Pion and Kaon Structure at 12 GeV JLab and EIC

Collaboration with Ian Cloet, Rolf Ent, Roy Holt, Thia Keppel, Kijun Park, Paul Reimer, Craig Roberts, Richard Trotta, Andres Vargas *Thanks to:* Yulia Furletova, Elke Aschenauer and Steve Wood

INT 17-3: Spatial and Momentum Tomography of Hadrons and Nuclei

28 August - 29 September 2017, INT - University of Washington

Emergence of Mass in the Standard Model

- □ LHC has NOT found the "God Particle" because the Higgs boson is NOT the origin of mass
 - Higgs-boson only produces a little bit of mass
 - Higgs-generated mass-scales explain neither the proton's mass nor the pion's (*near*-)masslessness
 - Proton is massive, *i.e.* the mass-scale for strong interactions is vastly different to that of electromagnetism
 - Pion is unnaturally light (but not massless), despite being a strongly interacting composite object built from a valence-quark and valence antiquark
 - Kaon is also light (but not massless), heavier than the pion constituted of a light valence quark and a heavier strange antiquark

Slide adapted from Craig Roberts (EICUGM 2017)

❑ The strong interaction sector of the Standard Model, *i.e.* QCD, is the key to understanding the origin, existence and properties of (almost) all known matter

Origin of Mass of QCD's Pseudoscalar Goldstone Modes

□ Exact statements from QCD in terms of current quark masses due to PCAC: [Phys. Rep. 87 (1982) 77; Phys. Rev. C 56 (1997) 3369; Phys. Lett. B420 (1998) 267]

 $f_{\pi}m_{\pi}^2 = (m_u^{\zeta} + m_d^{\zeta})\rho_{\pi}^{\zeta}$ $f_K m_K^2 = (m_u^{\zeta} + m_s^{\zeta})\rho_K^{\zeta}$

D Pseudoscalar masses are generated dynamically – If $\rho_p \neq 0$, $m_{\pi}^2 \sim \sqrt{m_q}$

- > The mass of bound states increases as \sqrt{m} with the mass of the constituents
- In contrast, in quantum mechanical models, e.g., constituent quark models, the mass of bound states rises linearly with the mass of the constituents
- > *E.g.*, in models with *constituent quarks* Q: in the nucleon $m_Q \sim \frac{1}{3}m_N \sim 310$ MeV, in the pion $m_Q \sim \frac{1}{2}m_{\pi} \sim 70$ MeV, in the kaon (with s quark) $m_Q \sim 200$ MeV This is not real.
- In both DSE and LQCD, the mass function of quarks is the same, regardless what hadron the quarks reside in – This is real. It is the Dynamical Chiral Symmetry Breaking (D_χSB) that makes the pion and kaon masses light.

Assume D_χSB similar for light particles: If $f_{\pi} = f_{K} \approx 0.1$, $\rho_{\pi} = \rho_{K} \approx (0.5 \text{ GeV})^{2}$ @ scale $\zeta = 2 \text{ GeV}$

- > $m_{\pi^2} = 2.5 \times (m_u^{\zeta} + m_d^{\zeta}); m_K^2 = 2.5 \times (m_u^{\zeta} + m_s^{\zeta})$
- > Experimental evidence: mass splitting between the current s and d quark masses $m_K^2 - m_\pi^2 = (m_s^{\zeta} - m_d^{\zeta}) \frac{\rho^{\zeta}}{f} = 0.225 \,\text{GeV}^2 = (0.474 \,\text{GeV})^2 \qquad m_s^{\zeta} = 0.095 \,\text{GeV}, \, m_d^{\zeta} = 0.005 \,\text{GeV}$

In good agreement with experimental values

The Role of Gluons in Pions

Pion mass is enigma – cannibalistic gluons vs massless Goldstone bosons

What is the impact of this for gluon parton distributions in pions vs nucleons? One would anticipate a different mass budget for the pion and the proton

Why should you be interested in pions and kaons?

Protons, neutrons, pions and kaons are the main building blocks of nuclear matter We should understand their structure (also mass)

- 1) The pion, or a meson cloud, explains light-quark asymmetry in the nucleon sea
- 2) Pions are the Yukawa particles of the nuclear force – but no evidence for excess of nuclear pions or anti-guarks
- 3) Kaon exchange is similarly related to the ΛN interaction – correlated with the Equation of State and astrophysical observations
- 4) Mass is enigma – cannibalistic gluons vs massless Goldstone bosons

0.3

1.3

0.0

0.1

0.2

0.1

PNM

PSR J0348+0432

PSR J1614-2230

14

13

R [km]

15

Observing Mass (1) : Pion and Kaon Form Factors

Form factors are essential for our understanding of internal hadron structure and the dynamics that bind the most basic elements of nuclear physics

Pion and kaon form factors are of special interest in hadron structure studies

The pion is the lightest QCD quark system and also has a central role in our understanding of the dynamic generation of mass - kaon is the next simplest system containing strangeness

Clearest test case for studies of the transition from non-perturbative to perturbative regions

Recent advances and future prospects in experiments

- > Dramatically improved precision in F_{π} measurements
- > 12 GeV JLab: F_{π} and exclusive meson studies up to highest possible Q² and possible F_{K+} extractions
- □ Form factor data drive renewed activity on theory side
 - Distribution amplitudes signatures of dynamical chiral symmetry breaking

Rapid acquisition of mass is

Measurement of π^+ Form Factor

- At low Q², $F_{\pi+}$ can be measured directly via high energy elastic π^+ scattering from atomic electrons
 - CERN SPS used 300 GeV pions to measure form factor up to $Q^2 = 0.25 \text{ GeV}^2$

[Amendolia et al, NPB277, 168 (1986)]

- These data used to constrain the pion charge radius: $r_{\pi} = 0.657 \pm 0.012$ fm

□ At larger Q², F_{π^+} must be measured indirectly using the "pion cloud" of the proton in exclusive pion electroproduction: $p(e,e'\pi^+)n - L/T$ separations

- Select pion pole process: at small –t pole process dominates the longitudinal cross section, σ_L
 [L. Favart, M. Guidal, T. Horn, P. Kroll, Eur. Phys. J A 52 (2016) no.6, 158]
 - Isolate σ_L in the Born term model, F_{π}^2 appears as

$$\frac{d\sigma_L}{dt} \propto \frac{-t}{(t-m_\pi^2)} g_{\pi NN}^2(t) Q^2 F_\pi^2(Q^2,t)$$

[In practice one uses a more sophisticated model]

JLab 12 GeV: F_{π} Measurements

For F_{π} 2017 status see Week 1 talk

JLab 12 GeV experiments have the potential to access the hard scattering scaling regime quantitatively for the first time – may also provide info on log corrections.

These results would also have implications for nucleon structure interpretation

JLab12: Kaon Electroproduction and Form Factor

For F_{κ} 2017 status see Week 1 talk

E12-09-011: primary goal L/T separated kaon cross sections to investigate hard-soft factorization and non-pole contributions

E12-09-011spokespersons: T. Horn, G. Huber, P. Markowitz

scheduled to run in 2018/19 \geq

[T. Horn, C.D. Roberts, J. Phys. G43 (2016) no.7, 073001]

Possible K⁺ form factor extraction to highest possible Q² achievable at JLab

 \geq Extraction like in the pion case by studying the model dependence at small t

- Comparative extractions of F_{π} at small \geq and larger t show only modest model dependence
 - larger t data lie at a similar distance Ο from pole as kaon data

EIC: Pion and Kaon Form Factors

- 1. VR model shows strong dominance of σ_L at small –t at large Q².
- 2. Assume σ_L dominance
- 3. Measure the π^{-}/π^{+} ratio to verify it will be diluted (smaller than unity) if σ_{T} is not small,

- Integrated luminosity: L=20 fb⁻¹/yr
- Identification of exclusive p(e,e'π⁺)n events
- 10% exp. syst. unc.
- □ R= σ_L/σ_T from VR model, and π pole dominance at small t confirmed in ²H π^-/π^+ ratios
- □ 100% syst. unc. in model subtraction to isolate σ_L

Adapted from Garth Huber slides (PIEIC2017)

Observing Mass (2): Pion and Kaon PDFs

[From: T. Horn, C.D. Roberts, J. Phys. G43 (2016) no.7, 073001]

- □ Experimental data on π & KPDFs obtained in mesonic Drell-Yan scattering from nucleons in heavy nuclei; but not much and it's old: 1980-1989
- Newer data would be welcome:
 - persistent doubts about the Bjorken- $x \simeq 1$ behavior of the pion's valence-quark PDF
 - single modest-quality measurement of $u^{K}(x)/u^{\pi}(x)$ cannot be considered definitive.
- ❑ Approved experiment, using tagged DIS at JLab 12 GeV, should contribute to a resolution of pion question; and a similar technique might serve for the kaon.
- Future:
 - > new mesonic Drell-Yan measurements at modern facilities (*possible at COMPASS* see S. Platchkov talk at PIEIC2017) could yield valuable information on π and K PDFs, as could two-jet experiments at the large hadron collider;
 - > EIC would be capable of providing access to π and K PDFs through measurements of forward nucleon structure functions.

At some level an old story...

World Data on pion structure function F_2^{π}

Calculable Limits for Parton Distributions

□ Calculable limits for ratios of PDFs at x = 1, same as predictive power of $x \rightarrow 1$ limits for spin-averaged and spin-dependent proton structure functions (asymmetries)

$$\frac{u_V^K(x)}{u_V^\pi(x)}\Big|_{x \to 1} = 0.37, \quad \frac{u_V^\pi(x)}{\bar{s}_V^K(x)}\Big|_{x \to 1} = 0.29$$

□ On the other hand, inexorable growth in both pions' and kaons' gluon and seaquark content at asymptotic Q² should only be driven by pQCD splitting mechanisms. Hence, also calculable limits for ratios of PDFs at x = 0, e.g.,

$$\lim_{x \to 0} \frac{u^K(x;\zeta)}{u^\pi(x;\zeta)} \stackrel{\Lambda_{\rm QCD}/\zeta \simeq 0}{\to} 1$$

The inexorable growth in both pions' and kaons' gluon content at asymptotic Q² provides connection to gluon saturation.

Gluon Content in Kaon and Pion

Based on Lattice QCD calculations and DSE calculations:

- Valence quarks carry 2/3 of the kaon's momentum at the light front, at the scale used for Lattice QCD calculations, or roughly 95% at the perturbative hadronic scale
- At the same scale, valence-quarks carry 52% of the pion's light-front momentum, or roughly 65% at the perturbative hadronic scale

Thus, at a given scale, there is far less glue in the kaon than in the pion

Quarks and Gluons in Pions and Kaons

□ At low x to moderate x, both the quark sea and the gluons are very interesting.

- > Are the sea in pions and kaons the same in magnitude and shape?
- Is the origin of mass encoded in differences of gluons in pions, kaons and protons, or do they in the end all become universal?

□ At moderate x, compare pionic Drell-Yan to DIS from the pion cloud

test of the assumptions used in the extraction of the structure function and similar assumptions in the pion and kaon form factors.

□ At high x, the shapes of valence u quark distributions in pion, kaon and proton are different, and so are their asymptotic $x \rightarrow 1$ limits

- Some of these effects are due to the comparison of a two- versus three-quark system, and a meson with a heavier s quark embedded versus a lighter quark
- However, effects of gluons come in as well. To measure these differences would be fantastic.

Landscape for p, π , K structure function after EIC

Proton: much existing from HERA

EIC will add:

- Better constraints at large-x
- \succ Precise F_2^n neutron SF data

Pion and kaon: only limited data from:

- Pion and kaon Drell-Yan experiments
- Some pion SF data from HERA

EIC will add large (x,Q^2) landscape for both pion and kaon!

Combined Fit to HERA LN and E866 DY Data

□ Quality of fit depends on y-range fitted – to reduce model dependence fit up to $y_{cut}=0.3$ to which data can be described in term of π exchange

Best fits for largest number of points by t-dependent exponential (and t-monopole) regulators

Extracted Pion Structure Function

 \Box Stable values of F_2^{π} at 4x10⁻⁴ ~<x_{π} ~<0.03 from combined fit

 \Box Shape similar to GRS fit to π N Drell-Yan data (for $x_{\pi} > 0.2$) but smaller magnitude

Pion/kaon SF – EIC Kinematic Reach

Figure from K. Park

EIC kinematic reach down to x=0.01 or a bit below

World Data on Pion Structure Function F_2^{π}

HERA

Detector Acceptance Simulation Example

Electroweak Pion and Kaon Structure Functions

- The Sullivan Process will be sensitive to u and dbar for the pion, and likewise *u* and *sbar* for the kaon.
- Logarithmic scaling violations may give insight on the role of gluon pdfs

Could we make further progress towards a flavour decomposition?

- Using the Neutral-Current Parity-violating asymmetry A_{PV}
- 2) Determine xF₃ through neutral/charged-current interactions

$$F_2^{\gamma} = \sum_q e_q^2 x \left(q + \bar{q} \right)$$

In the parton model: $F_2^{\gamma Z} = 2 \sum_{q}^{q} e_q g_V^q x (q + \bar{q})$ Use different couplings/w $x F_3^{\gamma Z} = 2 \sum_{q}^{q} e_q g_A^q x (q - \bar{q})$ Use isovector response

Use different couplings/weights

 $F_2^{W^+} = 2x(\bar{u} + d + s + \bar{c}) \quad F_3^{W^+} = 2(-\bar{u} + d + s - \bar{c}) \quad F_2^{W^-} = 2x(u + \bar{d} + \bar{s} + c) \quad F_3^{W^-} = 2(u - \bar{d} - \bar{s} + c)$

Or charged-current through comparison of electron versus positron interactions 3)

$$A = \frac{\sigma_R^{\text{CC},e^+} \pm \sigma_L^{\text{CC},e^-}}{\sigma_R^{\text{NC}} + \sigma_L^{\text{NC}}} \qquad \qquad A = \frac{G_F^2 Q^4}{32 \pi^2 \alpha_e^2} \left[\frac{F_2^{W^+} \pm F_2^{W^-}}{F_2^{\gamma}} - \frac{1 - (1 - y)^2}{1 + (1 - y)^2} \frac{x F_3^{W^+} \mp x F_3^{W^-}}{F_2^{\gamma}} \right]$$

Disentangling the Flavour-Dependence (I)

Disentangling the Flavour-Dependence (II)

3) Electroweak pion/kaon SF through comparison of electron versus positron interactions

(GeV2) HERWIG 8 250 10 10³ 200 10 10² 10 150 10 100 2.5 0 (nad) 0.1 0.2 0.3 0.7 0.8 0.9 0.6 xBi Gen_Theta_Phi for proton Gen xBj tSpectator 104 10³ 10 10² 10 20 15 0.(rad) 100 1.5 0.5 -3 0.9 0.2 0.3 0.6 0.7 0.8 0.1 0.4 0.5 ò xBj

NC, 10 GeV(e⁺) x 100 GeV(p)

Summary

- Nucleons and the lightest mesons pions and kaons, are the basic building blocks of nuclear matter. We should know their form factors and structure functions.
- Pion and kaon form factor measurements guide our understanding of the dynamics that bind valence quarks into massive mesons.
- The distributions of quarks and gluons in pions, kaons, and nucleons will be different.
- □ Is the origin of mass encoded in differences of gluons in pions, kaons and nucleons (at non-asymptotic Q²)?
- Some effects may be trivial the heavier-mass quark in the kaon "robs" more of the momentum, and the structure functions of pions, kaons and protons at large-x should be different, but confirming these would provide textbook material.
- Using electroweak processes, e.g., through parity-violating probes or neutral vs. charged-current interactions, disentangling flavour dependence seems achievable

JLab 12 GeV: resolve the issue at large-x

- Large x_{Bi} structure of the pion is interesting and relevant
 - Pion cloud & antiquark flavor asymmetry
 - Nuclear Binding
 - Simple QCD state & Goldstone Boson
- Even with NLO fit and modern parton distributions, pion (1-x) did not agree with pQCD and Dyson-Schwinger (1-x)²
- Soft Gluon Resummation saves the day!
- □ JLab 12 GeV TDIS experiment can check at high-x

Off-shellness considerations

S-X Qin, C.Chen, C. Mezrag, C.D. Roberts, arXiv:1702.06100 (2017)

- □ In the Sullivan process, the mesons in the nucleon cloud are virtual (off-shell) particles
- □ Recent calculations estimate the effect in the BSE/DSE framework as long as $\lambda(v)$ is linear in v, the meson pole dominates
 - Within the linearity domain, alterations of the meson internal structure can be analyzed through the amplitude ratio
- □ Off-shell meson = On-shell meson for t<0.6 GeV² (v =31) for pions and t<0.9 GeV²(v $_{s}$ ~3) for kaons

This means that pion and kaon structure functions can be accessed through the Sullivan process

Sullivan process off-shellness corrections

Like nuclear binding corrections (neutron in deuterium) Bin in t to determine the off-shellness correction Pionic/kaonic D-Y

Figure from K. Park

