Pion and Kaon Structure at 12 GeV JLab and EIC

Collaboration with Ian Cloet, Rolf Ent, Roy Holt, Thia Keppel, Kijun Park, Paul Reimer, Craig Roberts, Richard Trotta, Andres Vargas *Thanks to:* Yulia Furletova, Elke Aschenauer and Steve Wood

INT 17-3: Spatial and Momentum Tomography of Hadrons and Nuclei

28 August - 29 September 2017, INT - University of Washington

Emergence of Mass in the Standard Model

- LHC has NOT found the "God Particle" because the Higgs boson is NOT the origin of mass
	- Higgs-boson only produces a little bit of mass
	- Higgs-generated mass-scales explain neither the proton's mass nor the pion's (*near-*)masslessness
	- Proton is massive, *i.e*. the mass-scale for strong interactions is vastly different to that of electromagnetism
	- \triangleright Pion is unnaturally light (but not massless), despite being a strongly interacting composite object built from a valence-quark and valence antiquark
	- \triangleright Kaon is also light (but not massless), heavier than the pion constituted of a light valence quark and a heavier strange antiquark

Slide adapted from Craig Roberts (EICUGM 2017)

 The strong interaction sector of the Standard Model, *i.e*. QCD, is the key to understanding the origin, existence and properties of (almost) all known matter

Origin of Mass of QCD's Pseudoscalar Goldstone Modes

 \Box Exact statements from QCD in terms of current quark masses due to PCAC:

[Phys. Rep. 87 (1982) 77; Phys. Rev. C 56 (1997) 3369; Phys. Lett. B420 (1998) 267]

 $f_{\pi}m_{\pi}^{2} = (m_{\pi}^{C} + m_{\pi}^{C})\rho_{\pi}^{C}$ $f_K m_K^2 = (m_u^{\zeta} + m_s^{\zeta}) \rho_K^{\zeta}$

□ Pseudoscalar masses are generated dynamically $– If $\rho_{\sf p}$ ≠ 0, ${\sf m}_{\pi}$ ² ~ √ ${\sf m}_{\sf q}$$

- The mass of bound states increases as √m with the mass of the constituents
- \triangleright In contrast, in quantum mechanical models, *e.g.*, constituent quark models, the mass of bound states rises linearly with the mass of the constituents
- *E.g.*, in models with *constituent quarks* Q: in the nucleon m_Q ~ 1⁄₃m_N ~ 310 MeV, in the pion $m_Q \sim \frac{1}{2}m_\pi \sim 70$ MeV, in the kaon (with s quark) $m_Q \sim 200$ MeV – This is not real.
- \triangleright In both DSE and LQCD, the mass function of quarks is the same, regardless what hadron the quarks reside in – **This is real**. It is the Dynamical Chiral Symmetry Breaking ($D\chi SB$) that makes the pion and kaon masses light.

Assume D_XSB similar for light particles: If $f_\pi = f_K \approx 0.1$, $\rho_\pi = \rho_K \approx (0.5 \text{ GeV})^2$ @ scale $\zeta = 2 \text{ GeV}$

- $m_\pi^2 = 2.5 \times (m_\mu^2 + m_\mu^2)$; $m_\mu^2 = 2.5 \times (m_\mu^2 + m_\mu^2)$
- \triangleright Experimental evidence: mass splitting between the current s and d quark masses $m_K^2 - m_\pi^2 = (m_s^{\zeta} - m_d^{\zeta}) \frac{\rho^{\zeta}}{f} = 0.225 \,\text{GeV}^2 = (0.474 \,\text{GeV})^2 \qquad m_s^{\zeta} = 0.095 \,\text{GeV}, m_d^{\zeta} = 0.005 \,\text{GeV}$

In good agreement with experimental values

The Role of Gluons in Pions

Pion mass is enigma – cannibalistic gluons vs massless Goldstone bosons

What is the impact of this for gluon parton distributions in pions vs nucleons? One would anticipate a different mass budget for the pion and the proton

Why should you be interested in pions and kaons?

Protons, neutrons, pions and kaons are the main building blocks of nuclear matter We should understand their structure (also mass)

- 1) The pion, or a meson cloud, explains light-quark asymmetry in the nucleon sea
- 2) Pions are the Yukawa particles of the nuclear force but no evidence for excess of nuclear pions or anti-quarks
- 3) Kaon exchange is similarly related to the ΛN interaction correlated with the Equation of State and astrophysical observations
- 4) Mass is enigma cannibalistic gluons vs massless Goldstone bosons

PNM

 $\Delta N + \Delta NN$ (II)

 $\Delta N + \Delta NN$ (I)

AN

 12

 13

R [km]

PSR J0348+0432

PSR J1614-2230

 14

5

 15

Observing Mass (1) : Pion and Kaon Form Factors

Form factors are essential for our understanding of internal hadron structure and the dynamics that bind the most basic elements of nuclear physics

Pion and kaon form factors are of special interest in hadron structure studies

 The *pion* is the lightest QCD quark system and also has a central role in our understanding of the dynamic generation of mass - *kaon* is the next simplest system containing strangeness

Clearest test case for studies of the transition from non-perturbative to perturbative regions

Recent advances and future prospects in experiments

- \triangleright Dramatically improved precision in F_{τ} measurements
- \geq 12 GeV JLab: F_n and exclusive meson studies up to highest possible Q^2 and possible F_{K+} extractions
- Form factor data drive renewed activity on theory side
- - - \triangleright Distribution amplitudes signatures of dynamical chiral symmetry breaking

12 GeV JLab data up to Q²=5-10 GeV² - calculations anticipate that hard QCD's signatures will be quantitatively revealed for pions and kaons

Measurement of π **+ Form Factor**

– CERN SPS used 300 GeV pions to measure form factor up to $Q^2 = 0.25$ GeV²

[Amendolia et al, NPB277,168 (1986)]

– These data used to constrain the pion charge radius: $r_{\pi} = 0.657 \pm 0.012$ fm

 \Box At larger \mathbb{Q}^2 , F_{π^+} must be measured indirectly using the "pion cloud" of the proton in exclusive pion electroproduction: $p(e, e^\prime \pi^{\scriptscriptstyle +})n$ – $\bm{\mathit{LT}}$ separations

- *Select pion pole process:* at small *–t* pole process dominates the longitudinal cross section, σ_l *[L. Favart, M. Guidal, T. Horn, P. Kroll, Eur. Phys. J A 52 (2016) no.6, 158]*
- $-$ *Isolate* $\sigma_{\scriptscriptstyle\! L}$ *-* in the Born term model, F_π^{-2} appears as

$$
\frac{d\sigma_L}{dt} \propto \frac{-t}{(t-m_{\pi}^2)} g_{\pi NN}^2(t) Q^2 F_{\pi}^2(Q^2,t)
$$

[In practice one uses a more sophisticated model]

JLab 12 GeV: F^p **Measurements**

For F_x 2017 status see Week 1 talk

JLab 12 GeV experiments have the potential to access the hard scattering scaling regime quantitatively for the first time – may also provide info on log corrections.

 \triangleright These results would also have implications for nucleon structure interpretation

JLab12: Kaon Electroproduction and Form Factor

For F_K 2017 status see Week 1 talk

 E12-09-011: primary goal L/T separated kaon cross sections to investigate hard-soft factorization and non-pole contributions

E12-09-011spokespersons: T. Horn, G. Huber, P. Markowitz

scheduled to run in 2018/19

[T. Horn, C.D. Roberts, J. Phys. G43 (2016) no.7, 073001]

- \Box Possible K⁺ form factor extraction to highest possible Q^2 achievable at JLab
	- \triangleright Extraction like in the pion case by studying the model dependence at small t
	- \triangleright Comparative extractions of F_r at small and larger t show only modest model
		- o larger t data lie at a similar distance from pole as kaon data

EIC: Pion and Kaon Form Factors

- 1. VR model shows strong dominance of σ _L at small –t at large Q².
- 2. Assume $\sigma_{\rm I}$ dominance
- 3. Measure the π/π^+ ratio to verify it will be diluted (smaller than unity) if $\sigma_{\sf T}$ is not small,

or if non-pole backgrounds are large

- \Box Identification of exclusive $p(e,e^{\prime}\pi^{\text{+}})$ n events
- \Box 10% exp. syst. unc.
- \Box R= σ _L/ σ _T from VR model, and π pole dominance at small t confirmed in ²H π ⁻ π^+ ratios
- \Box 100% syst. unc. in model subtraction to isolate σ_{L}

Adapted from Garth Huber slides (PIEIC2017)

Observing Mass (2): Pion and Kaon PDFs

[From: T. Horn, C.D. Roberts, J. Phys. G43 (2016) no.7, 073001]

- Experimental data on *π* & *K* PDFs obtained in mesonic Drell-Yan scattering from nucleons in heavy nuclei; but not much and it's old: 1980-1989
- Newer data would be welcome:
	- persistent doubts about the Bjorken-*x* ≃1 behavior of the pion's valence-quark PDF
	- single modest-quality measurement of *u ^K(x)/u^π(x)* cannot be considered definitive.
- Approved experiment, using tagged DIS at *JLab 12 GeV*, should contribute to a resolution of pion question; and a similar technique might serve for the kaon.
- Future:
	- new mesonic Drell-Yan measurements at modern facilities (*possible at COMPASS – see S. Platchkov talk at PIEIC2017*) could yield valuable information on *π* and *K* PDFs, as could two-jet experiments at the large hadron collider;
	- *EIC would be capable of providing access to π and K PDFs through measurements of forward nucleon structure functions.*

At some level an old story…

World Data on pion structure function F₂^{π}

Calculable Limits for Parton Distributions

 \Box Calculable limits for ratios of PDFs at $x = 1$, same as predictive power of $x \rightarrow 1$ limits for spin-averaged and spin-dependent proton structure functions (asymmetries)

$$
u_V^K(x) \Big|_{x \to 1} = 0.37
$$
, $\left. \frac{u_V^{\pi}(x)}{\bar{s}_V^K(x)} \right|_{x \to 1} = 0.29$

 \Box On the other hand, inexorable growth in both pions' and kaons' gluon and seaquark content at asymptotic Q^2 should only be driven by pQCD splitting mechanisms. Hence, also calculable limits for ratios of PDFs at *x = 0*, *e.g*.,

$$
\lim_{x \to 0} \frac{u^K(x;\zeta)}{u^\pi(x;\zeta)} \stackrel{\Lambda_{\rm QCD}/\zeta \simeq 0}{\longrightarrow} 1
$$

The inexorable growth in both pions' and kaons' gluon content at asymptotic Q² provides connection to gluon saturation.

Gluon Content in Kaon and Pion

Based on Lattice QCD calculations and DSE calculations:

- \Box Valence quarks carry 2/3 of the kaon's momentum at the light front, at the scale used for Lattice QCD calculations, or roughly 95% at the perturbative hadronic scale
- \Box At the same scale, valence-quarks carry 52% of the pion's light-front momentum, or roughly 65% at the perturbative hadronic scale

Thus, at a given scale, there is far less glue in the kaon than in the pion

Quarks and Gluons in Pions and Kaons

 At low x to moderate x, both the quark sea and the gluons are very interesting.

- \triangleright Are the sea in pions and kaons the same in magnitude and shape?
- \triangleright Is the origin of mass encoded in differences of gluons in pions, kaons and protons, or do they in the end all become universal?

At moderate x, compare pionic Drell-Yan to DIS from the pion cloud

 \triangleright test of the assumptions used in the extraction of the structure function and similar assumptions in the pion and kaon form factors.

 At high x, the shapes of valence u quark distributions in pion, kaon and proton are different, and so are their asymptotic $x \rightarrow 1$ limits

- \triangleright Some of these effects are due to the comparison of a two-versus three-quark system, and a meson with a heavier s quark embedded versus a lighter quark
- \triangleright However, effects of gluons come in as well. To measure these differences would be fantastic.

Landscape for p, π, K structure function after EIC

Proton: much existing from HERA

EIC will add:

- \triangleright Better constraints at large-x
- > Precise F_2 ⁿ neutron SF data

Pion and kaon: only limited data from:

- \triangleright Pion and kaon Drell-Yan experiments
- \triangleright Some pion SF data from HERA

EIC will add large $(x,Q²)$ landscape for both pion and kaon!

Combined Fit to HERA LN and E866 DY Data

 Quality of fit depends on y-range fitted – to reduce model dependence fit up to y_{cut} =0.3 to which data can be described in term of π exchange

 \Box Best fits for largest number of points by t-dependent exponential (and t-monopole) regulators

Extracted Pion Structure Function

■ Stable values of F_2^{π} at 4×10^{-4} ~< x_{π} ~<0.03 from combined fit

 \Box Shape similar to GRS fit to πN Drell-Yan data (for x_{π} >~0.2) but smaller magnitude

Pion/kaon SF – EIC Kinematic Reach

Figure from K. Park

EIC kinematic reach down to x=0.01 or a bit below

World Data on Pion Structure Function F₂^{π}

HERA

Detector Acceptance Simulation Example

22

Electroweak Pion and Kaon Structure Functions

- The Sullivan Process will be sensitive to u and dbar for the pion, and likewise *u* and *sbar* for the kaon.
- Logarithmic scaling violations may give insight on the role of gluon pdfs

 Could we make further progress towards a flavour decomposition?

- Using the Neutral-Current Parity-violating asymmetry A_{PV}
- 2) Determine xF_3 through neutral/charged-current interactions

$$
F_2^{\gamma} = \sum_{q} e_q^2 x (q + \bar{q})
$$

In the parton model: $F_2^{\gamma Z} = 2 \sum e_q g_V^q x (q + \bar{q})$ Use different couplings/weights

longitudinally polarized $e^{\overline{}}$

 $xF_3^{\gamma Z} = 2\sum e_q g_A^q x (q - \bar{q})$ Use isovector response

 $F_2^{W^+} = 2 x (\bar{u} + d + s + \bar{c}) \quad F_3^{W^+} = 2 (-\bar{u} + d + s - \bar{c}) \quad F_2^{W^-} = 2 x (u + \bar{d} + \bar{s} + c) \quad F_3^{W^-} = 2 (u - \bar{d} - \bar{s} + c)$

3) Or charged-current through comparison of electron versus positron interactions

$$
A = \frac{\sigma_R^{\text{CC},e^+} \pm \sigma_L^{\text{CC},e^-}}{\sigma_R^{\text{NC}} + \sigma_L^{\text{NC}}} \qquad A = \frac{G_F^2 Q^4}{32 \pi^2 \alpha_e^2} \left[\frac{F_2^{W^+} \pm F_2^{W^-}}{F_2^{\gamma}} - \frac{1 - (1 - y)^2}{1 + (1 - y)^2} \frac{x F_3^{W^+} \mp x F_3^{W^-}}{F_2^{\gamma}} \right]
$$

Disentangling the Flavour-Dependence (I)

Disentangling the Flavour-Dependence (II)

3) Electroweak pion/kaon SF through comparison of electron versus positron interactions

(GeV2)
300 NERWIG $\frac{\text{N}}{\text{G}}$ 250 10 $10³$ 200 10° $10²$ 10 150 10° 100 $\frac{\theta_{\text{e}}(\text{rad})}{2.5}$ 0.1 0.2 0.3 0.7 0.8 0.9 0.4 0.5 0.6 xBi Gen Theta Phi for proton Gen xBi tSpectator $10⁴$ $10³$ $10²$ 10 **Brady** $20($ 150 $\theta_p(rad)$ 100 1.5 0.5 -3 0.6 0.9 0.1 0.2 0.3 0.4 0.5 0.7 0.8 xBi

NC, 10 GeV(e⁺) x 100 GeV(p)

Summary

- \Box Nucleons and the lightest mesons pions and kaons, are the basic building blocks of nuclear matter. We should know their form factors and structure functions.
- \Box Pion and kaon form factor measurements guide our understanding of the dynamics that bind valence quarks into massive mesons.
- \Box The distributions of quarks and gluons in pions, kaons, and nucleons will be different.
- \Box Is the origin of mass encoded in differences of gluons in pions, kaons and nucleons (at non-asymptotic Q^2)?
- \Box Some effects may be trivial the heavier-mass quark in the kaon "robs" more of the momentum, and the structure functions of pions, kaons and protons at large-x should be different, but confirming these would provide textbook material.
- \Box Using electroweak processes, e.g., through parity-violating probes or neutral vs. charged-current interactions, disentangling flavour dependence seems achievable

JLab 12 GeV: resolve the issue at large-x

- Large x_{Bi} structure of the pion is interesting and relevant
	- \triangleright Pion cloud & antiquark flavor asymmetry
	- \triangleright Nuclear Binding
	- **► Simple QCD state & Goldstone Boson**
- \Box Even with NLO fit and modern parton distributions, pion (1-x) did not agree with pQCD and Dyson-Schwinger $(1-x)^2$
- \Box Soft Gluon Resummation saves the day!
- **□ JLab 12 GeV TDIS experiment can** check at high-x

Off-shellness considerations

S-X Qin, C.Chen, C. Mezrag, C.D. Roberts, arXiv:1702.06100 (2017)

- \Box In the Sullivan process, the mesons in the nucleon cloud are virtual (off-shell) particles
- \Box Recent calculations estimate the effect in the BSE/DSE framework – as long as $\lambda(v)$ is linear in v , the meson pole dominates
	- \triangleright Within the linearity domain, alterations of the meson internal structure can be analyzed through the amplitude ratio
- *Off-shell meson = On-shell meson* for t<0.6 GeV² ($v = 31$) for pions and t<0.9 GeV²(v_s ~3) for kaons

This means that pion and kaon structure functions can be accessed through the Sullivan process

Sullivan process off-shellness corrections

 \Box Like nuclear binding corrections (neutron in deuterium) \Box Bin in t to determine the off-shellness correction □ Pionic/kaonic D-Y

Figure from K. Park

