermion fields

1 1

= o (a+ aT) and &= 7 (b+ bT) Free fields
Q= Vw(a'b—bla) F=lp,H| = Mgy
1Dp = Mp =19
Q0] =¢  {Q.&} ={Q,[Q, 9]} = F =1iDyp
Q, F| =[Q,{Q, &} =iD¢ 1D =10 + gf‘l

m Implement symmetries via constraints F

unitary rotations
... and a nontrivial vacuum oz
[qb(x) = exp(~i ] s D)6 }




\‘ J Emerging symmetries of standard model

Generators
Fields Space-time & Internal
m Real/Majorana: ¢ ¢ and (¢) =1 = H
m ¢r/r Eryp and (¢p) = (¢r)=1/vV2 m P+, P K, SU(3)
(1D Wess-Zumino - 1D gauge theory)
m 1D:¢s ¢p—> A3 ¥ m H P K SU(3) =
. 4 o
iDe¢’ =i0,0" + g0 > AL(T,)i¢ [SO(3),SU(2)xU(1)]
a=1,...8
/ / /
m 3D: ¢s Ay ¢ m H P, KJ  SUQRXUQ1)
iDud' =i0ud' +g Y ALUTL)i¢
a=1,2,3,8
m and ....
- w02 [0 5"
ni—>na’y—nio 7_0“0

in order to match space-time and field symmetries (Haag-Luposzanski-Sohnius)
and avoid Coleman-Mandula when moving K into P(1,1) and SO(3) into P(1,3)



W/

Basis of each of the Hilbert spaces: P(1,1) x SU(3): gg = (¢!, 0%, %), ...

1D bosonic basis states and aligned tripartites

Assign Y-I5 using the SU(3) symmetry.

3D and P(1,3): aligned tripartite states

built on vacuum |0,0,0> (SO(3) invariant)

generated by SU(2) x U(1) from vacuum (nonzero vev)

Or =

oL =

1

()

1
2

exp(—k% Z HaAa)

a=1,2,3,8

exp(—% Z 0“)\@)

a=1,2,3,8

Y Y
- A N L
(¢, RN (¢,
T —> I3 L 1
-1/2 1/2 -1I/2 1/2
(0, (0 (¢,
|
Y
N
1+ YH ] ,,')
0 - P
(¢, -1 (g,
. } — [;
172 12
1 +0<PH (9, (¢,

10



\ Y Bosonic excitations electroweak symmetry breaking and XQCD
b

m 3D Electroweak symmetry breaking is SU(2) x U(1) »> U(1)QED
/
iD,¢ =10,¢ + = (Z WZA + B )\S)Cb

e WL+ WL )6+ (g Wik + S22 B,Y )0 )

m SU(3) embedding for electroweak gives embarrasingly good ‘zeroth order’ results:
m Implies weak mixing angle sin6,, = 1/2 (Weinberg 1972)
m g, =M/2,g°=3/8 (use M = M)
m gives M2 = M?/2, M2 = 3M%/4, M, = M/2
me=g/2=(3/32)Y20or 1/a =134

~

m 1D strong sector: £ = 59" s0,05 — 3 F*F,, + ¢ (i) — M — go 0s)¢
8 instantaneous gluons and a scalar field, resembling XQCD,, (Kaplan 1306.5818)
and dynamics governed by gF-, = éW|C]/dc" via Wilson loop

WIC] = exp (—z’g 740

ds“Au(s))

11



W

m Basis of each of the Hilbert spaces: P(1,1) x SU(3): 5: (51, 52, 53)

m Assign Y-I; using the SU(3) symmetry.

m 3D and P(1,3): aligned tripartite states

leptons: electrons & neutrinos

(E 1t (&

Y

AN

-1/2

Y Y
A L
[ e}g -1—(e; e/
: : > I3 1
-1/2 / 1/2 -1I/2 1./2 X
| 7 -
(e, (e, e

1D fermionic states & aligned tripartites

R
Y
1
.
-1
-1/2 1/2
(& (&

12



Bosonic and fermionic excitations: lepton families

2D emheddina fearminng i straiahtforw . _
u i ""’Y"“""' b ""'Y""U' et "ard' . O E,UJ
B t N 1 T =l er 0
G — 14— E; L
1 0
t — I3 +1 75 —
-1/2 1 1/2 -1I/2 1I/2> L O _1
T + L
(1N G 1 & 1
| - V3 - 0
m Families linked to three singlets of Z(3): (¢ )tam = i@ (@)ew =] 1
— 0
1 0 0 0 0 —i V3
Qew - 0 0 0 Qmass — 0 O 0 ~ ~
0 0 -1 1 0 O <§b>fam — W<¢>ew
< L 1 1 1 ]
V2 V2 1
Qmass = Ugg Qew UQ Ug? = 0 1 0 W = ﬁ w? 1 w
L0 = w 1 w?
V2 V2 -

273 J1/3 0
—J/1/6 /1/3 —/1/2

-V1/6 V13 V12

m Lepton masses? Just note: M/8xn? = 2 GeV (factor from SO(3) group measure) .




Fermionic excitations: leptons and quarks

oY
m Tripartite states (R: 123 & L: 1 2 3)

m Aligned (RRR, LLL) GHZ states I=-1/2
SO(3) = asymptotic/space
I, U, andV allowed s
Three A(4) singlets - families -

~

m Mingled (RRL, RLL) W-states
non-asymptotic v3=—1\/5 ~.
I, U, orV allowed -
Three A(4) triplets

”

14



\ J Fermionic excitations: electroweak quantum numbers
.

,r.

m LEPTONS I3 ,
. Q
Aligned (RRR, LLL)

m SO(3) = asymptotic/space U R
I, U, andV allowed “L Ur  Sdp
. - VR / eR
m Three A(4) singlets > families ur - /! Ur
m Family mixing is Qb dr dp L/'dR up 17— I,
tri-bimaximal D — ,....--.(: ™ —
m QUARKS UR dy, \\ dr, dpr
Mingled (RRL, RLL) UR dr ™ UR
= non-asymptotic yb €L - . \\ - YL \
I, U, orV allowed / & N\ 4

ur, dr, VL
m Three A(4) triplets . eR \
| 13 Qg

15



\‘ Y Electroweak particle content of standard model

particle space 1S0spin hypercharge charge color

L T1 T2 I 13 Y Q C
vy, % f% % 1/2 +1/2 —1 0 1
er 33 33 33 1/2 —1/2 —1 —1 1
ey - - > 0 0 +2 +1 1
VR B 9 O 1 172 —1/2 +1 0 1
et I I = /2 +1/2 +1 +1 1
€n §r §r Er 0 0 —2 —1 1
ur, ? & &) | 172 +1/2 +1/3 +2/3 3
dr 33 Ex &R | /2 —1/2 +1/3 ~1/3 3
o T & )| o0 0 —4/3 ~2/3 3"
dr o & & | o 0 +2/3 +1/3 3*
Ur R & &) | 2 -1/2 ~1/3 -2/3 3
dr = €Oy | 1/2  +1/2 —~1/3 +1/3 3"
U R &  &r) | O 0 +4/3 +2/3 3
dr GG 0 ~2/3 ~1/3 3

Resembles rishon model (Harari & Seiberg 1982), but no compositeness!



Standard model particle content

17



TMDs: matrix elements (with gauge links)

W/

m quark-quark: u;(k)u, (k) =

d&-P d? _ _
o a,prin) = [ S5 PP 0) Vo i OIPS) |y

(2m)°

m gluon-gluon: €“(k)e’* (k) =

[U,U'] pv d€Pd2€T ip-€ nu nv /I
NSk (z,pr;n) = e ¢ (P,S| F™(0) Ug ¢ F™ (&) Upe \P,S}\g.nzo

m Relevant matrix elements at high energies project on ‘good’ fermion and
transverse gauge fields and naturally represent densities of these.

m Noncollinearity requires nontrivial Wilson lines / gauge links.

18



\‘ J Using 1D to 3D transition (plan)

m Parton distribution functions: collinear PDFs to TMDs and role of Wilson loop
(with Daniel Boer, Tom van Daal, Sabrina Cotogno)

m Dominance of gluons at low x (dipole picture, color glass condensate, ...)
(with Elena Petreska)

19



\ J TMDs and color gauge invariance (gauge links)

m Gauge invariance in a non-local situation requires a gauge link U(0,&)

FOWE) = 3~ E .5 (0)3, .3, ¥(0) 5
"o U0,&)=2 eXp(—igfdsﬂAﬂ)

FOUO.LY(E) = 3 E"..E“(0)D, .. D, y(0)

m Introduces path dependence in ®'“!(x, p.) %TT b
>

\IJO E.P

m ‘Dominant’ paths: along lightcone connected at lightcone infinity (staples)

m Reduces to ‘straight line’ for ®(x)
O(x,p,) = P(x) ? = \T /
AT (n)

(no gluon dynamics)



w Non-universality because of process dependent gauge links

d(E.P)d’E, oD
27y

@} (x. pyim) = [ (Plv,OUGLw&IP), - ™D

path dependent gauge link

€ Gauge links associated with dimension zero (not suppressed!) collinear A" = At
gluons, leading for TMD correlators to process-dependence:

DY . }‘“a SIDIS

4
L g
A / ‘0"
. AT L ——
. A+
(resummation)
& Sp
fo- & T & .
®l-] | S Bl+]
- } L t -
£” Time reversal £

Belitsky, Ji, Yuan, 2003; Boer, M, Pijiman, 2003 \ 21



\_‘ J Non-universality because of process dependent gauge links

IO d(E.P)d’E, | » 1
O (x, pyin) = [ £2) Lo (PUjeo " (OUR L F™ (9)|P),

(2 ﬂ)3 [5,0 [0.£] n

€ The TMD gluon correlators contain two links, which can have different paths.
Note that standard field displacement involves C = C’

F (&)~ UL F U]

[17.5] [&.7]
€ Basic (simplest) gauge links for gluon TMD correlators: gg > H
éT-- — o gT_- - /
(I)g[+'+] " e q)g[-’-] — e =
& £~
E.V[' gT
- + o "= T e .
¢ [+,-] I ¢ [-/+] -
g = e t = g = - i
& T &
€ Collinear gluon PDFs: straight line ‘octet’ link _ -
ingg <& QQ

Bomhof, M, Pijlman, 2006; Dominguez, Xiao, Yuan, 2011



\ Y Gluon correlators in a polarized target (up to spin 2)
\

m Unpolarized target

P90 k) = 5y = 17 (oK) + g1 b ()
2 M
m Vector polarized target
{i i}t
i x . Qi € ak’
e, k) = 5{@2 Seoy (. k) + P Suhyy e, k%)}
i5U) v glerT L), e iepkrST ), o
I‘T (x7kT) — 5 M 1T ( 7kT) - M it (kaT)
kit ~9 Stdi;79 ) raST
o ET{ S%} +6T { k%} h (ZC k2> o eéak%ﬂ} hJ_ (CU k2)
AM IRCOR N N3 17T \+% v

(talk of Sabrina Cotogno)
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Structure of gluon TMDs in targets (up to spin 1)

(P

PARTON SPIN

GLUONS ap of off
_gT 8T pT 9
U e lg
\\\\ ‘fi ,,/: hl
L g lg
gl ,,' hlL
= T —
o lg g g lg
n flT Eir hl th
|_
& L i hif
I— \\\N__’//I
LT g g g lg
1LT EiLr hlLT hlLT
TT g g ‘7 N plg pllg
17T 81t \\th@/ thT thT

‘ Jaffe & Manohar, Nuclear gluonometry, PL B223 (1989) 218

PJM & Rodrigues, PR D63 (2001) 094021

Meissner, Metz and Goeke, PR D76 (2007) 034002
D Boer, S Cotogno, T van Daal, PIJM, Y Zhou, JHEP 1610 (2016) 013, ArXiv 1607.01654
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\ Y Gluons at low x — link color-space
b

m Interestingly, there is a Wilson loop linking transverse spatial structure and
transverse gluons

T
1 L
> ‘ > >
0
50—046 50a+

m Matrix element of single Wilson loop correlator just represents a "TMD’

m Relevant for diffraction and as x>0 limit of TMDs
Even without color exchange interactions can be induced '
Link with dipole picture used at small x

m Differentiation gives I'l+"1gluon TMD for zero momentum (x = 0)

Hatta, Xiao, Yuan, PRL 116 (2016) 202301, ArXiv 1601.01585

D Boer, S Cotogno, T van Daal, PIM, Y Zhou, JHEP 1610 (2016) 013, ArXiv 1607.01654

25



Small x physics in terms of TMDs

W/

m Note limit x > 0 for gluon TMDs linked to Wilson loop correlator T,
1 kST

Lotkr) = g3 {elk8) — G- er(h) |

m Dipole correlators: at small x only two structures for unpolarized and
transversely polarized nucleons: pomeron & odderon structure
_ k2
+, 2 . T —1/1.2
v fi5 7 @ k) — ool el

zhy T @ k2 — et I(k2)

T fir (z, k1) — Ve er (k1)
L1y (CU, T) ’ 2M 2 Cr ( T)

Dominguez, Xiao, Yuan 2011
D Boer, MG Echevarria, PIM, J Zhou, PRL 116 (2016) 122001, ArXiv 1511.03485
D Boer, S Cotogno, T van Daal, PIJM, Y Zhou, JHEP 1610 (2016) 013, ArXiv 1607.01654
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) Summary and implications for standard model & QCD

‘Different view’ does not invalidate the standard model field theoretical results
it may affect way that (QCD+EW) loop corrections are implemented

It does away with the confinement issue: quarks are not asymptotic states.

Only for color singlet composites, rotational invariance can be employed in
analogy to the lepton sector, implying that for valence quarks and
antiquarks in hadrons a swap has to be made from SU(3),,, in 1D to

SU(3)giopal iN 3D

m Provides a new view for many phenomena in QCD (confinement, Bloom-Gilman

duality, separation of hard/soft modes in SCET, jet physics, color-kinematic

duality, multitude of effective models for QCD, CFT approaches a la Brodsky, de

Téramond, Dosch, Lorcé getting to effective SUSY for baryons/mesons)
It could shed light on the transition from collinear = 3D picture

At level of partons/good fields: transition from PDFs to TMDs with staple
gauge links
Role of Wilson loops in unifying dipole and TMD pictures at small x

Many open ends remain!
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