Baryon and Meson Distribution Amplitudes from LQCD

Fabian Hutzler

Institut für Theoretische Physik Universität Regensburg

30. August 2017

PART 0: QCD in a box

Fabian Hutzler Baryon and Meson Distribution Amplitudes from LQCD

$$x = a\left(n_0, n_1, n_2, n_3\right), \quad n_\mu \in \mathbb{Z}$$

 $a \equiv$ lattice spacing

 $L/a \equiv \mbox{ lattice size }$

 $L \leq \infty$, possibly $\, T \neq L \,$

 \blacksquare Need big spatial extent of the lattice $m_\pi L\gtrsim 4$ to reduce finite size effects

- Need big spatial extent of the lattice $m_{\pi}L\gtrsim 4$ to reduce finite size effects
- \blacksquare Need small lattice spacings a to reduce cutoff-effects

- Need big spatial extent of the lattice $m_{\pi}L\gtrsim 4$ to reduce finite size effects
- \blacksquare Need small lattice spacings a to reduce cutoff-effects
- $\blacksquare \$\$\$ \propto L^{z_L} a^{-z_a} m_{\pi}^{-z_{\pi}}$
- $z_L \approx 5$, $z_a \approx 7$, $z_\pi \approx 6$

- Need big spatial extent of the lattice $m_{\pi}L\gtrsim 4$ to reduce finite size effects
- \blacksquare Need small lattice spacings a to reduce cutoff-effects
- $\blacksquare \$\$\$ \propto L^{z_L} a^{-z_a} m_{\pi}^{-z_{\pi}}$
- $z_L \approx 5$, $z_a \approx 7$, $z_\pi \approx 6$
- \blacksquare For $a \leq 0.05~{\rm fm}$ MC algorithms get trapped in sectors of fixed topological charge

CLS effort

Lattices fulfilling TrM = const.

area $\propto \#$ configurations

- \blacksquare Cost (so far!): 165 Mcore-h superMUC equivalent, 350 TB of data
 - (1 supermuc core-h ≈ 3.7 Juqueen core-h)

Fabian Hutzler

PART I: Baryons

Fabian Hutzler Baryon and Meson Distribution Amplitudes from LQCD

Baryon Distribution Amplitudes

- What are Distribution Amplitudes (DAs)?
- Full baryonic wave functions very complex \Rightarrow reduce complexity by introducing DAs

Bethe-Salpeter wave function

$$\Psi_{BS}(x,k_{\perp}) = \langle 0|\epsilon^{ijk}f^{i}(x_{1},k_{1\perp})g^{j}(x_{2},k_{2\perp})h^{k}(x_{3},k_{3\perp})|B\rangle$$

$$\Phi(x,\mu) = Z(\mu) \int_{\substack{|k_{\perp}| \leq \mu}} [d^{2}k_{\perp}] \Psi_{BS}(x,k_{\perp})$$

 Three-quark DAs contain information about the momentum distribution of valence quarks at small transverse separations

Simplest case: Nucleon

Leading twist decomposition of the nucleon-to-vacuum matrix element

$$\begin{aligned} 4\langle 0|u_{\alpha}(a_{1}n)u_{\beta}(a_{2}n)d_{\gamma}(a_{3}n)|N(p,\lambda)\rangle \\ &= \int [dx]e^{-i\,n\cdot p}\sum_{i}{}^{a_{i}x_{i}} \left[V^{N}(x_{i})(\not{n}C)_{\alpha\beta}(\gamma_{5}u_{N}^{+}(p,\lambda))_{\gamma} + A^{N}(x_{i})(\not{n}\gamma_{5}C)_{\alpha\beta}(u_{N}^{+}(p,\lambda))_{\gamma} \right. \\ &+ T^{N}(x_{i})(i\sigma_{\perp\bar{n}}C)_{\alpha\beta}(\gamma^{\perp}\gamma_{5}u_{N}^{+}(p,\lambda))_{\gamma} + \dots \right] \end{aligned}$$

- "…" contain 21 DAs of higher twist
- One independent leading twist distribution amplitude

$$\Phi^N(x_1, x_2, x_3) = V^N(x_1, x_2, x_3) - A^N(x_1, x_2, x_3)$$

Due to isopsin symmetry

$$2T^{N}(x_{1}, x_{3}, x_{2}) = \Phi^{N}(x_{1}, x_{2}, x_{3}) + \Phi^{N}(x_{3}, x_{2}, x_{1})$$

Nucleon wave function

- Consider the three-quark Fock state in the infinite momentum frame
- At leading twist with transverse momentum components integrated out the nucleon wave function can be written as

$$\begin{split} |N^{\uparrow}\rangle &= \int \frac{[dx]}{8\sqrt{6x_1x_2x_3}} |uud\rangle \otimes \left\{ [V+A]^N(x_1,x_2,x_3)|\downarrow\uparrow\uparrow\rangle + [V-A]^N(x_1,x_2,x_3)|\uparrow\downarrow\uparrow\rangle \right. \\ &\left. -2T^N(x_1,x_2,x_3)|\uparrow\uparrow\downarrow\rangle \right\} \\ &= \int \frac{[dx]}{8\sqrt{3x_1x_2x_3}} |\uparrow\uparrow\downarrow\rangle \otimes \left\{ -\sqrt{3}\Phi^N_+(x_1,x_3,x_2)|\mathsf{MS},N\rangle + \Phi^N_-(x_1,x_3,x_2)|\mathsf{MA},N\rangle \right\} \end{split}$$

Nucleon wave function

- Consider the three-quark Fock state in the infinite momentum frame
- At leading twist with transverse momentum components integrated out the nucleon wave function can be written as

$$\begin{split} |N^{\uparrow}\rangle &= \int \frac{[dx]}{8\sqrt{6x_1x_2x_3}} |uud\rangle \otimes \left\{ [V+A]^N(x_1,x_2,x_3)|\downarrow\uparrow\uparrow\rangle + [V-A]^N(x_1,x_2,x_3)|\uparrow\downarrow\uparrow\rangle \right. \\ &\left. -2T^N(x_1,x_2,x_3)|\uparrow\uparrow\downarrow\rangle \right\} \\ &= \int \frac{[dx]}{8\sqrt{3x_1x_2x_3}} |\uparrow\uparrow\downarrow\rangle \otimes \left\{ -\sqrt{3}\Phi^N_+(x_1,x_3,x_2)|\mathsf{MS},N\rangle + \Phi^N_-(x_1,x_3,x_2)|\mathsf{MA},N\rangle \right\} \end{split}$$

Mixed symmetric and mixed antisymmetric flavor wave function

$$|\mathsf{MS},N\rangle = (2|uud\rangle - |udu\rangle - |duu\rangle)/\sqrt{6} \qquad |\mathsf{MA},N\rangle = (|udu\rangle - |duu\rangle)/\sqrt{2}$$

 \blacksquare One can combine $\Phi^{N}=\Phi^{N}_{+}+\Phi^{N}_{-}$

• Wave function at the origin
$$f^N = \int [dx] \Phi^N(x_i)$$

Octet baryon wave functions

- Since SU(3) symmetry is broken Π^B is now an independent DA
- Totally symmetric (decuplet-like) and antisymmetric (singlet-like) flavor functions appear in the helicity ordered octet baryon wave functions

$$\begin{split} |(B \neq \Lambda)^{\uparrow}\rangle &= \int \frac{[dx]}{8\sqrt{3}x_{1}x_{2}x_{3}} |\uparrow\uparrow\downarrow\rangle \otimes \left\{ -\sqrt{3}\Phi^{B}_{+}(x_{1}, x_{3}, x_{2})\left(|\mathsf{MS}, B\rangle - \sqrt{2}|\mathsf{S}, B\rangle\right)/3 \\ &\quad -\sqrt{3}\Pi^{B}(x_{1}, x_{3}, x_{2})\left(2|\mathsf{MS}, B\rangle + \sqrt{2}|\mathsf{S}, B\rangle\right)/3 \\ &\quad +\Phi^{B}_{-}(x_{1}, x_{3}, x_{2})|\mathsf{MA}, B\rangle \right\} \\ |\Lambda^{\uparrow}\rangle &= \int \frac{[dx]}{8\sqrt{3}x_{1}x_{2}x_{3}} |\uparrow\uparrow\downarrow\rangle \otimes \left\{ -\sqrt{3}\Phi^{\Lambda}_{+}(x_{1}, x_{3}, x_{2})|\mathsf{MS}, \Lambda\rangle \\ &\quad +\Pi^{\Lambda}(x_{1}, x_{3}, x_{2})\left(2|\mathsf{MA}, \Lambda\rangle - \sqrt{2}|\mathsf{A}, \Lambda\rangle\right)/3 \\ &\quad +\Phi^{\Lambda}_{-}(x_{1}, x_{3}, x_{2})\left(|\mathsf{MA}, \Lambda\rangle + \sqrt{2}|\mathsf{A}, \Lambda\rangle\right)/3 \right\} \end{split}$$

■ The well-defined SU(3) symmetric limit is analogous to the nucleon case

$$|B^{\uparrow}\rangle^{\star} = \int \frac{[dx]}{8\sqrt{3x_1x_2x_3}} |\uparrow\uparrow\downarrow\rangle \otimes \left\{ -\sqrt{3}\Phi_{+}^{\star}(x_1, x_3, x_2) |\mathsf{MS}, B\rangle + \Phi_{-}^{\star}(x_1, x_3, x_2) |\mathsf{MA}, B\rangle \right\}$$

Fabian Hutzler

Moments \leftrightarrow matrix elements of local operators

Moments of DAs $V_{lmn}^{B} = \int [dx] x_{1}^{l} x_{2}^{m} x_{3}^{n} V^{B}(x_{1}, x_{2}, x_{3})$

- Unlike the full DAs the moments can be directly evaluated on the lattice
- For that purpose we define local operators such as

$$\begin{aligned} \mathcal{V}_{\rho}^{B,000} &= \epsilon^{ijk} \left(f^{Ti}(0) C \gamma_{\rho} g^{j}(0) \right) \gamma_{5} h^{k}(0) \\ \mathcal{V}_{\rho\nu}^{B,001} &= \epsilon^{ijk} \left(f^{Ti}(0) C \gamma_{\rho} g^{j}(0) \right) \gamma_{5} \left[i D_{\nu} h(0) \right]^{k} \end{aligned}$$

- These operators clearly have the desired Dirac-matrix, flavor and color structure
- However, they are not pure twist 3 operators

Normalization and shape parameters

Distribution amplitudes can be expanded in a set of orthogonal polynomials

$$\begin{split} \Phi^B_+ &= 120x_1x_2x_3\left(\varphi^B_{00}\mathcal{P}_{00} + \varphi^B_{11}\mathcal{P}_{11} + \dots\right) \\ \Phi^B_- &= 120x_1x_2x_3\left(\varphi^B_{10}\mathcal{P}_{10} + \dots\right) \\ \Pi^{B\neq\Lambda} &= 120x_1x_2x_3\left(\pi^B_{00}\mathcal{P}_{00} + \pi^B_{11}\mathcal{P}_{11} + \dots\right) \\ \Pi^\Lambda &= 120x_1x_2x_3\left(\pi^\Lambda_{10}\mathcal{P}_{10} + \dots\right) \\ \mathcal{P}_{00} &= 1 \qquad \mathcal{P}_{11} = 7(x_1 - 2x_2 + x_3) \qquad \mathcal{P}_{10} = 21(x_1 - x_3) \end{split}$$

• Couplings and shape parameters can be reexpressed as moments of V^B , A^B and T^B

$$\begin{split} f^{B\neq\Lambda} &= \varphi^B_{000} = V^B_{000} \\ f^{B\neq\Lambda}_T &= \pi^B_{00} = T^B_{000} \\ f^\Lambda &= \varphi^\Lambda_{00} = -\sqrt{\frac{2}{3}} A^\Lambda_{000} \end{split}$$

Normalization and shape parameters

Distribution amplitudes can be expanded in a set of orthogonal polynomials

$$\begin{split} \Phi^B_+ &= 120x_1x_2x_3 \left(\varphi^B_{00}\mathcal{P}_{00} + \varphi^B_{11}\mathcal{P}_{11} + \dots\right) \\ \Phi^B_- &= 120x_1x_2x_3 \left(\varphi^B_{10}\mathcal{P}_{10} + \dots\right) \\ \Pi^{B\neq\Lambda} &= 120x_1x_2x_3 \left(\pi^B_{00}\mathcal{P}_{00} + \pi^B_{11}\mathcal{P}_{11} + \dots\right) \\ \Pi^\Lambda &= 120x_1x_2x_3 \left(\pi^\Lambda_{10}\mathcal{P}_{10} + \dots\right) \\ \mathcal{P}_{00} &= 1 \qquad \mathcal{P}_{11} = 7(x_1 - 2x_2 + x_3) \qquad \mathcal{P}_{10} = 21(x_1 - x_3) \end{split}$$

• Couplings and shape parameters can be reexpressed as moments of V^B , A^B and T^B

$$\begin{split} \varphi_{11}^{B\neq\Lambda} &= \frac{1}{2} \left([V-A]_{100}^B - 2[V-A]_{010}^B + [V-A]_{001}^B \right) \\ \varphi_{10}^{B\neq\Lambda} &= \frac{1}{2} \left([V-A]_{100}^B - [V-A]_{001}^B \right) \\ \pi_{11}^{B\neq\Lambda} &= \frac{1}{2} \left(T_{100}^B + T_{010}^B - 2T_{001}^B \right) \end{split}$$

Normalization and shape parameters

Distribution amplitudes can be expanded in a set of orthogonal polynomials

$$\begin{split} \Phi^B_+ &= 120 x_1 x_2 x_3 \left(\varphi^B_{00} \mathcal{P}_{00} + \varphi^B_{11} \mathcal{P}_{11} + \dots\right) \\ \Phi^B_- &= 120 x_1 x_2 x_3 \left(\varphi^B_{10} \mathcal{P}_{10} + \dots\right) \\ \Pi^{B \neq \Lambda} &= 120 x_1 x_2 x_3 \left(\pi^B_{00} \mathcal{P}_{00} + \pi^B_{11} \mathcal{P}_{11} + \dots\right) \\ \Pi^{\Lambda} &= 120 x_1 x_2 x_3 \left(\pi^{\Lambda}_{10} \mathcal{P}_{10} + \dots\right) \\ \mathcal{P}_{00} &= 1 \qquad \mathcal{P}_{11} = 7(x_1 - 2x_2 + x_3) \qquad \mathcal{P}_{10} = 21(x_1 - x_3) \end{split}$$

 \blacksquare Couplings and shape parameters can be reexpressed as moments of $V^B,\,A^B$ and T^B

$$\begin{split} \varphi_{11}^{\Lambda} &= \frac{1}{\sqrt{6}} \left([V - A]_{100}^{\Lambda} - 2[V - A]_{010}^{\Lambda} + [V - A]_{001}^{\Lambda} \right) \\ \varphi_{10}^{\Lambda} &= -\sqrt{\frac{3}{2}} \left([V - A]_{100}^{\Lambda} - [V - A]_{001}^{\Lambda} \right) \\ \pi_{10}^{\Lambda} &= \sqrt{\frac{3}{2}} \left(T_{100}^{\Lambda} - T_{010}^{\Lambda} \right) \end{split}$$

Leading twist projection

- Our specific choice of linear combinations is distinguished by the fact that they are directly equivalent to H(4) operators (introduced in renormalization section)
- For the normalization constants we use

$$\begin{aligned} \mathcal{O}_{\mathcal{V},\mathfrak{A}}^{B,000} &= -\gamma_1 \mathcal{V}_1^{B,000} + \gamma_2 \mathcal{V}_2^{B,000} \\ \mathcal{O}_{\mathcal{V},\mathfrak{B}}^{B,000} &= -\gamma_3 \mathcal{V}_3^{B,000} + \gamma_4 \mathcal{V}_4^{B,000} \\ \mathcal{O}_{\mathcal{V},\mathfrak{C}}^{B,000} &= -\gamma_1 \mathcal{V}_1^{B,000} - \gamma_2 \mathcal{V}_2^{B,000} + \gamma_3 \mathcal{V}_3^{B,000} + \gamma_4 \mathcal{V}_4^{B,000} \end{aligned}$$

• For the first moments we use (l + m + n = 1)

$$\begin{split} \mathcal{O}_{\mathcal{V},\mathfrak{A}}^{B,lmn} &= +\gamma_{1}\gamma_{3}\mathcal{V}_{\{13\}}^{B,lmn} + \gamma_{1}\gamma_{4}\mathcal{V}_{\{14\}}^{B,lmn} - \gamma_{2}\gamma_{3}\mathcal{V}_{\{23\}}^{B,lmn} - \gamma_{2}\gamma_{4}\mathcal{V}_{\{24\}}^{B,lmn} - 2\gamma_{1}\gamma_{2}\mathcal{V}_{\{12\}}^{B,lmn} \\ \mathcal{O}_{\mathcal{V},\mathfrak{B}}^{B,lmn} &= +\gamma_{1}\gamma_{3}\mathcal{V}_{\{13\}}^{B,lmn} - \gamma_{1}\gamma_{4}\mathcal{V}_{\{14\}}^{B,lmn} + \gamma_{2}\gamma_{3}\mathcal{V}_{\{23\}}^{B,lmn} - \gamma_{2}\gamma_{4}\mathcal{V}_{\{24\}}^{B,lmn} + 2\gamma_{3}\gamma_{4}\mathcal{V}_{\{34\}}^{B,lmn} \\ \mathcal{O}_{\mathcal{V},\mathfrak{C}}^{B,lmn} &= -\gamma_{1}\gamma_{3}\mathcal{V}_{\{13\}}^{B,lmn} + \gamma_{1}\gamma_{4}\mathcal{V}_{\{14\}}^{B,lmn} + \gamma_{2}\gamma_{3}\mathcal{V}_{\{23\}}^{B,lmn} - \gamma_{2}\gamma_{4}\mathcal{V}_{\{24\}}^{B,lmn} \end{split}$$

We can now proceed to evaluating two-point functions involving these operators

Simulation details

id	β	$N_{\rm s}$	$N_{\rm t}$	κ_u	κ_s	$m_{\pi}[{\rm MeV}]$	$m_{K}\left[MeV\right]$	$m_{\pi}L$	#conf.
H101	3.40	32	96	0.13675962	0.13675962	421	421	5.8	2000
H102	3.40	32	96	0.136865	0.136549339	355	442	4.9	1997
H105	3.40	32	96	0.136970	0.136340790	281	466	3.9	2833
C101	3.40	48	96	0.137030	0.136222041	223	476	4.6	1552

• CLS
$$N_f = 2 + 1$$

- Open boundary conditions in time direction
- Twisted-mass determinant reweighting
- Consistency check at the flavor symmetric point
- Source positions $t_{\rm src} = 30$, 47 and 65

Chiral extrapolation: f^B and f_T^{Σ} , f_T^{Ξ}

•
$$f^{\star} = f^{N\star} = f^{\Sigma\star} = f^{\Xi\star} = f^{\Lambda\star} = f^{\Sigma\star}_T = f^{\Xi\star}_T$$
 is fulfilled exactly
• SU(3) breaking ~ 50%: $f^{\Xi}_T \approx 1.5 f^N$

Fabian Hutzler

Chiral extrapolation: first moments φ_{11}^B and π_{11}^Σ , π_{11}^Ξ

- $\varphi_{11}^{\star} = \varphi_{11}^{N\star} = \varphi_{11}^{\Sigma\star} = \varphi_{11}^{\Xi\star} = \varphi_{11}^{\Lambda\star} = \pi_{11}^{\Sigma\star} = \pi_{11}^{\Xi\star}$ is fulfilled exactly • Very large SU(3) breaking $\sim 200\%$: $\pi_{11}^{\Xi} \approx 3\varphi_{11}^{N}$
- The moment π_{11}^{Σ} changes its sign!

Fabian Hutzler

Chiral extrapolation: first moments $arphi^B_{10}$ and $\pi^{\Lambda^+}_{10}$

- $\varphi_{10}^{\star} = \varphi_{10}^{N\star} = \varphi_{10}^{\Sigma\star} = \varphi_{10}^{\Xi\star} = \varphi_{10}^{\Lambda\star} = \pi_{10}^{\Lambda\star}$ is fulfilled exactly
- Very large SU(3) breaking $\sim 500\%$: $\varphi^{\Lambda}_{10} \approx 6\varphi^{N}_{10}$
- \blacksquare The moment φ_{10}^{Σ} changes its sign!

Fabian Hutzler

Barycentric plots

- Deviations of $[V A]^B$ (top) and T^B (bottom) from asymptotic shape
- \blacksquare From left to right the plots show the baryons N, $\Sigma,$ $\Xi,$ Λ
- $\blacksquare \ B \neq \Lambda:$ shift towards strange quarks and towards the leading quark
- $\blacksquare \ T^{\Lambda}$: asymptotic limit vanishes by construction; also deviations are very small

PART II: Mesons

Fabian Hutzler

Universität Regensburg

Pion Distribution Amplitude

- Symmetry Group: collinear conformal transformations $\mathsf{SL}(2,\mathbb{R})$
- Expansion in Gegenbauer polynomials (analogous to $Y^{lm}(\theta, \varphi)$ with O(3))

The difference ξ of the momentum fractions contains all nontrivial information:

$$\phi(x,\mu^2) = 6x(1-x) \left[1 + \sum_{n=1}^{\infty} a_n(\mu^2) C_n^{3/2}(2x-1) \right]$$
$$\phi(x,\mu\to\infty) = \phi^{\rm as}(x) = 6x(1-x).$$

Odd moments vanish $ightarrow a_2$ first nontrivial Gegenbauer coefficient

Lattice framework

In order to calculate the second moments of the pion DA (n = 2) we define the bare operators:

$$\begin{aligned} \mathcal{P}(x) &= \bar{d}(x)\gamma_5 u(x), \\ \mathcal{A}_{\rho}(x) &= \bar{d}(x)\gamma_{\rho}\gamma_5 u(x), \\ \mathcal{O}_{\rho\mu\nu}^{-}(x) &= \bar{d}(x) \left[\overleftarrow{D}_{(\mu}\overleftarrow{D}_{\nu} - 2\overleftarrow{D}_{(\mu}\overrightarrow{D}_{\nu} + \overrightarrow{D}_{(\mu}\overrightarrow{D}_{\nu} \right] \gamma_{\rho)}\gamma_5 u(x), \\ \mathcal{O}_{\rho\mu\nu}^{+}(x) &= \bar{d}(x) \left[\overleftarrow{D}_{(\mu}\overleftarrow{D}_{\nu} + 2\overleftarrow{D}_{(\mu}\overrightarrow{D}_{\nu} + \overrightarrow{D}_{(\mu}\overrightarrow{D}_{\nu} \right] \gamma_{\rho)}\gamma_5 u(x), \end{aligned}$$

- where D_{μ} is the covariant derivative, which will be replaced by a symmetric discretized version on the lattice.
- Obtain leading twist projection by symmetrizing over all Lorentz indices and subtract all traces. (...), e.g., $\mathcal{O}_{(\mu\nu)} = \frac{1}{2} \left(\mathcal{O}_{\mu\nu} + \mathcal{O}_{\nu\mu} \right) \frac{1}{4} \delta_{\mu\nu} \mathcal{O}_{\lambda\lambda}$.

Pion Distribution Amplitude

Continuum extrapolations in the past not reliable due to big errors:

- *H* Second moment of pion DAs require at least two non-vanishing momentum components, e.g. $\vec{p} = (110)$
- *ff* Additionally: Employing two derivatives considerably deteriorates the signal-to-noise ratio

Momentum Smearing

Momentum Smearing

- \blacksquare For example H105 for $\vec{n}_{\vec{p}}=(110),(101),(011)$
- Each momentum requires 2 inversions for the momentum smearing (6 inversions)
- Additional momenta only require additional Fourier sums for the Wuppertal smearing (1 inversion)

Chiral Extrapolation

Outlook: Position space approach

- Exploratory
- Difficult to access higher moments due to mixing of lower dimensional operators
- compute DA directly by realizing a near light-front situation with a high lattice momentum

$$T_{12} = \langle 0 | \bar{d}(0, \mathbf{y}/2) \Gamma_1 q(0, \mathbf{y}/2) \, \bar{q}(0, -\mathbf{y}/2) \Gamma_2 u(0, -\mathbf{y}/2) | \pi^+ \rangle$$

Outlook: Position space approach

Exploratory

Thank you for your attention!