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Overview comments

✦ Present an implementation combining TMD factorization and collinear 
factorization for studying nucleon structure in SIDIS 

✦ This entails a modification of the so called “W+Y” construction of the 
SIDIS cross section  

✦  Address “standard matching prescription” traditionally used in CSS 
formalism relating low & high qT behavior cross section @ moderate Q 

Phys.Rev. D 94 (2016) J. Collins, L.Gamberg, A. Prokudin, N. Sato, T. Rogers, B. Wang



✦ Addressing the role of  so called “Y  term “ matching of low and high qT 
behavior of cross section @ moderate Q 

✦ In progress: an extended treatment transversely polarized case, the Sivers Effect 

✦ We are able to recover the well-known relations between TMD and collinear 
quantities one expects from the parton model. 

✦ We recover the LO collinear twist 3 result from a weighted qT integral of the 
differential cross section and derive the well known relation between the TMD Sivers 
function and the collinear twist 3 Qiu Sterman function 

✦ Collins Soper Sterman NPB 1985, Altarelli et al, NPB 1985 

✦ Bozzi, Catani et al. NPB 2006, JHEP 2015

✦ Davies Webber, Stirling, NPB 1985,  Arnold and Kauffman NPB 1991

✦ A. Bacchetta, D. Boer, M. Diehl, and P. J. Mulders, JHEP (2008)

✦ Boglione, Gonzoles, Melis, Prokudin JHEP 2014

✦ Phys.Rev. D 94 (2016) J. Collins, L.Gamberg, A. Prokudin, N. Sato, T. Rogers, B. Wang

Overview comments

✦ Transverse case,  Ji et al. 2006, Kang et al. 2011, Eguchi et al. 2007 … 
✦ new …L.Gamberg, A. Metz, D. Pitonyak,  A. Prokudin, T. Rogers  … 2017 



Overview comments

✦ There are a number of pieces to this: 

✦ From matching cross section point by point in qT   

(especially @ relatively low Q) 

✦ To improved methods relating TMD & collinear factorization for unpolz. 

✦ To relating the twist 2 and twist 3 formulations of TSSAs



The  “W +Y” prescription to describing the qT dependent cross section now being 
applied to SIDIS in the language of TMD factorization has its origin in the study of 
generic high mass systems (vector bosons, Higgs particles, . . . ) produced in Drell Yan 
collisions (e.g. at the Tevatron and now at the LHC)

✦ CollinsSoperSterman NPB 1985, 

✦ Altarelli et al, NPB 1984 

✦ Davies Webber, Stirling, NPB 1985,  

✦ Arnold and Kauffman NPB 1991

✦ Nadolsky, Stump, Yuan  zPRD 2000

✦ J.-W. Qiu, Zhang, PRL 2001,

✦ Berger, J.-W. Qiu, PRD 2003

✦ A. Bacchetta, D. Boer, M. Diehl, and P. J. Mulders, JHEP 
(2008)

✦ Boglione, Gonzoles, Melis, Prokudin JHEP 2014

✦ Bozzi, Catani et al. NPB 2006, JHEP 2015 …

✦ Collins, Gamberg, Prokudin, Sato, Rogers, Wang, PRD 
(2016)
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e.g., to obtain a precise measurement of the W mass it is important to have accurate 
theoretical calculations of the W and Z bosons qT spectra (…talk of Andrea Signori)

In the large-qT region (qT ∼ mV ), where the transverse momentum is of the order of the 
vector boson mass mV, one applies conventional perturbation theory to get at the qT  

dependent cross section QCD corrections are known up to O(αS
2 ) and in some case 

beyond…
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However, the bulk of the vector boson cross section is produced in small-qT region     
(qT ≪ mV ), where reliability of the fixed-order expansion is spoiled by the presence of 

large logarithmic corrections,  αS
n (m2

V /qT
2 ) lnm(m2

V /qT
2 ) of soft & collinear origin
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To obtain reliable predictions, these logarithmically-enhanced terms have to be evaluated 
and systematically “resummed" to all orders in perturbation theory

For large energy and Q2  the “resummed” and fixed-order calculations, valid at small and 
large  qT , respectively, can be consistently matched at intermediate values of qT  to 
achieve a uniform theoretical accuracy for the entire range of transverse momenta 

 

However at  lower phenomenologically interesting values of Q, neither of                         
the ratios               or                 are necessarily very small and matching can be 
problematic

It is this matching that I will focus on in the context of TMD factorization physics and its 
connection to collinear limit.

In recent years, the resummation of small-qT logarithms has been reformulated by using 
SCET & and TMD factorization

qT /Q m/qT

Review of Resummation Last week 9/22/17



Review of Resummation

At large transverse momentum qT  one calculates the cross section 
for W & Z production  by factorized conventional pert. theory

du

dqT

P. B. Ar nol d, R. P. Kauf f man / WandZpr oduct i on 383

Fi g. 1 . Some exampl es of Feynman di agr ams cont r i but i ng t o Wor Zpr oduct i on at non- zer o qT: ( a, d)
, qq - wg, ( b) qg - Wq, ( c) qq- Wgg.

At l ow qT, however , t he conver gence of t he per t ur bat i on ser i es det er i or at es.
The domi nant cont r i but i ons t o eq. ( 1. 1) have t he f or m
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wher e Q2 i s t he squar ed W- or Z- mass. Thi s i s known as t he l eadi ng- l ogar i t hm
appr oxi mat i on t o da/ dqT. The conver gence of t he ser i es i s gover ned by
as l n2( Q2/ q-2T) r at her t han si mpl y as . At suf f i ci ent l y l ow qT, as l n2( Q2/ q-2T) wi l l be
l ar ge even when as i s smal l . The l ogar i t hms ar i se because ever y f act or of as
cor r esponds t o t he addi t i on of ei t her a r eal or vi r t ual gl uon i n di agr ams, and each
gl aon pot ent i al l y has bot h mass and col l i near i nf r ar ed si ngul ar i t i es . Bot h si ngul ar i -
t i es ar e l ogar i t hmi c and, f or t he i ncl usi ve di st r i but i on, ar e ef f ect i vel y cut cuf f by t he
t ot al t r ansver se moment umqT.

That t he convent i onal per t ur bat i ve expr essi on f or du/ dqT must go awr y at ver;
smal l qT may al so be not ed f r omt he over al l f act or of 11q.2T i n ( 1 . 2) . The i nt egr al
over qT i s t her ef or e i nf i ni t e. For mal l y, t he di ver gence i s cancel l ed by a negat i ve
del t a f unct i on si ngul ar i t y at t he of i gi n. By pl aci ng an ar bi t r ar i l y smal l cut on qT,
however , one can st i l l f or mal l y obt ai n an ar bi t r ar i l y l ar ge cr oss sect i on . Thi s
unphysi cal r esul t ar i ses i n any f i ni t e or der of convent i onal per t ur bat i on t heor y.

For t unat el y, t he coef f i ci ent s v i of t he l eadi ng- l ogar i t hmappr oxi mat i on ( 1 . 2) ar e
not i ndependent and i t i s possi bl e t o sumt he ser i es exact l y so t hat i t may be
appl i ed even when as l n2( Q2/ q2T) i s l ar ge. I n par t i cul ar , al l t he Vi may be
expr essed i n t er ms of t , , . The r esul t of summi ng t he ser i es cur es t he di ver gence as

76 G. Bozzi et al. / Nuclear Physics B 737 (2006) 73–120

is given in Section 2.3. Section 2.4 is devoted to the finite component of the cross section. In
Section 3 we apply the resummation formalism to the production of the SM Higgs boson at the
LHC. In Section 4 we draw our conclusions. In Appendix A we discuss the details of the ex-
ponentiation in the general multiflavour case. In Appendix B we illustrate the calculation of the
Bessel integrals required in the computation of the perturbative expansion of the resummed cross
section.

2. Transverse-momentum resummation

The formalism [1,33] that we use to compute the qT distribution of the Higgs boson applies
to more general hard-scattering processes. Therefore, we describe it in general terms.

2.1. The resummation formalism: from small to large values of qT

We consider the inclusive hard-scattering process

(1)h1(p1) + h2(p2) → F(M,qT ) + X,

where the collision of the two hadrons h1 and h2 with momenta p1 and p2 produces the trig-
gered final-state system F , accompanied by an arbitrary and undetected final state X. We denote
by

√
s the centre-of-mass energy of the colliding hadrons (s = (p1 + p2)

2 ≃ 2p1p2). The ob-
served final state F is a generic system of non-QCD partons such as one or more vector bosons
(γ ∗,W,Z, . . .), Higgs particles, Drell–Yan (DY) lepton pairs and so forth. We do not consider
the production of strongly interacting particles (hadrons, jets, heavy quarks, . . . ), since in this
case the resummation formalism of small-qT logarithms has not yet been fully developed.
Throughout the paper we limit ourselves to considering the case in which only the total in-

variant mass M and transverse momentum qT of the system F are measured. According to the
QCD factorization theorem (see Ref. [53] and references therein), the corresponding transverse-
momentum differential cross section1 dσ̂F /dq2T can be written as

dσF

dq2T
(qT ,M, s)

(2)

=
∑

a,b

1∫

0

dx1

1∫

0

dx2 fa/h1

(
x1,µ

2
F

)
fb/h2

(
x2,µ

2
F

)dσ̂Fab

dq2T

(
qT ,M, ŝ;αS(µ2R),µ2R,µ2F

)
,

where fa/h(x,µ2F ) (a = qf , q̄f , g) are the parton densities of the colliding hadrons at the
factorization scale µF , dσ̂Fab/dq2T are the partonic cross sections, ŝ = x1x2s is the partonic
centre-of-mass energy, and µR is the renormalization scale. Throughout the paper we use parton
densities as defined in the MS factorization scheme, and αS(q

2) is the QCD running coupling in
the MS renormalization scheme.
The partonic cross section is computable in QCD perturbation theory as a power series ex-

pansion in αS. We assume that at the parton level the system F is produced with vanishing qT

(i.e., with no accompanying final-state radiation) in the lowest-order approximation, so that the

1 To be precise, when the system F is not a single on-shell particle of massM , what we denote by dσ̂F /dq2T is actually
the differential cross section M2 dσ̂F /dM2 dq2T .
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At low qT , however, the convergence of the perturbation series 
deteriorates as dominant contributions have the form 

The convergence of the series is governed by                rather 
than simply 

du

dqT
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appl i ed even when as l n2( Q2/ q2T) i s l ar ge. I n par t i cul ar , al l t he Vi may be
expr essed i n t er ms of t , , . The r esul t of summi ng t he ser i es cur es t he di ver gence as

Fortunately, the coefficients vi of the “leading-logarithm” 
approximation are not independent and it is possible to sum the 
series exactly so that it may be applied even when                is large
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Fixed order theory calculation “asymptotically” 
diverges at low qT cannot by itself describe data

du

dqT
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This reorganization and resummation was carried out by 
Collins and Soper in b space;  the result is

 … TMD factorization
This expression contains the OPE on the Fourier 
transforms of the TMDs with soft gluon resummation in 
exponent.  We will unpack this! 

From Resummation to CSS

✦ CSS NPB 1985

✦ Collins Soper, NPB 1982



“resummation” Soft gluons

P

Ph

q

p

k

S

∆

Φ

Small qT effects factorize into the Soft Factor

Associated with rapidity divergences 
Effects factorizes into the Soft Factor

Switch now to SIDIS ✦ Nadolsky Stump C.P. Yuan PRD 1999 



Y-term & Matching

In full QCD, the auxiliary parameters       and      are exactly  arbitrary 
and this is reflected in the the Collins-Soper (CS) equations for the TMD 
PDF, and the renormalization group (RG) equations

  

JCC Cambridge Press 2011,  Collins arXiv: 1212.5974,  Collins, Gamberg, Prokudin, Roger, Sato, Wang PRD 2016

µ ⇣



Factorized Evolved TMDs

• Separate  small bT  -Perturbative      

• & Large bT -non-perturbative 

b⇤(bT ) =

s
b2
T

1 + b2
T

/b
max



Formalism expresses evolution of TMDS  via OPE  in terms of collinear 
pdfs in b-space

F̃UU (x, z, b,Q
2) = HUU (Q,µ = Q)

X

q

e2q f̃
q
1 (x, b, µ, ⇣F )D̃

q
1(zh, b, µ, ⇣D)

= HUU (Q,µ = Q)
X

q

e2q f̃
q
1 (x, b⇤, µ, ⇣F )D̃

q
1(zh, b⇤, µ, ⇣D)e�Spert(b⇤,Q)�SNP

UU (b,Q)

= HUU (Q,µ = Q)
X

q

e2q C
SIDIS
q i ⌦ f̃ i

1(x, µb)Ĉ
SIDIS
j q ⌦ D̃q

h/j(x, µb)e
�Spert(b⇤,Q)�SNP

UU (b,Q)

Evolution of Collinear PDFs and multiparton correlation 
functions relevant  single transverse-spin asymmetry 
through DGLAP and its generalization  

Summary of  elements of  TMD factorization



With                  as hard scale, the b dependence of TMDs is calculated in 
perturbation theory and related to their collinear parton distribution (PDFs), 
fragmentation functions (FFs), or multiparton correlation functions , … OPE

where SNPðQ; bÞ is defined as the difference from the
original form factor and the perturbative one. This differ-
ence should vanish as b → 0, i.e., in the perturbative region,
and thus SNPðQ; bÞ has the following generic form:

SNPðQ; bÞ ¼ g2ðbÞ lnQ=Q0 þ g1ðbÞ: ð30Þ

The nonperturbative generic functions g2 and g1 have very
unique interpretations. In particular g2 includes the infor-
mation on the large b behavior of the evolution kernel ~K.
This function does not depend on the particular process; it
does not depend on the scale and has no dependence on
momentum fractions xB, z. This contribution should be
parametrized phenomenologically, and an often-used para-
metrization is

g2ðbÞ ¼ g2b2; ð31Þ

which proved to be very reliable to describe Drell-Yan data
and W%; Z boson production in the BLNY type of para-
metrizations [37]. This Gaussian-type parametrization
suggests that the large b region is strongly suppressed
[39] and in principle can be unreliable to describe data from
lower energies which are more sensitive to moderate-to-
high values of b. Other parametrizations were proposed in
Refs. [39] and [44]. For instance that of Ref. [44] has the
form

g2ðbÞ ¼ g2 ln
!
b
b&

"
; ð32Þ

and allows us to describe simultaneously unpolarized
multiplicities from SIDIS measurements by HERMES,
low energy Drell-Yan as well as Z boson production up
to LHC energies. In this paper we will follow the para-
metrization of Ref. [44] for g2ðbÞ.
The function g1ðbÞ contains information on the intrinsic

nonperturbative transverse motion of bound partons; in
case of a distribution TMD, it depends on the type of
hadron and quark flavor as well as potentially on xB. In case
of a fragmentation TMD, it can depend on zh and the type
of the hadron produced and quark flavor. In other words,
g1ðbÞ is tied to the particular TMD. Parameters in functions
g2ðbÞ and g1ðbÞ depend on the cutoff value bmax in case b&
prescription is used. The nonperturbative factors could
be also defined using different prescriptions, such as, for
example, matching to perturbative form factors of Ref. [75]
or using the complex b plane integration method of
Ref. [76]. In this paper we use the standard CSS b&
prescription method that allows us to compare easily with
existing phenomenology.
Therefore, with the TMD evolution, TMDs can be

expressed as [22,56,57],

~fqðsubÞ1 ðxB; b;Q2; QÞ ¼ e−
1
2SpertðQ;b&Þ−S

f1
NPðQ;bÞ ~F qðαsðQÞÞCq←i ⊗ fi1ðxB; μbÞ; ð33Þ

~DðsubÞ
q ðzh; b;Q2; QÞ ¼ e−

1
2SpertðQ;b&Þ−S

D1
NP ðQ;bÞ ~DqðαsðQÞÞĈj←q ⊗ Dh=jðzh; μbÞ; ð34Þ

where we explicitly embed the scheme dependence of
TMDs from Eqs. (18) and (19) in the coefficients ~F q and
~Dq. Details on these functions are given in Ref. [57]. In the
Ji-Ma-Yuan scheme,

~F q ¼ 1þ αs
2π

CF

#
ln ρ −

1

2
ln2ρ −

π2

2
− 2

$
; ð35Þ

~Dq ¼ 1þ αs
2π

CF

#
ln ρ − 1

2
ln2ρ − π2

2
− 2

$
; ð36Þ

while in the Collins-11 scheme, ~F q ¼ 1þOðα2sÞ and
~Dq ¼ 1þOðα2sÞ. The final result for the structure function
is ρ independent for the Ji-Ma-Yuan scheme, so we set
ρ ¼ 1. In Eqs. (33) and (34), ⊗ represents the convolution
in the momentum fraction of x or z,

Cq←i ⊗ fi1ðxB; μbÞ≡
X

i

Z
1

xB

dx
x
Cq←i

!
xB
x
; μb

"
fi1ðx; μbÞ;

ð37Þ

Ĉj←q⊗Dh=jðzh;μbÞ≡
X

j

Z
1

zh

dz
z
Ĉj←q

!
zh
z
;μb

"
Dh=jðz;μbÞ:

ð38Þ

The same convolutions will be used for transversity and
Collins fragmentation functions with appropriate coeffi-
cient functions later in the paper. The above coefficient
functions are

Cq←q0ðx; μbÞ ¼ δq0q

#
δð1 − xÞ þ αs

π

!
CF

2
ð1 − xÞ

"$
; ð39Þ

Cq←gðx; μbÞ ¼
αs
π
TRxð1 − xÞ; ð40Þ
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TMD evolution in a nut shell

Wilson coefficient Collinear PDF

For transversity and helicity TMDs: Bacchetta-Prokudin 2013

Taking into account Wilson coefficients is very important!
Large K factors of collinear computations between LO and NLO!

For Collins function (relation to twist-3 function):    Yuan-Zhou 2009, Kang 2011

In future also gluon functions will be important

For gluon twist-3 function:     Dai-Kang-Prokudin-Vitev 2014

Summary of  elements of  TMD factorization



TMD factorization & evolution from  b-space rep of SIDIS cross section 
interpret as a multipole expansion in terms of              conjugate 

J
H
E
P
1
0
(
2
0
1
1
)
0
2
1

The functions f̃ , D̃, f̃ (n) and D̃(n) are real valued and f̃ (0) = f̃ , D̃(0) = D̃. Taking the

“asymptotic limit” |bT | → 0 on the right hand side of eqs. (2.19), we formally obtain the

conventional moments of the TMD PDFs and TMD FFs, f (n)(x) and D(n)(z) respectively,

f̃ (n)(x, 0) =

∫
d2pT

(
p2

T

2M2

)n

f(x,p2
T ) ≡ f (n)(x) ,

D̃(n)(z, 0) =

∫
d2KT

(
K2

T

2z2M2
h

)n

D(x,K2
T ) ≡ D(n)(z). (2.20)

Thus we find that the derivatives in bT -space are directly related to moments of TMD

PDFs and FFs. Finally we re-write the SIDIS cross section of ref. [8] in the γ∗P center

of mass frame with the proton three-momentum pointing in the negative z-direction (so

called Trento conventions [22]), as

dσ

dxB dy dφS dzh dφh |P h⊥|d|P h⊥|
=

α2

x
B
yQ2

y2

(1 − ε)

(
1 +

γ2

2x
B

) ∫
d|bT |
(2π)

|bT |
{

J0(|bT ||P h⊥|)FUU,T + εJ0(|bT ||P h⊥|)FUU,L

+
√

2 ε(1 + ε) cosφh J1(|bT ||P h⊥|)Fcos φh
UU + ε cos(2φh)J2(|bT ||P h⊥|)F

cos(2φh)
UU

+ λe

√
2 ε(1 − ε) sin φh J1(|bT ||P h⊥|)F sin φh

LU

+ S∥

[√
2 ε(1 + ε) sin φh J1(|bT ||P h⊥|)F sin φh

UL + ε sin(2φh)J2(|bT ||P h⊥|)F sin 2φh
UL

]

+ S∥λe

[√
1 − ε2 J0(|bT ||P h⊥|)FLL +

√
2 ε(1 − ε) cos φh J1(|bT ||P h⊥|)Fcos φh

LL

]

+ |S⊥|
[
sin(φh − φS)J1(|bT ||P h⊥|)

(
F sin(φh−φS)

UT,T + εF sin(φh−φS)
UT,L

)

+ ε sin(φh + φS)J1(|bT ||P h⊥|)F
sin(φh+φS)
UT

+ ε sin(3φh − φS)J3(|bT ||P h⊥|)F
sin(3φh−φS)
UT

+
√

2 ε(1 + ε) sin φS J0(|bT ||P h⊥|)F sin φS

UT

+
√

2 ε(1 + ε) sin(2φh − φS)J2(|bT ||P h⊥|)F
sin(2φh−φS)
UT

]

+ |S⊥|λe

[√
1 − ε2 cos(φh − φS)J1(|bT ||P h⊥|)F

cos(φh−φS)
LT

+
√

2 ε(1 − ε) cos φS J0(|bT ||P h⊥|)Fcos φS

LT

+
√

2 ε(1 − ε) cos(2φh − φS)J2(|bT ||P h⊥|)F
cos(2φh−φS)
LT

]}
(2.21)

The structure of the cross section is what one gets from a multipole expansion in bT -

space followed by a Fourier transform, see appendix B. Each of the structure functions

F ···
XY,Z in bT -space corresponds to the Hankel (or Fourier-Bessel) transform of the corre-

sponding structure function F ···
XY,Z in the usual momentum space representation of the cross

section. The combinations sin(nφh + . . .)Jn(|bT ||P h⊥|) and cos(nφh + . . .)Jn(|bT ||P h⊥|)

– 7 –

P h�bT [GeV�1]

Boer, Gamberg, Musch, Prokudin,  
JHEP (2011) 

F sin(�h��S)
UT,T = �P[f̃?(1)

1T D̃1]

F sin(�h+�S)
UT = �P[h̃1H̃

?(1)
1 ]



Matching TMD & large qT cross section 

• With this insight on connection of TMD 
factorization and collinear/FO factorization 
theorems, one can study matching of large qT 
cross section & the TMD 

✦ Collins Soper Sterman NPB 1982

✦ A. Bacchetta, D. Boer, M. Diehl, and P. J. Mulders, JHEP (2008)

✦ Boglione, Gonzalez, Melis, Prokudin JHEP 2014

✦ Phys.Rev. D 94 (2016) J. Collins, L.Gamberg, A. Prokudin, N. Sato, T. Rogers, B. Wang

✦ new …Gamberg,  Metz, Pitonyak,  Prokudin, Rogers  … 2017 
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2bT e
ibT ·PT

F̃j/H1
(x, bT ;µ, ⇣1) D̃H2/j0(z, bT ;µ, ⇣2) + YSIDIS

Y-term & Matching

The Y term ???Remainder/correction ???

JCC Cambridge Press 2011,  Collins arXiv: 1212.5974,  Collins, Gamberg, Prokudin, Roger, Sato, Wang PRD 2016

Last week 9/22/17



Consider the full qT spectrum of the DY process: one resums the low qT 
contribution to get sensible result @ low qT: but we still have the FO which 
describes reasonably well the large qT CS.

Should we just add the FO and the W term? 

JCC Cambridge Press 2011,  Collins arXiv: 1212.5974,  Collins, Gamberg, Prokudin, Roger, Sato, Wang PRD 2016

d�

dP

2
T

/
X

jj0

Hjj0, SIDIS(↵s(µ), µ/Q)

Z
d

2bT e
ibT ·PT

F̃j/H1
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Y-term & Matching Last week 9/22/17



  

If we do we double count  

We add & subtract out the double counting such that the cross section is 
matched (SIDIS,DY, e+ e-) in the “overlap region”:Designed s.t. valid to leading 
order in m/Q uniformly in qT (see role of “approximations” in TMD factorization) 

JCC Cambridge Press 2011,  Collins arXiv: 1212.5974,  Catani et al. NPB 06, 15, Collins, Gamberg, Prokudin, Roger, 
Sato, Wang PRD 2016 ……
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Y-term & Matching



“Matching-1”  W + Y-schematic

O(m) ⌧ qT ⌧ O(Q)

qT . O(m) qT & O(Q) (393)

Y+term(
Cross(sec&on(doesn’t((
factorize(into(TMD(
func&ons(

10"

W+term(

d
�

d
Q

2
d
x
d
z
d
2
P

h
T

PhT

W + Y 

d�

dQ2 dx dz d2P hT
= W + Y + O

✓
m

Q

◆

Fun(stuff(

note PhT  =  zqT

• Was designed with the aim to have a formalism that is valid to leading power 
in m/Q uniformly in qT, where m is a typical hadronic mass scale 

• and where there is a broad intermediate range of transverse momentum 
characterized by    

From Ted Rogers
      Implementations/studies 

✦ Nadolsky Stump C.P. Yuan PRD 1999 HERA data 

✦ Y. Koike, J. Nagashima, W. Vogelsang NPB (2006) eRHIC

m ⌧ qT ⌧ Q

Last week 9/22/17



Comments Message

✦ The standard W + Y prescription was arranged to apply for large Q situations where there 
is a broad range of transverse momentum s.t. m << qT <<Q 

✦ That is where qT/Q is small s.t. TMD factorization is valid & … 

✦ m/qT is sufficiently small (i.e. qT ~ Q)  s.t. collinear factorization is valid 

✦ N.B.  keeping full accuracy when m << qT <<Q, give rise to situation where both pure TMD 
and pure collinear factorization have degraded accuracy “outside design regions” 

✦ TMD factorization degrade as  qT increases qT/Q ~ O(1) or qT ~Q    

✦ Other hand, as qT  decreases,  m /qT ~ O(1) or  qT ~ m    

✦ Generally get results valid over all qT  need to combine info TMD & collinear factorization
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A unified picture for Drell-Yan (leading QT/Q)
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QT
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TMD
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Matching: A unified picture of TMD & conventional FO factorization 
over the entire range (“point by point”) in qT for SIDIS/Drell Yan
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Mar 29, 2011 Zhongbo Kang, RBRC/BNL

A unified picture for Drell-Yan (leading QT/Q)
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Matching: A unified picture of TMD & conventional FO factorization 
over the entire range (“point by point”) in qT for SIDIS/Drell Yan



Q� QT � �QCD
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Mar 29, 2011 Zhongbo Kang, RBRC/BNL

A unified picture for Drell-Yan (leading QT/Q)

8

QT
QT QΛQCD <<<<

TMD Collinear/twist-3
Q� QT � �QCD

Intermediate QT

A unified picture of TMD and Collinear SIDIS/Drell Yan



• Same mechanism in both approaches ISI/FSI ???

• Explore role parton model processes in twist-2&3  approaches      
Gamberg,  Kang, PLB(2010,2011,2012)  Sivers & Collins, Gamberg, Kang, Prokudin PRL2013 …

• Or just match the fixed order to the TMD twist-2 contribution which dominates  
qT~Q   Collins TMD formalism                  = W+Y  Collins, Gamberg, Prokudin, Rogers, Sato, Wang PRD 2016

Q� QT � �QCD

Q,QT � �QCD

Feb 07, 2011 Zhongbo Kang, RBRC/BNL

A unified picture for Drell-Yan (leading QT/Q)

7

QT

QT Q!QCD <<<<

TMD Collinear/twist-3

Q� QT � �QCD

Intermediate QT

Monday, February 7, 2011

Ji, Qiu,Vogelsang, Yuan PRL 2006 ...Bacchetta, Boer, Diehl, Mulders JHEP 2008

Connection of twist 3  and twist 2 approach for 
Sivers Effect: “overlap regime”



Figure 7 demonstrates two important aspects of the NLO
qT distribution, namely, that the NLO exceeds the data at
small qT and is below the data at qT!Q . In fact, we find that
the deficit of the NLO prediction of perturbative theory in
comparison with the data at medium and large qT
(qT!5GeV) is present in the entire region of x and Q2 that
we have studied.
As we discussed in Sec. V, one can trust the resummed

calculation only for reasonably small values of qT /Q . For
large values of qT , the fixed-order perturbative result is more
reliable. This means that the NLO resummation formalism
will not give an accurate description of the data for qT!Q ,
due to the small magnitude of the NLO perturbative z flow in
this region.

The excess of the data over the NLO calculation can be
interpreted as a signature of other intensive hadroproduction
mechanisms at c.m. pseudorapidities "cm#2. A discussion
of the cross sections in this pseudorapidity region is beyond
the scope of our paper. However, we would like to point out
that there exist several possible explanations of the data in
this region, for instance, the enhancement of the cross sec-
tion due to BFKL showering $6% or resolved photon contri-
butions $17,21%. From the point of view of our study, it is
clear that better agreement between the data and the combi-
nation of the perturbative calculation and the CSS resumma-
tion, in a wider range of "cm, will be achieved when next-
to-next-to-leading order contributions, like the ones

FIG. 8. Comparison of the resummed Eq. &74' z-flow distribution with the HERA data from $15% in seven bins of (x) and (Q). The
resummed z flows were calculated using the parametrization &91' for the non-perturbative part of the Sudakov factor.

SEMI-INCLUSIVE HADRON PRODUCTION AT DESY . . . PHYSICAL REVIEW D 61 014003

014003-13

72 Y. Koike et al. / Nuclear Physics B 744 (2006) 59–79

Fig. 1. (a) Unpolarized SIDIS cross section for eRHIC kinematics. We show the fixed-order (LO) result, and resummed
results for the complex-b method with non-perturbative parameters g = 0 and g = 0.6,0.8 GeV2, and for the b∗ method
with bmax = 1/(

√
2 GeV) and g = 0.8,1.3 GeV2. (b) Same for the longitudinally polarized case. (c) Spin asymmetries

corresponding to the various cross sections shown in (a) and (b).

find that resummation leads to a significant enhancement of the cross section at qT ! 1 GeV. In
both unpolarized and polarized cross sections, the resummed results we show, for the complex-b
method with g = 0.6 and 0.8 GeV2, and for the b∗ prescription with bmax = 1/(

√
2 GeV) and

g = 0.8 GeV2, turn out to be very similar, while the b∗ prescription with g = 0.4 GeV2 gives
a higher peak that is shifted to the left compared to the other three resummed results. All these
resummed results give a very similar spin asymmetry for the process l⃗p⃗ → lπX for COMPASS
kinematics; we find that resummation just leads to a moderate decrease of the asymmetry.

4. Summary and conclusions

We have carried out a study of the soft-gluon resummation for the transverse-momentum
(qT ) distribution in semi-inclusive deeply-inelastic scattering. Resummation is crucial at small
transverse momenta, qT ≪ Q, where it takes into account large double-logarithmic corrections to
all orders in the strong coupling constant. We have considered all relevant leading-twist double-
spin cross sections, focusing on the terms that are independent of the angle between the lepton
and the hadron planes, and have presented the resummation formulas for each.

• This was designed with the aim to have a formalism that is valid to leading 
power in m/Q uniformly in qT, where m is a typical hadronic mass scale 

• and where there is a broad intermediate range of transverse momentum 
characterized by    

      Implementations/studies 

✦ “z-flow” Nadolsky Stump C.P. Yuan PRD 1999 HERA data 

✦ SIDIS Y. Koike, J. Nagashima, W. Vogelsang NPB (2006) eRHIC

m ⌧ qT ⌧ Q

and the contour PRQ approaches the contour of integration
of the asymptotic cross section !36" shown in Fig. 6!d". The
horizontal !or vertical" branch contributes to the convolu-
tions with splitting functions in Eq. !36" arising from the
initial !or final" state collinear singularities, while the soft
singularities of Eq. !36" are located at the point #a!x ,
#b!z .
On the other hand, as qT increases up to values around Q,

the difference between the contours of integration of the per-
turbative and asymptotic cross sections may become signifi-
cant. First, as can be seen from Eq. !89", in the perturbative
piece #a and #b are always higher than x"w or z"w , while
in the asymptotic piece they vary between x or z and unity.
At small x !or small z) the difference between the phase
spaces of the perturbative and asymptotic pieces may be-
come important due to the steep rise of the PDF’s and FF’s
in this region. Indeed, for illustration consider a semi-
inclusive DIS experiment at small x. Let qT /Q!0.5,
z!0.1, and x!10#4; then x"w!1.6$10#3%x!10#4. In
combination with the fast rise of the PDF’s at small x, this
will enhance the difference between the perturbative and
asymptotic cross sections.
Second, for x or z near unity, it could happen that

x"w$1 or z"w$1, which would lead to the disappear-
ance of one or two branches of the integration of the pertur-
bative piece %Figs. 6!b" and 6!c"&. In this situation the phase
space for nearly collinear radiation along the direction of the
initial or final parton is suppressed. Again, this may degrade
the consistency between the perturbative and asymptotic
piece, since the latter includes contributions from both
branches of the collinear radiation. Fortunately, the x#z
asymmetry of the phase space in semi-inclusive DIS is not
important in the analysis of the existing data from HERA,
since it covers the small-x region and is less sensitive to the
contributions from the large-z region, where the rate of the
hadroproduction is small. However, in the numerical analysis
we found it necessary to correct for the contraction of the
perturbative phase space described in the previous paragraph.
We incorporate this correction by substituting for x and z in
Eqs. !36" and !43" the rescaled variables

x̃!
Q2"qT

2

Q2 x ,

z̃!
Q2"qT

2

Q2 z . !90"

These substitutions simulate the phase space contraction of
the perturbative piece. At small qT , the rescaling reproduces
the exact asymptotic and resummed pieces !36" and !43", but
at larger qT it excludes the unphysical integration regions of
#a'x and #b'z .

VI. NUMERICAL RESULTS

In this section, we present the results of Monte Carlo
simulations for the z flow and the differential multiplicity of
charged particle production,

1
d( tot /!dxdQ2"

d)z

dxdQ2dqT

and

1
d( tot /!dxdQ2"

d(chgd

dxdzdQ2dqT
.

Our calculations use the parameters of the HERA electron-
proton collider. The energies of the proton and electron
beams are taken to be equal to 820 and 27.5 GeV, respec-
tively.

A. Energy flows

As a first application of the resummation formalism, we
consider the c.m. pseudorapidity distributions of the trans-
verse energy flows in the current region, data for which has
been published in %15&. We discuss the data in seven bins of
x and Q, four of them covering the region 10*Q2

*20 GeV2, 3.7$10#4*x*2.3$10#3, and the other three
the region 20*Q2*50 GeV2, 9.3$10#4*x*4.9$10#3.
In our calculation, we use the CTEQ4M parton distribu-

tion functions %25&. The factorization and renormalization
scales of the perturbative and asymptotic pieces are all set
equal to +!Q . As was mentioned in Sec. IV, the data on
transverse energy flow can be easily transformed into the qT
distributions of the z flow. In Fig. 7, we present the compari-
son of the existing data in one of the bins of x and
Q2 (,x-!0.0049, ,Q2-!32.6GeV2) with the NLO pertur-
bative and resummed z flows given in Eqs. !B6" and !74",
respectively. In Fig. 8 we present the comparison of the re-
summed z flow with the data in the other bins of %15&.

FIG. 7. Comparison of the NLO perturbative !B6" and re-
summed !74" expressions for the z-flow distribution with the exist-
ing experimental data from HERA %15&. The presented data is for
,x-!0.0049, ,Q2-!32.6 GeV2.
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“Matching-1”  W + Y studies

will be possible once more detailed semi-inclusive DIS data
from HERA and Fermilab-E665, covering a wider range of
Q, are available.

IV. HADRONIC MULTIPLICITIES AND ENERGY FLOWS

Knowing the hadron cross-section, it is possible to calcu-
late the multiplicity of the process, which is defined as the
ratio of this cross section, and the total inclusive DIS cross
section for the given leptonic cuts:

Multiplicity!
1

d! tot /dxdQ2

d!

dxdzdQ2dqT
2 . "67#

Both the cross section and the multiplicity depend on the
properties of the final-state fragmentation. The analysis can
be simplified by considering energy flows which do not have
such dependence. A traditional variable used in the experi-
mental literature is a transverse energy flow $ET% in one of
the coordinate frames, defined as

$ET%&B
!
1

! tot
'
B

!
&B

d&B ET
d!"e"A→e"B"X #

d&B
.

"68#

This definition involves an integration over the available
phase space &B and a summation over all possible species of
the final hadrons B. Since the integration over &B includes
integration over the longitudinal component of the momen-
tum of B, the dependence of $ET% on the fragmentation func-
tions drops out due to the normalization condition

'
B

! z DB/b"z #dz!1. "69#

Instead of $ET% , we analyze the flow of the variable z.
This flow is defined as

d(z

dx dQ2 dqT
2 !'

B
!
zmin

1
z
d!"e"A→e"B"X #

dx dz dQ2 dqT
2 dz .

"70#

We prefer to use (z rather than $ET% because $ET% is not
Lorentz invariant, which complicates its usage in the theo-
retical analysis.2 Also, the analysis in terms of qT and z flow
makes the analogy between resummation in the current re-
gion of semi-inclusive DIS and in the small transverse mo-
mentum region of the Drell-Yan process more obvious.
Since qT is simply related to the pseudorapidity in the )*p

c.m. frame via Eq. "24#, and the transverse energy of a nearly
massless particle in this frame is given by

ET*pT!zqT , "71#

the experimental information on d(z /(dx dQ2 dqT
2) can be

derived from the )*p c.m. frame pseudorapidity (+cm) dis-
tributions of $ET% in bins of x and Q2. If mass effects are
neglected, we have

d$ET%
d+cm

!qT
2 d(z

dqT
. "72#

The asymptotic contribution to the z-flow distribution is

" d(z

dxdQ2dqT
2d,

#
asym

!
!0Fl

SeA

-s

.

1
2qT

2

A1"/ ,,#

2. '
j
e j
2$ 0"Pqq! f j /A#"x ,1#

""Pqg! f g/A#"x ,1#2"2 f j /A"x ,1#% CFlog
Q2

qT
2 #

3
2 CF&

"O" " -s

. # 2,qT2 # ' . "73#

The resummed z-flow distribution is

d(z

dxdQ2dqT
2d,

!
!0Fl

SeA

A1"/ ,,#

2 ! dn#2b

"2.#n#2 e
iq!T•b!Wz"b ,x ,Q #"Y z ,

"74#

with

Wz"b ,x ,Q #!'
j
e j
2C z

out"b* ,1#

$"C ja
in

!Fa/A#"x ,b* ,1#e#Sz(b ,x ,Q). "75#

In Eq. "75#, the NLO function C z
out(b ,1) is

C z
out"b ,1#!$1"

-s

.
CF" #

65
48"

4
3log

b1

b0
#log2

e#3/4C1
C2b0

# '
"

-s

.

CF

2 $13#
8
3log

b1

b0
' .

Similar to Eq. "62#, the z-flow Sudakov factor Sz is a sum
of perturbative and nonperturbative parts,

2The z-flow (z is related to the energy distribution function (
calculated in 3194 as (z!(2xEA /Q2)( . Here EA is the energy of
the initial hadron in the HERA lab frame.
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Matching and W + Y -studies

This impacts studies of non-perturbative nucleon structure @ COMPASS & JLAB !!!

m . qT . Q

Y. Koike et al. / Nuclear Physics B 744 (2006) 59–79 73

Fig. 2. Same as in Figs. 1(a)–(c), but for COMPASS kinematics. For the b∗ prescription, we have chosen here the
non-perturbative parameters g = 0.4,0.8 GeV2.

We have performed phenomenological studies for the process l⃗p⃗ → lπX at COMPASS and at
a possible future polarized ep collider, eRHIC. Here we have chosen two different prescriptions
for treating the region of very large impact parameters in the Sudakov form factor, which is
related to the onset of non-perturbative phenomena. We have used simple estimates for the non-
perturbative term suggested by the resummed formula. Our results indicate that resummation
effects as well as non-perturbative effects cancel to a large extent in the spin asymmetry.
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Figure 6. dσNLO, dσASY, WNLL and the sum WNLL+Y (see eq. (3.3)), corresponding to the three
different SIDIS kinematical configurations defined in figure 1. Here bmax = 1.0GeV−1, g1 = 0.3
GeV2, g1f = 0.1GeV2, g2 = 0GeV2.

3.3 Y term matching

It should now be clear that a successful matching heavily depends on the subtle inter-

play between perturbative and non-perturbative contributions to the total cross section,

and that finding a kinematical range in which the resummed cross section W matches its

asymptotic counterpart dσASY, in the region qT ∼ Q, cannot be taken for granted.

In figure 6 we show, in the three SIDIS configurations considered above, the NLO

cross section dσNLO (solid, red line), the asymptotic cross section dσASY (dashed, green

line) and the NLL resummed cross section WNLL (dot-dashed, cyan line). The dotted blue

line represents the sum (WNLL + Y ), according to eq. (2.19).

Clearly, in none of the kinematical configurations considered, WNLL matches dσASY,

they both change sign at very different values of qT . Moreover, the Y factor can be very

large compared to WNLL. Consequently, the total cross section WNLL + Y (dotted, blue

line) never matches the fixed order cross section dσNLO (solid, red line). At low and

intermediate energies, the main source of the matching failure is represented by the non-

perturbative contribution to the Sudakov factor. As we showed in section 3.1, the resummed

term W of the cross section is totally dominated by the non-perturbative input, even at

large qT . Notice that, in the kinematical configurations of the COMPASS experiment, the

matching cannot be achieved simply by adding higher order corrections to the perturbative

calculation of the Y term, as proposed in ref. [8], as WNLL is heavily dependent on the

non-perturbative input.

Interestingly, the cross section does not match the NLO result even at the highest

energies considered,
√
s = 1TeV and Q2 = 5000GeV2: further comments will be addressed

in the following subsection.

3.4 Matching with the inclusion of non-perturbative contributions

As discussed above, the mismatch betweenWNLL and dσASY at qT ∼ Q is mainly due to the

non-perturbative content of the cross section, which turns out to be non-negligible, at least

at low and intermediate energies. To try solving this problem one could experiment different

– 10 –

• When qT is above some small fraction of Q,  W deviates alot from   

• Then it becomes negative and “asymptotes” to                                                
Nadolsky et al. PRD 1999, Y. Koike, J. Nagashima, and W. Vogelsang,  NPB744, 59 (2006) 

  
• At large qT  W+Y is then  difference of large terms and truncation errors can 

be augmented (ASY!)
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P.  Sun F.  Yuan et al arXiv: 1406.3073

• At small qT the Y term is in principle suppressed: it is the difference 
of the FO perturbative calculation of the cross section and the 
asymptotic contribution of W for small qT 

• But there can be a difference of of large terms and truncation 
errors are augmented:  Here the Y term is larger than W ?!

Y (qT , Q) = FO(qT , Q)�ASY (qT , Q)

Matching and W + Y -studies
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FIG. 10: Y -term contribution (dashed curve) to the multiplicity distribution as a function of

transverse momentum, compared to the leading power transverse momentum dependent result
(solid curve), for the experimental data from HERMES Collaboration at Q2 = 3.14GeV2.

carry out this computation and come back to this issue in the near future. This may also
indicate that we need to take into account higher power corrections for SIDIS processes in
the relative low Q2 range. In this context, it means that certain terms in the Y -term may
come from higher power correction in the TMD factorization, which could result in different
resummation results. This is similar to what has been discussed in Ref. [40] for higher-
twist contributions to the SIDIS, where cosφ and cos 2φ azimuthal asymmetries in SIDIS
processes come from higher-twist effects in the TMD framework. However, the factorization
for higher-twist contribution in the TMD framework is not fully understood at the present.

On the other hand, the consistency between the leading power TMD results and the
experimental data from HERMES and COMPASS collaborations, cf. Fig. 9, supports the
application of the TMD factorization in the relative low Q2 range of these two experiments.
To further test the TMD resummation formalism in the SIDIS experiments, we need more
data with large Q2 values, where the Y -term contributions will become much less impor-
tant. In Fig. 11, we show some numeric results for Q2 = 10, 20 GeV2. In particular, for
Q2 = 20GeV2, its contribution is negligible for all p⊥ range of interests. Higher Q2 range
is particularly one of the important focuses for the SIDIS measurements in the planned
electron-ion collider [1], where the above assumptions can be well tested.

V. DISCUSSION AND CONCLUSION

In this paper, we have re-analyzed the transverse momentum distribution of the Drell-
Yan type of lepton pair production processes in hadronic collisions in the framework of CSS
resummation formalism. Our goal is to find a new form for the non-perturbative function
which can be used to simultaneously describe the semi-inclusive hadron production in DIS
processes (such as from HERMES and COMPASS Collaborations) and all the Drell-Yan
type processes (such as W , Z and low energy Drell-Yan pair productions). In Secs. II and

15

WNLL

Y
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• Thus the region between large and small qT needs special treatment if 
errors are to be strictly power suppressed point-by-point in qT

Matching and W + Y-enhanced

We address & extend formalism 

qT . m and qT & Q
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• For                  collinear factorization is not applicable for the 
differential cross section.   But this region is actually where the  
W-term has its highest validity.   So one simply must ensure that 
the Y -term is sufficiently suppressed in Eq. (10) for 

• Modify Y 

qT . m

qT . m

with “switching function at  small qT

6

naive extrapolation of the powers in Eqs. (5)–(10) would
suggest.

The above observations do not represent a fundamental
breakdown of the formalism. They merely indicate that
some extra care is needed to construct a formalism valid
also for qT . m and qT & Q.

For qT . m, collinear factorization is certainly not ap-
plicable for the di↵erential cross section. But this region
is actually where the W -term in Eq. (7) has its highest
validity. So one simply must ensure that the would-be
Y -term

Tcoll�(qT, Q)� TcollTTMD�(qT, Q) (15)

is su�ciently suppressed in Eq. (10) for qT . m. There-
fore, we will modify the usual definition of Y by inserting
a suppression factor at low qT:

Y (qT, Q)

⌘ {Tcoll [�(qT, Q)�W (qT, Q)]}X(qT/�)

= {Tcoll�(qT, Q)� TcollTTMD�(qT, Q)}X(qT/�) .
(16)

The smooth cuto↵ function X(qT/�) approaches zero for
qT . � and unity for qT & �. It ensures that the Y -term
is a correction for qT & m only. As long as � = O(m),
any �-dependence must be weak. This is analogous to
the introduction of a Qmin

T

in Ref. [3, Eq. (2.8)].
The exact functional form of X(qT/�) is arbitrary, but

is most useful in calculations if it sharply suppresses qT ⌧
m contributions while not a↵ecting qT & m. While a
step function is acceptable, we suggest using a slightly
smoother function since one expects the transition from
perturbative to non-perturbative physics to be relatively
smooth. One possible choice is

X(qT/�) = 1� exp {�(qT/�)
aX} . (17)

This is what we will use in sample calculations in Sec. IX.
A large value for the power a

X

makes the switching func-
tion more like a step function.

In common terminology, the first term in braces on the
second line of Eq. (16) is called the “fixed order” (FO)
contribution, while the second term is the “asymptotic”
(AY) contribution. We will use the notation

FO(qT, Q) ⌘ Tcoll�(qT, Q) (18)

AY(qT, Q) ⌘ TcollTTMD�(qT, Q) . (19)

So,

Y (qT, Q) ⌘ {FO(qT, Q)�AY(qT, Q)}X(qT/�) . (20)

This corresponds to the terminology in, for example,
Ref. [15]. The term “fixed order” is meant to imply that
the calculation of � is done entirely with collinear factor-
ization with hard parts calculated to low order in pertur-
bation theory using µ = Q and with collinear pdfs and ↵s
calculated using µ = Q. That is, the hard part and the

parton correlation functions are evaluated at the same
scale.
Now we can extend the power suppression error esti-

mate in Eq. (10) down to qT = 0 to recover Eq. (5).
Equation (10) becomes

�(qT . Q,Q) =W (qT, Q) + Y (qT, Q)

+O

✓
m

Q

◆c

�(qT, Q), (21)

which is Eq. (5), but restricted to qT . Q.
So far, aside from introducing an explicit X(qT/�), we

have only reviewed the standard W + Y construction.
The qT . Q restriction on the left of Eq. (21) should be
emphasized. Since we rely on strict power counting in
qT/Q and m/qT, the region of qT & Q is not guaranteed
to be well-described by the above W + Y construction.
We will correct this in Secs. V–VII with a modified W -
term definition.

IV. REVIEW OF TMD FACTORIZATION AND
BASIC FORMULAS

Our proposed modifications to the transition to the
qT/Q & 1 region will leave the standard treatment of
TMD factorization [4, Chapters 10,13,14] in the qT/Q ⌧
1 region only slightly modified.2 In particular, the op-
erator definitions for transverse-coordinate-space TMD
functions, along with their evolution properties, are ex-
actly the same as in the usual formalism. This is an
important aspect of our suggested modifications, so it is
worthwhile to review the basics of TMD factorization for
the low qT region. This section gives a short summary
of the most important formulas, with the organization of
notation optimized for discussions in later sections. We
will also refer frequently to the review of TMD evolution
in Ref. [24, Sec. II], especially [24, Eqs. (22, 24)].

A. TMD Evolution

The evolution of W (qT, Q) follows from generalized
renormalization properties of the operator definitions for
TMD pdfs and ↵s. To separate perturbative and non-
perturbative contributions, one defines large and small
bT through a function b

⇤

that freezes above some bmax

and equals bT for small bT:

b
⇤

(bT) �!
⇢
bT bT ⌧ bmax

bmax bT � bmax .
(22)

The relevant renormalization group scales are

µ
b

⌘ C1/bT , µ
b⇤ ⌘ C1/b⇤ , µ

Q

⌘ C2Q , (23)

2

See also Ref. [23] for a recent brief overview and large list of

references relating to the development of TMD factorization.

Y (qT , Q) = {FO(qT , Q)�ASY (qT , Q)}X(qT /�)

qT . m

Extend/enhanced formalism 
Phys.Rev. D 94 Collins, L.G, Prokudin, Sato, Rogers, Wang
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Modification of the cross section leaves the standard 
treatment of TMD factorization only slightly modified          

In particular the op. definitions along with evolution 
properties are the same as in the usual formalism 

We do this in two steps however now we need  
explicit expression for W from JCC formalism  

Many sources ….see Collins Rogers PRD 2015
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Summary of  elements of  TMD factorization

W (qT , Q) =

Z
d2bT
(2⇡)2

eiqT ·bT W̃ (bT , Q)

b⇤(bT ) =

s
b2
T

1 + b2
T

/b
max

- Factorization and TMD evolution in bT  space 
- Solve the CSS & RG evolution eqs. for W   
term in SIDIS with “boundary condition” to 
freeze bT above some bmax  

W̃ (qT , Q) =

Z
d2bT
(2⇡)2

eiqT ·bT W̃OPE (b⇤(bT ), Q) W̃NP (bT , Q; bmax)

Collins 2011 QCD
Aybat Rogers PRD 2011
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W̃OPE
i (b⇤(bT ), Q) = Hi(Q) C̃pdf

i/i0(xA/x̂, b⇤b?)⌦ f̃i0/A(x̂, µb?) C̃
ff
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B. Modified large bT behavior

Because of the strong universality of gKðbT ;bmaxÞ, the
results of the last section seem on the surface to indicate a
discrepancy between the low Q data and detailed and
successful fits of the past that focus on largerQ, which tend
to find g2 ≳ 0.1 GeV2 [18,19,45,46]. For instance, values
of g2 have been found to be as large as 0.68 GeV2 [45],
and a value of g2 ¼ 0.19 GeV2 is used in Ref. [19] for
SIDIS in the CSS formalism, both using a value of
bmax ¼ 0.5 GeV−1. Moreover, the renormalon analysis of
Ref. [58] also suggests a g2 of similar size for small bT .
(See, also, Fig. 1 of Ref. [46].) However, the quadratic
ansatz in Eq. (22) [which gives a Gaussian ansatz when it
appears in the exponent of Eq. (21)] seems to impose
excessive suppression of the very large nonperturbative bT
region whenever g2 ≳ 0.1 GeV2. A critique of the purely
Gaussian nonperturbative form was also given in Ref. [64],
where it was argued that the Gaussian form gives excessive
sensitivity to nonperturbative input at large transverse
momentum, and a power law, ∼b0.3T , with a bmax ¼
0.3 GeV−1 is suggested, though this is possibly an overly
conservative choice, given our earlier discussion of bT
regions in Fig. 3, and given that scales ≥ 3.0 GeV are
generally considered to be well within the perturbative
region. See related discussions of this in Ref. [46].
To resolve the apparent discrepancy discussed above, we

recall that large Q fits, e.g. for Q≳ 10 GeV, are sensitive
mainly to the region of bT ≲ 2.0 GeV−1. See, for example,
Fig. 4 of Ref. [46] and compare this with Fig. 3, where
contributions from bT ≳ 2.0 GeV−1 dominate. Now let us
assume that nonperturbative effects become totally dom-
inant at some large size scale bNP, where gKðbT ; bmaxÞ
acquires a more complicated and as-yet unknown precise
form. Recall also that gKðbT ; bmaxÞ is predicted to vanish as
a power of b2T at small bT [57–60]. Thus, for bT ≪ bNP the
following expansion applies:

gKðbT ; bmaxÞ ¼ a1

!
b2T
b2NP

"
þ a2

!
b4T
b4NP

"
þ % % % : (39)

See also Eq. (6.1) of Ref. [58].13 We conjecture that largeQ
fits typically obtain a large g2 because they are sensitive
only to the first power law correction in Eq. (39). By
contrast, at smaller Q higher powers, and eventually the
complete functional form, become important.
We propose that the optimal way to proceed is to use a

functional form for gKðbT ; bmaxÞ that (a) respects its strong
universality set forth in TMD factorization by matching
earlier large Q fits that use a Gaussian form but (b) avoids
strong disagreement with the results of the empirical
analysis of SIDIS data from Sec. V. Thus, we impose
the following conditions:

(i) At small b2T , the lowest order coefficient in Eq. (39),
i.e. a1=b2NP, must be roughly ≳0.1 GeV2 in order to
be consistent with the values of g2=2 found in
Refs. [18,19,45,46,58], thereby respecting the strong
universality of gKðbT ;bmaxÞ.

(ii) At bT ≫ bNP, gKðbT ; bmaxÞ should become nearly
constant, or at most logarithmic in bT .

As a simple example, we propose

gKðbT ; bmaxÞ ¼
g2ðbmaxÞb2NP

2
ln

!
1þ b2T

b2NP

"
: (40)

[See, also, Eq. (6.14) of Ref. [58].] Expanding around
bT ≪ bNP gives the first two terms,

g2ðbmaxÞ
1

2
b2T − g2ðbmaxÞ

1

4b2NP
b4T þ % % % : (41)

In Fig. 9 we illustrate how the low Q dependence of the
COMPASS data may be accommodated into earlier larger
Q fits by using the modified gKðbT ; bmaxÞ from Eq. (40)
with bmax¼0.5GeV, g2¼0.1GeV2 and bNP¼2.0GeV−1.14

Since the lowest order term in the expansion in Eq. (41)
matches Eq. (22) with g2 ¼ Oð0.1 GeV2Þ and thus is
generally consistent with earlier fits such as
Refs. [18,19]. In this way, moderate Q data may be
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FIG. 9 (color online). The solid red and blue curves are again
the same initial and final Gaussian fits obtained by COMPASS
for Q2 ¼ 1.1 GeV2 and Q2 ¼ 4.47 GeV2, respectively—the
same as in Fig. 3. The black dashed curve is again the Kaplan
fit for Q2 ¼ 4.47 GeV2 already shown in Fig. 7. For comparison,
the purple short-dashed curve is the TMD factorization expres-
sion in Eq. (37), but now using Eq. (40) for gKðbT ; bmax ¼
0.5 GeV−1Þ with bNP ¼ 2.0 GeV−1 and g2 ¼ 0.1 GeV2. This
should be compared with the g2 ≥ 0.1 GeV2 curves in Fig. 8
where the quadratic ansatz for gKðbT ; bmaxÞ—Eq. (22)—is used.

13Note, however, that Ref. [58] predicts a linear rather than a
constant dependence at very large bT .

14In general, bNP may also be a function of bmax but to simplify
notation we do not show it explicitly in Eq. (40).
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W̃New(qT , Q; ⌘, C5) = ⌅
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Q
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d2bT
(2⇡)2

eiqT ·bT W̃OPE (b⇤(bc(bT )), Q) W̃NP (bc(bT )), Q; bmax)
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b2T + b20/ (C5Q) =) bc(0) ⇠ 1/Q
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a) B.C. Introduce small b-cuttoff

b) Introduce large qT-switching s.t. that 
WNew vanishes at large qT

Two modifications

10

lidity of the W -term approximation does not end at a
sharp point in qT, and thus a smooth function character-
izes general physical expectations. A reasonable choice
is

⌅

✓
qT
Q

, ⌘

◆
= exp


�
✓
q
T

⌘Q

◆
a

⌅

�
, (39)

with a⌅ > 2.
The only di↵erences between the old and new W -term

are: i) the use of b
c

(bT) rather than bT in W̃ , and ii) the
multiplication by ⌅(qT/Q, ⌘). (The second modification
was proposed by Collins in Ref. [4, Eq. (13.75)]. There ⌅
is called F (qT/Q).) Equation (38) matches the standard
definition in the limit that C5 and ⌘ approach infinity.

Finally, we will present a fully optimized formula for
WNew(qT, Q; ⌘, C5) corresponding to the one for the orig-
inal W (qT, Q) in Eq. (35).

But first it will be convenient to construct some auxil-
iary results.

Naturally, b
⇤

is to be replaced by

b
⇤

(b
c

(bT)) =

s
b2T + b20/(C

2
5Q

2)

1 + b2T/b
2
max + b20/(C

2
5Q

2b2max)
. (40)

Also we define
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(0)) =
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s
1

1 + b20/(C
2
5Q

2b2max)
. (41)

Then, for large enough Q and bmax

bmin ⇡ b0
C5Q

. (42)

Thus, bmin decreases like 1/Q, in contrast to bmax which
remains fixed. Note also that

b
⇤

(b
c

(bT)) �!

8
><

>:

bmin bT ⌧ bmin

bT bmin ⌧ bT ⌧ bmax

bmax bT � bmax .

(43)

For bT ⌧ 1/Q, b
⇤

(b
c

(bT)) ⇡ b
⇤

(bT). Instead of µ
b⇤ , we

will ultimately use the scale

µ̄ ⌘ C1

b
⇤

(b
c

(bT))
(44)

to implement renormalization group improvement in
TMD correlation functions. There is a maximum cut-
o↵ on the renormalization scale equal to
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The approximation sign corresponds to the limit of large
Qbmax. Note that,

bminµc

= C1 . (46)

The steps for finding a useful formula for the evolved WNew(qT, Q; ⌘, C5) are as follows. Equation (32) becomes
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This is the same as Eq. (35) except that b
⇤

(b
c

(bT)) and µ̄ = C1/b⇤(bc(bT)) are used instead of b
⇤

(bT) and
µ
b⇤ = C1/b⇤(bT). Note that g

K

(b
c

(bT); bmax) depends on Q through b
c

, albeit only for bT . 1/Q. For bT � 1/Q,
g
K

(b
c

(bT); bmax) ! g
K

(bT; bmax). Also, g
K

(b
c

(bT); bmax) does not vanish exactly as bT ! 0 but instead approaches a
power of 1/Q.

Up to this point, we have introduced two new parameters, ⌘ and C5, in the treatment of the W -term.
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Figure 2. Schematic illustration of important scales for Bessel-weighted asymmetries before and
after the Fourier-transform.

Eq. (G.12) shows that the theoretical error from neglecting the Y term is (at least) sup-

pressed as |b
T

|�1/2. An explicit treatment of the Y -term in Eq. (3.1) could eliminate this

theoretical error to a given order in ↵
s

in the Fourier transformed TMD PDFs and TMD

FFs extracted using Bessel weighting. We will not do this here.

The second error coming from extending the TMD expression beyond |P
h?|max

is more

suppressed and therefore less of a concern. Following a similar procedure as before we can

estimate it to be suppressed as |b
T

|�3/2. Let [F sin/cos(N�h+...)

XY,Z

]
TMD

denote the structure

functions as determined purely within the TMD framework, i.e., from convolutions of TMD

PDFs, TMD FFs and a potential soft factor. The contribution to its Fourier transform

coming from the large |P
h?| region can be bounded using that the TMD expression (times

|P
h?|1/2) is a monotonically decreasing function of |P

h?|. Thus, applying Eq. (G.10),
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, (G.13)

where the upper bound applies as long as |b
T

| � |P
h?|�1

max

. This second error is therefore

far less important than neglecting the Y term. The reason this same behavior could not

be obtained for the Y term is that it is not expected to be a monotonically falling function

of |P
h?|.
Finally, let us consider what error would be introduced if all |P

h?| integrations of the
experimental data were to be cut o↵ at ⇤

TMD

. In this case, we would be able to use Eq.

(G.13) as an error estimate, except that |P
h?|�1

max

would need to be replaced by ⇤
TMD

.

Again the error estimate would be valid provided |b
T

| � ⇤�1

TMD

and provided the structure

function times |P
h?|1/2 is monotonically falling, i.e., in its tail region, beyond ⇤

TMD

. This
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Now Y term is further modified
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previously existing expressions. For completeness, low
order expressions for the asymptotic terms are given in
Appendix B.

IX. DEMONSTRATION

To illustrate the steps above, we have performed sam-
ple calculations of the Y -term using analytic approxima-
tions for the collinear pdfs and collinear ↵s. For sim-
plicity, we consider only the target up-quark �⇤q ! qg
channel, and for the running ↵

s

(µ) we use the two-loop
�-function solution and keep the number of flavors at
n
f

= 3 since we are mainly interested in the transition
to low Q. Thus we use ⇤QCD = 0.339 GeV [27]. To
further simplify our calculations, we use analytic expres-
sions for the collinear correlation functions, taken from
appendix A1 of Ref. [28] for the up-quark pdf and from
Eq. (A4) of Ref. [29] for the up-quark-to-pion fragmen-
tation function.

Due to these simplifying assumptions, the following
should be regarded as a toy model calculation, meant to
illustrate the basic steps of a Y -term calculation and to
demonstrate plausibility for use in more complete and
detailed calculations.

First, one must establish parameters for our large and
small qT cuto↵ functions. For X(qT/�) we use Eq. (17),
and try a

X

= 4 since this gives a rapid but reason-
ably gentle suppression of small qT. The choice of �
should be such that it has reached unity at values of
qT near the perturbative-nonperturbative transition, say,
qT ⇡ 1.0 GeV. Thus, we choose � = 2/3 GeV. The result
is shown as the blue dashed curves in Figs. 1. To under-
stand the plots, recall that X(qT/�) is used to restrict
to large qT the region where qT-dependence is calculated
with collinear factorization at fixed order fixed in pertur-
bation theory.

For ⌅(qT/Q, ⌘) we use Eq. (39). The value of a⌅ con-
trols how rapidly the qT ⇠ Q contribution from the
W -term gets cuto↵. For large Q, the transition can
be rather smooth since there is a broad region where
AYNew(qT, Q; ⌘, C5) and FO(qT, Q) overlap. In our ex-
ample calculation, we find that a⌅ = 8 works well. The
value of ⌘ should be chosen such that ⌅(qT/Q, ⌘) ! 0
when qT is large enough that approximations that use
qT ⌧ Q might be considered suspect. For small qT,
⌅(qT/Q, ⌘) ! 1. We find that the transition between
⌅(qT/Q, ⌘) ⇡ 0 and ⌅(qT/Q, ⌘) ⇡ 1 occurs between
about qT ⇡ Q/4 and qT ⇡ Q/2 if ⌘ = 0.34. These
results for ⌅(qT/Q, ⌘) are shown as the tan curves in
Figs. 1. To understand the plots, recall that the purpose
of ⌅(qT/Q, ⌘) is to suppress the qT = O(Q) region of the
W -term where it fails to provide even a rough approxi-
mation.

Next, we examine the e↵ect of varying C5 on the cal-
culation of the asymptotic term. Standard expressions
for the asymptotic term can be found in, for example,
Eq. (36) of Ref. [15]. We use these results, along with the

(a)

(b)

FIG. 1. The cuto↵ functions in Eq. (17) for low q

T

/� (blue
dashed line) and in Eq. (39) for large q

T

/Q (brown solid line)
for Q = 20.0 GeV (plot (a)) and Q = 2.0 GeV (plot (b)). In
both, � = 2/3 GeV and ⌘ = 0.34. The region of q

T

& Q/4 is
determined by the FO(q

T

, Q) calculation. For all Q, q
T

. �

is considered non-perturbative. (Color online.)

substitutions in Eqs. (65)–(66), to plot the new asymp-
totic term of Eq. (56) for a range of C5 values. The
result is shown in Fig. 2, where we have temporarily set
⌅(qT/Q, ⌘) to 1 in order to highlight the e↵ect of varying
C5. The results for C5 = 0.5 and C5 = 2.0 are shown.
The standard CSS result, corresponding to C2/C5 ! 0,
is also shown for comparison. In all of our calculations,
C2 = 1.0. One can observe the approach to the CSS
result as C5 increases.
Finally, we restore the explicit ⌅(qT/Q, ⌘) in the

asymptotic term and calculate the Y -term according to
Eq. (57) for two values of Q, one large and one small.
The results are shown in Figs. (3)(a,b). Here we use
C5 = 1.0 as a compromise between the various choices
in Fig. 2 and to match with a common choice used in
calculations like those of Ref. [14]. For Q = 20 GeV
(Fig. 3(a)), there is a region 1.0GeV . qT . 6.0GeV
where the Y -term is a useful non-trivial correction. Be-
yond about qT ⇡ 6.0 GeV, the Y -term simply approaches
the FO(qT, Q) calculation (where the W -term vanishes).

Within our W +Y method, the Y -term remains a rea-
sonable correction for large qT/Q even down to Q =

The cutoff functions in  for low qT/lambda (blue dashed line) 
and large qT/Q (brown solid line) for Q = 20.0 GeV

Switching functions 

See also Altarelli et al NPB1984, Bozzi, Catani  et al  NPB 2015 Arnold and Kauffman 1991,
Alternative approach Qiu & Zhang PRL 2001 
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Illustration: we have performed sample calculations of the Y -term using analytic approximations for the collinear pdfs 
and collinear ffs. We consider only the target up-quark gamma q -> q+g channel, and for the running alphas we use the 
two-loop beta function f = 3 since we are mainly interested in the transition to low Q. 
Thus we use

To further simplify our calculations, we use analytic expressions for the collinear correlation functions, taken from 
appendix A1 of GRV ZPC 1992  for the up-quark pdf and from Eq. (A4) of KKP NPB 2001 for the up-quark-to-pion  
fragmentation function

⇤QCD = 0.330
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previously existing expressions. For completeness, low
order expressions for the asymptotic terms are given in
Appendix B.

IX. DEMONSTRATION

To illustrate the steps above, we have performed sam-
ple calculations of the Y -term using analytic approxima-
tions for the collinear pdfs and collinear ↵s. For sim-
plicity, we consider only the target up-quark �⇤q ! qg
channel, and for the running ↵

s

(µ) we use the two-loop
�-function solution and keep the number of flavors at
n
f

= 3 since we are mainly interested in the transition
to low Q. Thus we use ⇤QCD = 0.339 GeV [27]. To
further simplify our calculations, we use analytic expres-
sions for the collinear correlation functions, taken from
appendix A1 of Ref. [28] for the up-quark pdf and from
Eq. (A4) of Ref. [29] for the up-quark-to-pion fragmen-
tation function.

Due to these simplifying assumptions, the following
should be regarded as a toy model calculation, meant to
illustrate the basic steps of a Y -term calculation and to
demonstrate plausibility for use in more complete and
detailed calculations.

First, one must establish parameters for our large and
small qT cuto↵ functions. For X(qT/�) we use Eq. (17),
and try a

X

= 4 since this gives a rapid but reason-
ably gentle suppression of small qT. The choice of �
should be such that it has reached unity at values of
qT near the perturbative-nonperturbative transition, say,
qT ⇡ 1.0 GeV. Thus, we choose � = 2/3 GeV. The result
is shown as the blue dashed curves in Figs. 1. To under-
stand the plots, recall that X(qT/�) is used to restrict
to large qT the region where qT-dependence is calculated
with collinear factorization at fixed order fixed in pertur-
bation theory.

For ⌅(qT/Q, ⌘) we use Eq. (39). The value of a⌅ con-
trols how rapidly the qT ⇠ Q contribution from the
W -term gets cuto↵. For large Q, the transition can
be rather smooth since there is a broad region where
AYNew(qT, Q; ⌘, C5) and FO(qT, Q) overlap. In our ex-
ample calculation, we find that a⌅ = 8 works well. The
value of ⌘ should be chosen such that ⌅(qT/Q, ⌘) ! 0
when qT is large enough that approximations that use
qT ⌧ Q might be considered suspect. For small qT,
⌅(qT/Q, ⌘) ! 1. We find that the transition between
⌅(qT/Q, ⌘) ⇡ 0 and ⌅(qT/Q, ⌘) ⇡ 1 occurs between
about qT ⇡ Q/4 and qT ⇡ Q/2 if ⌘ = 0.34. These
results for ⌅(qT/Q, ⌘) are shown as the tan curves in
Figs. 1. To understand the plots, recall that the purpose
of ⌅(qT/Q, ⌘) is to suppress the qT = O(Q) region of the
W -term where it fails to provide even a rough approxi-
mation.

Next, we examine the e↵ect of varying C5 on the cal-
culation of the asymptotic term. Standard expressions
for the asymptotic term can be found in, for example,
Eq. (36) of Ref. [15]. We use these results, along with the
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FIG. 1. The cuto↵ functions in Eq. (17) for low q

T

/� (blue
dashed line) and in Eq. (39) for large q

T

/Q (brown solid line)
for Q = 20.0 GeV (plot (a)) and Q = 2.0 GeV (plot (b)). In
both, � = 2/3 GeV and ⌘ = 0.34. The region of q

T

& Q/4 is
determined by the FO(q

T

, Q) calculation. For all Q, q
T

. �

is considered non-perturbative. (Color online.)

substitutions in Eqs. (65)–(66), to plot the new asymp-
totic term of Eq. (56) for a range of C5 values. The
result is shown in Fig. 2, where we have temporarily set
⌅(qT/Q, ⌘) to 1 in order to highlight the e↵ect of varying
C5. The results for C5 = 0.5 and C5 = 2.0 are shown.
The standard CSS result, corresponding to C2/C5 ! 0,
is also shown for comparison. In all of our calculations,
C2 = 1.0. One can observe the approach to the CSS
result as C5 increases.
Finally, we restore the explicit ⌅(qT/Q, ⌘) in the

asymptotic term and calculate the Y -term according to
Eq. (57) for two values of Q, one large and one small.
The results are shown in Figs. (3)(a,b). Here we use
C5 = 1.0 as a compromise between the various choices
in Fig. 2 and to match with a common choice used in
calculations like those of Ref. [14]. For Q = 20 GeV
(Fig. 3(a)), there is a region 1.0GeV . qT . 6.0GeV
where the Y -term is a useful non-trivial correction. Be-
yond about qT ⇡ 6.0 GeV, the Y -term simply approaches
the FO(qT, Q) calculation (where the W -term vanishes).

Within our W +Y method, the Y -term remains a rea-
sonable correction for large qT/Q even down to Q =

The cutoff functions in  for low qT/lambda (blue dashed line) 
and large qT/Q (brown solid line) for Q = 20.0 GeV
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• Parton Model (expectation) W-term

• Standard CSS W-term

Semi-inclusive to Collinear integrate over qT

WPM (qT , Q) = HLO,j0,i0(Q0)

Z
d2kT fj0/A(x, kT )dB/i0(z, qT + kT )

Z
d2qT WPM (qT , Q) = HLO,j0,i0(Q0)fj0/A(x)dB/i0(z)

WCSS(qT , Q) =

Z
d2bT
(2⇡)2

eiqT ·bT W̃CSS(bT , Q)

Z
d2qTWCSS(qT , Q) = 0 !

Phys.Rev. D 94 (2016) J. Collins, L.Gamberg, A. Prokudin, N. Sato, T. Rogers, B. Wang

Underlies Model building
w/ and w/o evolution using TMD 
and collinear evolution approach   
Anselmino et al. 2005-2016



bc(bT ) =
q

b2T + b20/ (C5Q) =) bc(0) ⇠ 1/Q

B.C. Introduce small b-cuttoff

Cures this property



See Phys. Rev. D 94 (2016) for details
J. Collins, L.Gamberg, A. Prokudin, N. Sato, T. Rogers, B. Wang

A little detail:  dependence driven by  
perturbative part of ev. Kernel



A little detail:  dependence driven by  
perturbative part of ev. Kernel



Has a normal collinear factorization in 
terms of collinear pdfs w/ hard scale

Has implications for modeling TMD and fitting
With modified W+Y we can match to the collinear formalism

Phys. Rev. D 94 (2016) for details
Collins, Gamberg, Prokudin, Sato, Rogers, Wang

bc(bT ) =
q

b2T + b20/ (C5Q) =) bc(0) ⇠ 1/Q

 B.C. Introduce small b-cuttoff



Comments

✦ With our method, the redefined W term allowed us  to construct a relationship 
between integrated-TMD-factorization formulas and standard collinear factorization 
formulas, with errors relating the two being suppressed by powers of 1/Q 

✦ Importantly, the exact definitions of the TMD pdfs and ffs are unmodified from the 
usual ones of factorization derivations. We preserve transverse-coordinate space 
version of the W term, but only modify the way in which it is used 

✦ This work has dealt only with unpolarized cross sections 

✦ We are  studying the analogous  topic applied to polarized phenomena 

✦ We have a new  now applied to transverse  polarized phenomena 
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lidity of the W -term approximation does not end at a
sharp point in qT, and thus a smooth function character-
izes general physical expectations. A reasonable choice
is

⌅

✓
qT
Q

, ⌘

◆
= exp


�
✓
q
T

⌘Q

◆
a

⌅

�
, (39)

with a⌅ > 2.
The only di↵erences between the old and new W -term

are: i) the use of b
c

(bT) rather than bT in W̃ , and ii) the
multiplication by ⌅(qT/Q, ⌘). (The second modification
was proposed by Collins in Ref. [4, Eq. (13.75)]. There ⌅
is called F (qT/Q).) Equation (38) matches the standard
definition in the limit that C5 and ⌘ approach infinity.

Finally, we will present a fully optimized formula for
WNew(qT, Q; ⌘, C5) corresponding to the one for the orig-
inal W (qT, Q) in Eq. (35).

But first it will be convenient to construct some auxil-
iary results.

Naturally, b
⇤

is to be replaced by

b
⇤

(b
c

(bT)) =

s
b2T + b20/(C

2
5Q

2)

1 + b2T/b
2
max + b20/(C

2
5Q

2b2max)
. (40)

Also we define

bmin ⌘ b
⇤

(b
c

(0)) =
b0

C5Q

s
1

1 + b20/(C
2
5Q

2b2max)
. (41)

Then, for large enough Q and bmax

bmin ⇡ b0
C5Q

. (42)

Thus, bmin decreases like 1/Q, in contrast to bmax which
remains fixed. Note also that

b
⇤

(b
c

(bT)) �!

8
><

>:

bmin bT ⌧ bmin

bT bmin ⌧ bT ⌧ bmax

bmax bT � bmax .

(43)

For bT ⌧ 1/Q, b
⇤

(b
c

(bT)) ⇡ b
⇤

(bT). Instead of µ
b⇤ , we

will ultimately use the scale

µ̄ ⌘ C1

b
⇤

(b
c

(bT))
(44)

to implement renormalization group improvement in
TMD correlation functions. There is a maximum cut-
o↵ on the renormalization scale equal to

µ
c

⌘ lim
b

T

!0
µ̄ =

C1C5Q

b0

s

1 +
b20

C2
5b

2
maxQ

2
⇡ C1C5Q

b0
.

(45)
The approximation sign corresponds to the limit of large
Qbmax. Note that,

bminµc

= C1 . (46)

The steps for finding a useful formula for the evolved WNew(qT, Q; ⌘, C5) are as follows. Equation (32) becomes

WNew(qT, Q; ⌘, C5) = ⌅
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(bT)), Q) . (47)

Now the definition of W̃ (bT, Q) is unchanged, and only the bT ! b
c

(bT) replacement is new. Therefore instead of
Eq. (35) we simply need
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ẑ3
C̃↵

i

0
/j

(z
B
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✓
Q

Q0

◆�
. (48)

This is the same as Eq. (35) except that b
⇤

(b
c

(bT)) and µ̄ = C1/b⇤(bc(bT)) are used instead of b
⇤

(bT) and
µ
b⇤ = C1/b⇤(bT). Note that g

K

(b
c

(bT); bmax) depends on Q through b
c

, albeit only for bT . 1/Q. For bT � 1/Q,
g
K

(b
c

(bT); bmax) ! g
K

(bT; bmax). Also, g
K

(b
c

(bT); bmax) does not vanish exactly as bT ! 0 but instead approaches a
power of 1/Q.

Up to this point, we have introduced two new parameters, ⌘ and C5, in the treatment of the W -term.
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A

/x̂, b
⇤

(b
c

(bT)); µ̄
2, µ̄,↵

s

(µ̄))f
j

0
/A

(x̂; µ̄)⇥

⇥
Z 1

zB

dẑ

ẑ3
C̃↵

i

0
/j

(z
B

/ẑ, b
⇤

(b
c

(bT)); µ̄
2, µ̄,↵

s

(µ̄))d
B/i

0(ẑ; µ̄)⇥

⇥ exp

⇢
ln

Q2

µ̄2
K̃(b

⇤

(b
c

(bT)); µ̄) +

Z
µQ

µ̄

dµ0

µ0


2�(↵

s

(µ0); 1)� ln
Q2

µ0

2 �K(↵
s

(µ0))

��

⇥ exp

⇢
�g

A

(x
A

, b
c

(bT); bmax)� g
B

(z
B

, b
c

(bT); bmax)� 2g
K

(b
c

(bT); bmax) ln

✓
Q

Q0

◆�
. (48)

This is the same as Eq. (35) except that b
⇤

(b
c

(bT)) and µ̄ = C1/b⇤(bc(bT)) are used instead of b
⇤

(bT) and
µ
b⇤ = C1/b⇤(bT). Note that g

K

(b
c

(bT); bmax) depends on Q through b
c

, albeit only for bT . 1/Q. For bT � 1/Q,
g
K

(b
c

(bT); bmax) ! g
K

(bT; bmax). Also, g
K

(b
c

(bT); bmax) does not vanish exactly as bT ! 0 but instead approaches a
power of 1/Q.

Up to this point, we have introduced two new parameters, ⌘ and C5, in the treatment of the W -term.

Enhanced expression for 

Boundary
conditions



What impact does this have on the collinear 
limit of the transverse polarization case? 

Comments

✦Some observations … 



4

along with the following definitions,

Wµ⌫(P
h?

) ⌘
Z

d2b
T

(2⇡)2
e�ibT ·P h? W̃µ⌫(b

T

) , (10)

�̃
ij

(x, zb
T

) ⌘
Z

d2p
T

eizbT ·pT �
ij

(x,p
T

) =

Z

db�

(2⇡)
eixP

+

b

�
hP, S| ̄

j

(0)U [C
b

] 
i

(b)|P, Si
�

�

�

�

b

+

=0

, (11)

�̃
ij

(z, b
T

) ⌘
Z

d2K
T

eibT ·KT �
ij

(z,K
T

) , (12)

to re-write the leading term in the hadronic tensor, Eq. (6), in Fourier space

2MW̃µ⌫ =
X

a

e2
a

Tr
⇣

�̃(x, zb
T

)�µ�̃(z, b
T

)�⌫
⌘

. (13)

The advantage of the b
T

space representation is clear: the hadronic tensor is no longer a convolution of p
T

and K
T

dependent functions but a simple product of b
T

-dependent functions. This motivates us to re-write the entire cross
section in terms of the Fourier transform

d�

dxB dy d dz
h

d�
h

|P
h?

|d|P
h?

| =
Z

d2b
T

(2⇡)2
e�ibTP h?

⇢

↵2

xByQ
2

y2

(1� ")

✓

1 +
�2

2xB

◆

L
µ⌫

W̃µ⌫

�

. (14)

Next, we decompose the correlators �̃ and �̃ into TMD PDFs and FFs in Fourier space. Using the trace notation
(see also Eqs. (A8) and (A9) in the appendix)

�̃[�] ⌘ 1

2
Tr(�̃�) , (15)

and restricting ourselves to leading twist projections, we obtain the following structures for �̃

�̃[�

+

](x, b
T

) = f̃
1

(x, b2
T

)� i ✏⇢�
T

b
T⇢

S
T�

Mf̃
?(1)

1T
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T

) ,

�̃[�

+

�

5
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T
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L

g̃
1L

(x, b2
T

) + i b
T

·S
T

M g̃
(1)

1T

(x, b2
T

) ,

�̃[i�

↵+

�

5

](x, b
T

) = S↵

T

h̃
1

(x, b2
T

) + i S
L

b↵
T

M h̃
?(1)

1L
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T

)

+
1

2

✓

b↵
T

b⇢
T

+
1

2
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T

g↵⇢
T

◆

M2 S
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?(2)

1T

(x, b2
T

)� i ✏↵⇢
T

b
T⇢

Mh̃
?(1)

1

(x, b2
T

) , (16)

where ↵ = 1, 2 and ⇢ = 1, 2. Similarly, we obtain the following structures for �̃

�̃[�

�
](z, b

T

) = D̃
1

(z, b2
T

)� i ✏⇢�
T

b
T⇢

S
hT�

zM
h

D̃
?(1)

1T

(x, b2
T

) ,

�̃[�

�
�

5

](z, b
T

) = S
hL

G̃
1L

(z, b2
T

)� i b
T

·S
hT

zM
h

G̃
(1)

1T

(z, b2
T

) ,

�̃[i�

↵�
�

5

](z, b
T

) = S↵

hT

H̃
1

(z, b2
T

)� i S
hL

b↵zM
h

H̃
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1L

(z, b2
T

)

+
1

2

✓

b↵
T

b⇢
T

+
1

2
b2
T

g↵⇢
T

◆

z2M2

h

S
hT⇢

H̃
?(2)

1T

(z, b2
T

)� i ✏↵⇢
T

b
T⇢

zM
h

H̃
?(1)

1

(z, b2
T

) . (17)

For future applications, we have written down the latter decomposition for the more general case of a spin- 1
2

hadron;
the expression for a spinless hadron is obtained by setting S

h

= 0. The above decompositions can be deduced
from the existing expressions for � and � in momentum space [5, 29], or starting from the symmetry properties of
the correlators �̃ and �̃ and a parameterization in terms of Lorentz-invariant amplitudes, see also Section IV and
Appendix C. The functions f̃

1

(x, b2
T

), g̃
1L

(x, b2
T

), . . . are the Fourier transforms of the usual TMD PDFs f
1

(x,p2

T

),
g
1L

(x,p2

T

), . . .. For a generic TMD PDF called f and a generic TMD FF called D, this Fourier transform is given by

f̃(x, b2
T

) ⌘
Z

d2p
T

eibT ·pT f(x,p2

T

) = 2⇡

Z

d|p
T

||p
T

| J
0

(|b
T

||p
T

|) f(x,p2

T

) , (18)

D̃(z, b2
T

) ⌘
Z

d2K
T

eibT ·KT D(z,K2

T

) = 2⇡

Z

d|K
T

||K
T

| J
0

(|b
T

||p
T

|) D(x,K2

T

) . (19)

Recall the correlator in b-space Bessel Transform

 Unpolarized and Sivers evolve in same way

!i
f=Pðx;kT;"; #FÞ ¼

1

ð2$Þ2
Z

d2bTe
ikT$bT ~!i

f=Pðx;bT;"; #FÞ ¼
i

ð2$Þ2MP

Z
d2bTe

ikT$bT
biT
bT

~F0?f
1T ðx; bT ;"; #FÞ: (20)

To further simplify this expression, and without loss of generality, we use a frame where kT is in the x direction so that
kiT
kT
¼ ð1; 0Þ and biT

bT
¼ ðcos%; sin%Þ. Then,

!i
f=Pðx;kT;"; #FÞ ¼

i

ð2$Þ2MP

Z 1

0
dbTbT ~F

0?f
1T ðx; bT ;"; #FÞ

Z $

%$
d%eikTbT cos%ðcos%; sin%Þ

¼ 1

ð2$Þ2MP

Z 1

0
dbTbT ~F

0?f
1T ðx; bT ;"; #FÞ

@

@ðkTbTÞ
Z $

%$
d%eikTbT cos%ð1; 0Þ

¼ kiT
2$MPkT

Z 1

0
dbTbT ~F

0?f
1T ðx; bT ;"; #FÞ

@

@ðkTbTÞ
J0ðkTbTÞ

¼ %kiT
2$MpkT

Z 1

0
dbTbTJ1ðkTbTÞ ~F0?f

1T ðx; bT;"; #FÞ: (21)

Then the complete Sivers term in Eq. (13) is

!i
f=Pðx;kT;"; #FÞ&ijSjT

¼ %kiT&ijS
j
T

2$MpkT

Z 1

0
dbTbTJ1ðkTbTÞ ~F0?f

1T ðx; bT ;"; #FÞ: (22)

So, from Eq. (15) we express the momentum-space Sivers
function in terms of ~F0:

F?f
1T ðx; kT ;"; #FÞ

¼ %1

2$kT

Z 1

0
dbTbTJ1ðkTbTÞ ~F0?f

1T ðx; bT ;"; #FÞ; (23)

whose inverse transform is

~F0?f
1T ðx; bT ;"; #FÞ

¼ %2$
Z 1

0
dkTk

2
TJ1ðkTbTÞF?f

1T ðx; kT ;"; #FÞ: (24)

Notice that the originally defined ~F?f
1T from Eq. (16) no

longer appears. The bT-dependent function ~F0?f
1T ðx; bT ;";

#FÞ is closely analogous to the quantity ~f?ð1Þ
1T that appears

in Eqs. (16) and (20) of Ref. [27], and to @ibqT in Eq. (40) of
Ref. [20], though the basic definition for the bT-space
TMD PDF in Eq. (11) is significantly different.

B. The evolution equations

The set of evolution equations comprises the Collins-
Soper (CS) equation which gives evolution with respect to
#F, and the renormalization-group (RG) equations which
give evolution with respect to ". The CS equation for the
TMD function defined in Eq. (11) is [21]

@ ~Ff=P"ðx;bT; S;"; #FÞ
@ ln

ffiffiffiffiffiffi
#F

p ¼ ~KðbT ;"Þ ~Ff=P"ðx;bT; S;"; #FÞ;

(25)

where

~KðbT;"Þ ¼ 1

2

@

@ys
ln
"~SðbT ; ys;%1Þ
~SðbT ;þ1; ysÞ

#
: (26)

The RG equations are

d ~KðbT ;"Þ
d ln"

¼ %'Kðgð"ÞÞ (27)

and

d ~Ff=P"ðx;bT; S;"; #FÞ
d ln"

¼ 'Fðgð"Þ; #F="2Þ ~Ff=P"ðx;bT; S;"; #FÞ: (28)

Similar equations apply to the fragmentation function.
It follows that the #F dependence of 'F is determined:

@'Fðgð"Þ; #F="2Þ
@ ln

ffiffiffiffiffiffi
#F

p ¼ %'Kðgð"ÞÞ; (29)

so that

'Fðgð"Þ; #F="2Þ ¼ 'Fðgð"Þ; 1Þ % 1

2
'Kðgð"ÞÞ ln#F

"2 :

(30)

These equations were used in Ref. [22] to calculate the
evolution of the unpolarized TMDs. For the spin-
dependent case, the Fourier transform of the second term
in Eq. (13) obeys the same evolution equations, i.e., the
equations apply to

Z
d2kTe

%ikT$bTF?f
1T ðx; kT ;"; #FÞ

&ijk
i
TS

j
T

Mp

¼ ~!i
f=Pðx;bT;"; #FÞ&ijSjT: (31)

The CS equation for the spin-dependent part is therefore

@ ~!i
f=Pðx;bT;";#FÞ&ijSjT

@ln
ffiffiffiffiffiffi
#F

p ¼ ~KðbT ;"Þ ~!i
f=Pðx;bT;";#FÞ&ijSjT:

(32)

QCD EVOLUTION OF THE SIVERS FUNCTION PHYSICAL REVIEW D 85, 034043 (2012)

034043-5

It obeys Collins Soper Equation

Boer Gamberg Musch Prokudin JHEP 2011

Aybat Rogers Collins Qiu PRD 2012
also see Kang Yuan Xiao PRL 2011



Transverse spin case

✦So it is the derivative of Sivers function  
or first moment evolves 

6

respect to µ. The CS equation for the TMD function
defined in Eq. (11) is [21]

∂F̃f/P↑(x,bT, S;µ, ζF )

∂ ln
√
ζF

=

K̃(bT ;µ)F̃f/P↑(x,bT, S;µ, ζF ), (25)

where

K̃(bT ;µ) =
1

2

∂

∂ys
ln

(

S̃(bT ; ys,−∞)

S̃(bT ; +∞, ys)

)

. (26)

The RG equations are

dK̃(bT ;µ)

d lnµ
= −γK(g(µ)) (27)

and

dF̃f/P↑(x,bT, S;µ, ζF )

d lnµ

= γF (g(µ); ζF /µ
2)F̃f/P↑(x,bT, S;µ, ζF ). (28)

Similar equations apply to the fragmentation function.
It follows that the ζF dependence of γF is determined:

∂γF (g(µ); ζF /µ2)

∂ ln
√
ζF

= −γK(g(µ)), (29)

so that

γF (g(µ); ζF /µ
2) = γF (g(µ); 1)−

1

2
γK(g(µ)) ln

ζF
µ2

. (30)

These equations were used in Ref. [22] to calculate
the evolution of the unpolarized TMDs. For the spin-
dependent case, the Fourier transform of the second term
in Eq. (13) obeys the same evolution equations, i.e., the
equations apply to

∫

d2kT e−ikT·bT F⊥ f
1T (x, kT ;µ, ζF )

ϵijkiTS
j
T

Mp

= φ̃if/P (x,bT;µ, ζF )ϵijS
j
T . (31)

The CS equation for the spin-dependent part is therefore

∂φ̃if/P (x,bT;µ, ζF )ϵijS
j
T

∂ ln
√
ζF

= K̃(bT ;µ)φ̃
i
f/P (x,bT;µ, ζF )ϵijS

j
T . (32)

Hence, Eq. (18) shows that the CS equation for
F̃ ′ ⊥ f
1T (x, bT ;µ, ζF ) is the same as for the unpolarized

TMD PDF:

∂ ln F̃ ′ ⊥ f
1T (x, bT ;µ, ζF )

∂ ln
√
ζF

= K̃(bT ;µ). (33)

Similarly, its RG equation is like Eq. (28):

dF̃ ′ ⊥ f
1T (x, bT ;µ, ζF )

d lnµ

= γF (g(µ); ζF /µ
2)F̃ ′ ⊥ f

1T (x, bT ;µ, ζF ). (34)

Note that in Eqs. (33) and (34) the same CS kernel
K̃(bT ;µ) and anomalous dimension γF (g(µ); ζF /µ2) ap-
pear as in the unpolarized case. This is because K̃ and γF
are properties of the operator defining the parton density,
and this operator is the same for the ordinary unpolar-
ized TMD PDF as for the Sivers function; both concern
the number density of quarks in a hadron, with no po-
larization restriction on the quark.
It is important to emphasize that the evolution equa-

tions (25, 27, 28) are set up to be exactly correct for
all bT , and for all kT . This includes the region where
bT → ∞ (and hence kT → 0). Indeed, the first term on
the right side of Eq. (1) (the TMD-factorization term)
is designed to give an accurate pQCD treatment when
kT ≪ Q, independently of the relative sizes of kT and
ΛQCD.

C. Power laws for kT and bT dependence

As a guide to the qualitative behavior of the Sivers
function, we summarize in this section the power laws
for its dependence on transverse momentum and trans-
verse position as obtained from simple model calcula-
tions. (For a detailed treatment of the power law behav-
ior of other TMDs, see Ref. [30] and also recent discus-
sions in Ref. [27].) In purely perturbative higher-order
calculations, these get modified by logarithms, while use
of a correct solution of the evolution equations can sig-
nificantly modify the power laws [31]. Nevertheless, the
power laws from elementary perturbative calculations
form a useful standard of comparison.
First, we characterize the power law for an ordinary

unpolarized TMD PDF by

F (x, kT ) ∼
1

k2T +M2
. (35)

At large kT , the falloff 1/k2T is the simple dimensional-
analysis power, appropriate to a theory with a dimen-
sionless coupling. The increase at low kT is tamed by an
infra-red cutoff M , which in QCD is nonperturbative. In
bT space, the large-kT behavior Fourier transforms to

F̃ (x, bT ) ∼ constant× logarithms (as bT → 0). (36)

At large bT , the falloff of F̃ should be at least rapid
enough that the integral over all bT is convergent, to give
a finite value for F (x, kT ) at kT = 0. Normally an expo-
nential or Gaussian falloff is assumed (which is controlled
by nonperturbative effects in QCD).
As for the Sivers function, its contribution to the quark

density , F⊥ f
1T (x, kT )ϵijkiTS

j/Mp, has a kinematic zero at



The FT transform of the e.g. Sivers asympt. reduces to first 
moment of Sivers TMD 

Consistent Definition

f̃

?(1)
1T (x, bT ) ⌘

2

M

2

@

@b

2
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?(1)
1T (x, bT ) =

2⇡

M

2

Z 1

0
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2
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2

M
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Z 1
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2
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?(1)
1T (x)

This informs us how to study the collinear limit of 
transversely polarized cross section  

Boer Mulders PRD 1998

Boer, Gamberg, Musch, Prokudin,  
JHEP (2011) 



Non perturbative factor contribution must be fit  

e

�SNP
UT

(b,Q, x, z) = exp

⇢
�

g

1

(x, bT ; bmax

) + g

2

(z, bT ; bmax

) + 2gk(bT ) ln

✓
Q

Q

0

◆��

UT

★ Abyat, Collins, Qiu, Rogers PRD (2011),

CSS NPB 85

CSS Sivers Structure Function



WCSS(qT , Q) =

Z
d2bT
(2⇡)2

eiqT ·bT W̃CSS(bT , Q)

Z
d2qTWCSS(qT , Q) = 0 !

Recall 

Use projection method: for unpolarized trivial



Sivers WUT and study collinear limit

Due to same perturbative evolution kernel as unpolarized: 
Not surprising however two surprising consequences

Use projection method: for unpolarized trivial



1) The first moment of the Sivers function is not divergent, its 
zero in the regulated CSS formalism 

2 ) With modification, the first moment of the Sivers 
function is well defined and the operator structure relation 
between the the 1st moment and the Qiu-Sterman 
function is finite.

Due to same perturbative evolution kernel as unpolarized: 

Not surprising however two surprising consequences



This leads to

@

@bTµ

h
b↵T W̃siv(bc(bT ),Q)

i �����
bT=0

=
@

@bTµ

"
Hsiv

j (µQ,Q)
 �2

MP

!
@

@bT↵

h
f̃?1T, j/A

�
xA, bT ; Q2, µQ

�i
D̃B/ j

�
zB, bT ; Q2, µQ

�
#������

bT=0

= Hsiv
j (µQ,Q)

 �2
MP

!
@2

@bT↵@bTµ

h
f̃?1T, j/A

�
xA, bT ; Q2, µQ

�i
D̃B/ j

�
zB, bT ; Q2, µQ

�
������
bT=0

= Hsiv
j (µQ,Q)

2
MP

Z
d2 kT kµT k↵T f?1T, j/A(xA, kT ; Q2, µQ) dB/ j(zB; Q2, µQ)

= Hsiv
j (µQ,Q)

h
�2MP f?(1)

1T, j/A(x; Q2, µQ)
i

dB/ j(zB; Q2, µQ) , (21)

which gives

�siv(Q) = Hsiv
LO(µQ,Q)

h
MP f?(1)

1T, j/A(x; Q2, µQ)
i

dB/ j(zB; Q2, µQ) + O(↵s(Q)) (22)

Comparing (22) with (19) yields at LO

f?(1)
1T,SIDIS(x; Q2, µQ) = � 1

2MP
TF(x, x; µc) . (23)

4. Summary
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j (µQ,Q)

h
�2MP f?(1)

1T, j/A(x; Q2, µQ)
i

dB/ j(zB; Q2, µQ) , (21)

which gives

�siv(Q) = Hsiv
LO(µQ,Q)

h
MP f?(1)

1T, j/A(x; Q2, µQ)
i

dB/ j(zB; Q2, µQ) + O(↵s(Q)) (22)

Comparing (22) with (19) yields at LO

f?(1)
1T,SIDIS(x; Q2, µQ) = � 1

2MP
TF(x, x; µc) . (23)

4. Summary
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bmax = 0.5GeV−1 in [33], and bmax = 1.5GeV−1 in [34].
Next we write

K̃(bT ;µ) = K̃(b∗;µb)−
∫ µ

µb

dµ′

µ′
γK(g(µ′))−gK(bT ). (43)

The first two terms are perturbative and include all the
evolution of K̃. The last term is nonperturbative but

scale independent. It represents the only nonperturba-
tive information needed to evolve the Sivers function from
the scale Q0 where it was initially fit. But this function is
process independent [21], so we can take its value from al-
ready existing fits to unpolarized Drell-Yan [33, 34] scat-
tering at a variety of energies.

This gives the evolved function:

F̃ ′ ⊥ f
1T (x, bT ;µ, ζF ) = F̃ ′ ⊥ f

1T (x, bT ;µ0, Q
2
0) exp

{

ln

√
ζF
Q0

K̃(b∗;µb) +

∫ µ

µ0

dµ′

µ′

[

γF (g(µ
′); 1)− ln

√
ζF
µ′

γK(g(µ′))

]

+

∫ µb

µ0

dµ′

µ′
ln

√
ζF
Q0

γK(g(µ′))− gK(bT ) ln

√
ζF
Q0

}

. (44)

We can set µ0 = Q0 and then use Q0 =
√
2.4GeV, which

is the appropriate scale for the fits in [14, 15], which used
data from the HERMES experiment. For the prediction
of data at a higher energy, one should set µ2 = ζF =
Q2. The anomalous dimensions γF and γK are used in a
region where perturbative calculations are appropriate.
The Sivers function in transverse-momentum space is

then obtained from Eq. (44) by Fourier transformation,
as in Eq. (23).
The one-loop values of the relevant perturbative quan-

tities are listed in the Appendix.
The size of the Sivers asymmetry is also often

parametrized by the function

Ff/P↑(x,kT;S, µ, ζF )− Ff/P↑(x,kT;−S, µ, ζF )

= ∆NFf/P↑(x, kT ;µ, ζF )
ϵijkiTS

j
T

kT
, (45)

where

∆NFf/P↑(x, kT ) = −2kT
Mp

F⊥ f
1T (x, kT ;µ, ζF ). (46)

As can be seen from Figs. 1 and 2 below, TMD func-
tions broaden substantially as the scale increases. Thus
larger values of transverse momentum become important,
and correspondingly we need the F̃ factor at small bT .

B. Including the perturbative calculation of Sivers
function at small-bT

At low scales, the Sivers function is dominantly at low
values of kT , and correspondingly the range of bT that
matters concerns the larger values where both the start-
ing value F̃ ′ ⊥ f

1T (x, bT ;µ0, Q2
0) and the evolution kernel

K̃(bT ;µ) are in the nonperturbative region. After evolu-
tion to a sufficiently large scale, the broadening of the kT
distribution makes smaller values of bT important, where
there is perturbative information. For both this case and
the treatment of the large-kT tail of the Sivers function
we can use the expansion (41) to write it in terms of the
twist-3 Qiu-Sterman function.

Following the method used for the unpolarized TMD PDF — see Ref. [17, 21] and Eq. (31) of Ref. [22] — we write

F̃ ′ ⊥ f
1T (x, bT ;µ, ζF ) =

∑

j

MpbT
2

∫ 1

x

dx̂1 dx̂2

x̂1 x̂2
C̃Sivers

f/j (x̂1, x̂2, b∗;µ
2
b , µb, g(µb))TF j/P (x̂1, x̂2, µb)

× exp

{

ln

√
ζF
µb

K̃(b∗;µb) +

∫ µ

µb

dµ′

µ′

[

γF (g(µ
′); 1)− ln

√
ζF
µ′

γK(g(µ′))

]}

× exp

{

−gSiversf/P (x, bT )− gK(bT ) ln

√
ζF
Q0

}

.

(47)

The first line describes the matching to a
collinear treatment relevant to small bT . There,

F̃
′ ⊥ f
1T (x, bT ;µ, ζF ) is expressed as a coefficient function

C̃f/j(x̂1, x̂2, b∗;µ2
b , µb, g(µb)) convoluted with a (twist-3)

Qiu-Sterman function TF j/P (x̂1, x̂2, µb), where for the
simplicity, we neglected the terms proportional to the

=
1
2
✏Tµ⌫✏T↵� S ⌫T S �T

@

@bTµ

h
b↵T W̃siv(bT ,Q)

i �����
bT=0
+ Ysiv(qT ,Q) . (15)

We know from [6] that W̃unp(bT ! 0,Q) = ba
T ⇥ (log corrections), where a = 8CF/�0 (see Appendix A of that

reference). Since this bT ! 0 behavior is a direct consequence of the perturbative Sudakov factor in the exponential
of the third line in (10), which is the same factor that appears in the third line of (14)3, we find that

@

@bTµ

h
b↵T W̃siv(bT ,Q)

i �����
bT=0
= 0 . (16)

Therefore, like with the unpolarized case, we see that �siv(Q) in the original CSS formalism does not yield the expected
LO collinear result. This calls for us to again modify the b⇤-prescription.

We will now demonstrate that the same procedure used in Ref. [6] to modify the unpolarized case also can be
applied to the Sivers case. That is, we make the replacement W̃siv(bT ,Q)! W̃siv(bc(bT ),Q) and multiply Wsiv(qT ,Q)
by ⌅(qT /Q, ⌘). Note that the explicit b↵T in Eq. (9) does not get replaced by bc(bT ) since this factor is associated with
the Fourier transform and not the evolution scale. The analogue of (12) for the polarized case now reads

�siv(Q) =
1
2
✏Tµ⌫✏T↵� S ⌫T S �T

@

@bTµ

h
b↵T W̃siv(bc(bT ),Q)

i �����
bT=0

�
Z

d2qT ✏Tµ⌫ qµT S ⌫T

" 
1 � ⌅

 
qT

Q
, ⌘

!! Z
d2bT

(2⇡)2 eiqT·bT W̃siv(bc(bT),Q) + Ysiv
New(qT ,Q)

#
. (17)

We will focus on the first term in (17), where one has

@

@bTµ

h
b↵T W̃siv(bc(bT ),Q)

i �����
bT=0
= b↵T

@W̃siv(bc(bT ),Q)
@bTµ

@bc(bT )
@bµT

�����
bT=0
+ g↵µT W̃siv(bmin.Q)

= g↵µT W̃siv(bmin,Q) , (18)

where the chain rule is used in the first term of the first line since all factors in Eq. (14) have bc(bT ) dependence when
the replacement bT ! bc(bT ) is made, and the last equality is a result of the fact that (@bc(bT )/@bµT )|bT=0 = 0. Since
bmin = O(1/Q), we can replace W̃siv(bmin,Q) by its OPE W̃siv

OPE(bmin,Q), i.e., the first three lines of (14). Moreover,
the fact that µb⇤ = O(Q), both the C̃ factors in the first two lines of (14) and the perturbative Sudakov factor in the
exponential of the third line can be expanded in powers of ↵s(Q) without large logarithms. In addition, because of the
modifications that led to the new W + Y , the second line of (17) also has a normal collinear expansion beginning at
O(↵s(Q)) [6]. Therefore, to LO we have

�siv(Q) = Hsiv
LO, j0i0 (µQ,Q)

"
�1

2
TF, j0/A(xA, xA; µc)

#
dB/i0 (zB; µc) + O(↵s(Q))

= Hsiv
LO(µQ,Q)

"
�1

2
TF, j/A(xA, xA; µc)

#
dB/ j(zB; µc) + O(↵s(Q)) , (19)

where the last equality reflects the fact that at LO one has i0 = j0 and the hard factor is independent of flavor. This
agrees with the LO result for

R
d2qT ✏Tµ⌫ qµT S ⌫T �(qT ,Q) [7].

Note that, as a consequence, the modified W + Y formulation allows one to recover the well-known identity
between the first moment of the Sivers function and the Qiu-Sterman function [8]. We can see this by evaluating the
l.h.s. of Eq. (18) using the Sivers piece of (5), where instead of (14) one has

W̃siv(bT ,Q) = Hsiv
j (µQ,Q)

2
MP bT

@

@bT

h
F̃?1T, j/A

�
xA, bT; Q2, µQ

�i
D̃B/ j

�
zB, bT; Q2, µQ

�
. (20)

3We mention that, strictly speaking, the same proof in Appendix A of Ref. [6] only pushes through for the homogeneous part of the evolution
of TF (x, x; µ). Nevertheless, the conclusion about the bT ! 0 behavior is true even for the full evolution of that function.
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�̃[�+](x,

~

bT ;Q2
, µQ) = f̃1(x, bT ; Q2

, µQ)� iM✏

ij
b

i
T S

j
T f̃

?(1)
1T (x, bT ; Q2

, µQ)

!
! D. Pitonyak 
!
! D. Pitonyak 

(Collins, Gamberg, Prokudin, Rogers, Sato, Wang (2016)) 

Place!a!lower!cutBoff!on!bT#:#!

µb⇤ ! µ̄ ⌘ C1

b⇤(bc(bT )) so µb⇤ is cut o↵ at µc ⇡
C1C5Q

b0

bT ! bc(bT ) where bc(bT ) =
q

b2
T + b2

0/(C5Q)2

“Improved'CSS”'(Unpolarized)'

(Gamberg, Metz, DP, Prokudin, Rogers, in preparation) “Improved'CSS”'(Polarized)'

f̃1(x, bc(bT ); Q2
, µQ) ⇠

⇣
˜

C

f1
(x/x̂, b⇤(bc(bT )); µ̄

2
, µ̄, ↵s(µ̄))⌦ f1(x̂; µ̄)

⌘

⇥ exp

h
�Spert(b⇤(bc(bT )); µ̄, Q, µQ)� S

f1
NP (bc(bT ), Q)

i

NO!bT!B>!bc(bT)#replacement!–#
kinema<c!factor!NOT!associated!

with!the!scale!evolu<on!

bT!B>!bc(bT)! bT!B>!bc(bT)!

Matching TMD to Collinear factorization for Transverse 
Polarization based 



�̃[�+](x,

~

bT , bc(bT );Q2
, µQ) = f̃1(x, bc(bT ); Q2

, µQ)� iM✏

ij
b

i
T S

j
T f̃

?(1)
1T (x, bc(bT ); Q2

, µQ)

!
! D. Pitonyak 
!
! D. Pitonyak 

(Collins, Gamberg, Prokudin, Rogers, Sato, Wang (2016)) 

Place!a!lower!cutBoff!on!bT#:#!

µb⇤ ! µ̄ ⌘ C1

b⇤(bc(bT )) so µb⇤ is cut o↵ at µc ⇡
C1C5Q

b0

bT ! bc(bT ) where bc(bT ) =
q

b2
T + b2

0/(C5Q)2

“Improved'CSS”'(Unpolarized)'

(Gamberg, Metz, DP, Prokudin, Rogers, in preparation) “Improved'CSS”'(Polarized)'

f̃1(x, bc(bT ); Q2
, µQ) ⇠

⇣
˜

C

f1
(x/x̂, b⇤(bc(bT )); µ̄

2
, µ̄, ↵s(µ̄))⌦ f1(x̂; µ̄)

⌘

⇥ exp

h
�Spert(b⇤(bc(bT )); µ̄, Q, µQ)� S

f1
NP (bc(bT ), Q)

i

f̃

?(1)
1T (x, bc(bT ); Q2

, µQ) ⇠
⇣

˜

C

f?1T
(x̂1, x̂2, b⇤(bc(bT )); µ̄

2
, µ̄, ↵s(µ̄))⌦ FF T (x̂1, x̂2; µ̄

⌘

⇥ exp

h
�Spert(b⇤(bc(bT )); µ̄, Q, µQ)� S

f?1T
NP (bc(bT ), Q)

i
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!
! D. Pitonyak 
!
! D. Pitonyak 

# $
#!
#!

(Gamberg, Metz, DP, Prokudin, Rogers, in preparation) 

f1(x, kT ; Q2
, µQ) ⌘

Z
d2~bT

(2⇡)2
e�i~kT ·~bT

f̃1(x, bc(bT ); Q2
, µQ)

D1(z, pT ; Q2, µQ) ⌘
Z

d2~bT

(2⇡)2
ei~pT ·~bT D̃1(z, bc(bT ); Q2, µQ)

~k2
T

2M2
f

?
1T (x, kT ; Q2

, µQ) ⌘
Z

d2~bT

(2⇡)2
e�i~kT ·~bT

f̃

?(1)
1T (x, bc(bT ); Q2

, µQ)

We!then!define#the!momentumBspace!func<ons...!!

# $
#!
#!

~p 2
T

2z2M2
h

H?
1 (z, pT ; Q2, µQ) ⌘

Z
d2~bT

(2⇡)2
ei~pT ·~bT H̃

?(1)
1 (z, bc(bT ); Q2, µQ)
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!
! D. Pitonyak 
!
! D. Pitonyak 

Moreover,!from!a!phenomenology!standpoint!with!TMD!observables...!!

H̃
?(1)
1 (z, bT ; Q2, µQ) ⇠ H

?(1)
1 (z; µb⇤) exp

h
�Spert(b⇤(bT );µb⇤ , Q, µQ)� S

H?
1

NP (bT , Q)

i

f̃

?(1)
1T (x, bT ; Q2

, µQ) ⇠ FF T (x, x; µb⇤) exp

h
�Spert(b⇤(bT );µb⇤ , Q, µQ)� S

f?1T
NP (bT , Q)

i

The!CT3'funcXons'(along!with!the!NP!gBfunc<ons)!are!what!get!extracted!
in!analyses!of!TSSAs!in!TMD'processes'that!use!CSS!evolu<on!!!
(Echevarria,!Idilbi,!Kang,!Vitev!(2014);!Kang,!Prokudin,!Sun,!Yuan!(2016))!

gf?1T
(x, bT ) + gK(bT ) ln(Q/Q0)

gH?1
(z, bT ) + gK(bT ) ln(Q/Q0)
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Comments

✦ With our method, the redefined W term allowed us  to construct a relationship 
between integrated-TMD-factorization formulas and standard collinear factorization 
formulas, & for transverse polarization.



Thanks to Ian, Kawtar, Barbara Zein 
Eddine and/Organizers for invitation !



• To get a sense of these truncation errors we further 
“unpack” W+ Y  via their “Approximators” and its 
construction in terms of W,  Y,  FO,  ASY terms



Comments Message

✦ Collinear fact. valid in two ways 

1. For cross sections differential in qT   w/ qT ~ Q (OPE) 

2. Also valid when we integrate over qT 

✦ However CSS  did not specifically address the issue of matching to collinear 
factorization  for the cross section integrated  over qT    



Comments Message

✦ We develop a prescription to which matches the integrated-TMD-factorization 
formulas and standard collinear factorization formulas, with errors relating the two 
which suppressed by powers of 1/Q 

✦ Importantly, the exact definitions of the TMD PDFs and FFs are unmodified 
from the usual ones of factorization derivations 

✦ We preserve transverse-coordinate space version of the WTMD term, but only modify 
the way in which it is used



• CONSTRUCTION: one starts with smallest-size region which is in a neighborhood of       
qT = 0, where TTMD gives a very good approximation  adding and subtracting the TTMD 
approx. 

• The error in the bracket is order   (qT/Q)a    and is only unsuppressed at qT >> m  

• Now, extend the range of qT …

d�(qT , Q) = TTMD d�(qT , Q) + [d�(qT , Q)� TTMD d�(qT , Q)]

 Review of Region Analysis “Construction”  

e.g. Collins PRD 1998, Cambridge Press 2011 

Phys.Rev. D 94 (2016) J. Collins, L.Gamberg, A. Prokudin, N. Sato, T. Rogers, B. Wang



• Extending qT, one then applies Tcoll to the bracket & uses the fixed order 
(FO) perturbative expansion

qT ~ Q  or  m/qT << 1

The Result is the combination 

qT/Q << 1 

d�(m . qT . Q,Q) ⇡ T
TMD

d�(qT , Q) + T
coll

[ d�(qT , Q)� T
TMD

d�(qT , Q)]

+O

✓
m

Q

◆c

d�(qT , Q)

d�(m . qT . Q,Q) ⇡ W (qT , Q) + Y (qT , Q) +O

✓
m

Q

◆c

d�(qT , Q)

 Review of Region Analysis “Construction”  
W,   Y,  FO,  ASY Definitions



• It is the difference of the cross section calculated with collinear pdfs and ffs at 
fixed order FO and the asymptotic contribution of the cross section

• N.B. At small qT  the FO and ASY are dominated by the same diverging terms 

• Thus its expected that the Y term is small or zero leaving   

Now we see the definition of the Y term via “approximators”

1

q2T
and

1

q2T
log

Q2

q2T

Y (qT , Q) ⌘ T
coll

d�(qT , Q)� T
coll

T
TMD

d�(qT , Q)

Y (qT , Q) = FO(qT , Q)�ASY (qT , Q)

d�(qT ⌧ Q,Q) ⇡ W (qT , Q)



The next-to-leading order !NLO" corrections are shown in
Figs. 4!b"–4!f". At this order, we need to account for the
virtual corrections to the LO subprocess qh#*→qh $Figs.
4!b"–4!d"%, as well as for the diagrams describing the sub-
processes qh#*→qhg and g#*→qq , with the subsequent
fragmentation of the final-state quark, antiquark or gluon
$Figs. 4!e" and 4!f"%.
Conservation of total four momentum in the real emission

subprocesses $Figs. 4!e" and 4!f"% allows us to write the mo-
mentum of the unobserved final state parton $e.g., the gluon
in Fig. 4!e"% as

pg
&!q&"pa

&#pb
& . !34"

When there is no gluon radiation (pg
&!0) the momentum of

b is pb
&!pa

&"q&, and, according to Eq. !28", qT
2!#qt•qt

!0. Thus, a non-zero qT in the event is an effect of gluon
radiation. In the region qT→0, either softness or collinearity
of the unobserved partons will create infrared singularities,
which make the perturbative result unreliable. The sum of
the real and virtual diagrams is made finite by order-by-order
cancellation of the soft singularities arising from the real and

virtual pieces, and by absorption of the collinear singularities
into the parton distribution and fragmentation functions.
Nonetheless, this cancellation does not guarantee rapid con-
vergence of the perturbative calculation, which will typically
contain large logarithms log qT /Q countering the smallness
of the strong coupling.
The slow convergence of the perturbative series at

qT→0 can be corrected by resummation of the most singular
logarithmic terms. It is done in the following way. First, we
extract the terms in the squared amplitudes of the real emis-
sion diagrams Figs. 4!e" and 4!f" that are most singular in the
limit qT→0; we refer to these terms as the asymptotic piece.
These terms are proportional to 1/qT

2 and, as it was men-
tioned above, they appear only in the V̂ba

(1) structure function.
Thus, the structure function V̂ba

(1) is represented as

V̂ba
(1)! x̂ , ẑ ,Q2,qT

2 "!$ V̂ba
(1)! x̂ , ẑ ,Q ,qT

2 "%asym"Ŷ ba
(1)! x̂ , ẑ ,Q2,qT

2 ",
!35"

where (V̂ba
(1))asym is O(1/qT

2), and Ŷ ba
(1) is finite in the limit

qT→0. The asymptotic piece of the NLO hadron cross-
section !30" is

! d'BA

dxdzdQ2dqT
2d(

"
asym

!
'0Fl

SeA

)s

*

1
2qT

2

A1!+ ,("

2*

$,
j

e j
2#DB/ j!z ,&"-!Pqq ! f j /A"!x ,&""!Pqg ! f g/A"!x ,&".

"-!DB/ j ! Pqq"!z ,&""!DB/g ! Pgq"!z ,&". f j /A!x ,&"

"2DB/ j!z ,&" f j /A!x ,&"$ CFlog
Q2

qT
2 #

3
2 CF% "O! )s

*
,qT
2 " & . !36"

Here ee j is the electric charge of the participating quark or
antiquark of flavor j. The parameter '0 collects various con-
stant factors coming from the hadronic side of the matrix
element:

'0/
Q2

4*SeAx2
! e2

2 " . !37"

The factor Fl , that comes from the leptonic side, is defined
by

Fl!
e2

2
1

Q2 . !38"

The color factor CF!(Nc
2#1)/(2Nc)!4/3. The convolution

in Eq. !36" is defined as

! f ! g "!x ,&"!'
x

1
f !x/0 ,&"g!0 ,&"

d0

0
. !39"

The functions Pi j(x) entering the convolution integrals in
Eq. !36" are the familiar splitting kernels:

Pqq!x "!CF! 1"x2

1#x "
"

, !40"

Pqg!x "!
1
2 !1#2x"2x2", !41"

Pgq!x "!CF
1"!1#x "2

x . !42"

The finite piece Y BA
(1) of the hadron cross section and the other

structure functions Vba
(i) for i!2,3,4 can be derived in a

P. NADOLSKY, D. R. STUMP, AND C.-P. YUAN PHYSICAL REVIEW D 61 014003

014003-6

Y (qT , Q) = FO(qT , Q)�ASY (qT , Q)

The Asymptotic piece of the NLO cross section in detail

• Nadolsky et al. PRD 1999, Y. Koike, J. Nagashima, and W. Vogelsang, Nucl. Phys. B744, 59 (2006)



The Sivers and Qiu-Sterman 
functions 

19"

•  Transverse"single""
spin"asymmetry:"

"
•  Differen4al"in"(small)"PhT":""

–  Sivers"Func4on:""
–  Distribu4on"of"quarks"with"transverse"momentum"kT"inside"
transversely"polarized"proton."

–  Sign"flip."
"

•  QiuLSterman:"Collinear"but"higher"twist":"

•  Integrate:""
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Indication on the process-dependence of the Sivers effect

Leonard Gamberg,1 Zhong-Bo Kang,2 and Alexei Prokudin3
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We analyze the spin asymmetry for single inclusive jet production in proton-proton collisions
collected by AnDY experiment at the Relativistic Heavy Ion Collider and the Sivers asymmetry
data from semi-inclusive deep inelastic scattering experiments. In particular, we consider the role
color gauge invariance plays in determining the process-dependence of the Sivers effect. We find that
after carefully taking into account the initial-state and final-state interactions between the active
parton and the remnant of the polarized hadron, the calculated jet spin asymmetry based on the
Sivers functions extracted from HERMES and COMPASS experiments is consistent with the AnDY
experimental data. This provides a first indication for the process-dependence of the Sivers effect
in these processes. We also make predictions for both direct photon and Drell-Yan spin asymmetry,
to further test the process-dependence of the Sivers effect in future experiments.

PACS numbers: 24.85.+p, 12.38.Bx, 12.39.St, 13.88.+e

The investigation of nucleon’s sub-structure has en-
tered a new era. In past decades an understanding of
nucleons in terms of quarks and gluons (partons), the de-
grees of freedom of Quantum Chromodynamics (QCD),
has been successfully established. Progress was achieved
in constructing a “one-dimensional” light-cone picture of
the nucleon based on the longitudinal motion of par-
tons in fast moving nucleons. In recent years theoreti-
cal breakthroughs extended this description in the trans-
verse as well as light-cone momentum space (three di-
mensions). Transverse-spin dependent observables, such
as single transverse spin asymmetries (SSAs) provide firm
evidence for a three-dimensional tomography of the nu-
cleon due to a non-trivial correlation between the trans-
verse spin and the parton’s transverse momentum, and
present unique opportunities to study QCD dynamics,
particularly QCD factorization and universality of the
parton distributions [1].

Large SSAs have been measured in fixed-target and
collider mode in single inclusive particle production in
nucleon-nucleon scattering experiments [2] and semi-
inclusive deep inelastic lepton-nucleon scattering (SIDIS)
experiments [3–5]. Two different yet related QCD factor-
ization formalisms have been proposed to describe the
asymmetries. One relies on the so-called transverse mo-
mentum dependent (TMD) factorization [6, 7], which is
valid for the processes with two characteristic scales; for
example the photon’s virtuality Q and Ph⊥ of the pro-
duced hadron in SIDIS, where Λ2

QCD ! P 2
h⊥ ≪ Q2. In

this formalism transverse spin effects are associated with
TMD parton distribution functions and fragmentation
functions (PDFs and FFs). Then there is the collinear
factorization formalism at next-to-leading power (twist-
3) in the hard scale [8, 9]. This approach is valid for
processes with only one characteristic hard scale, for in-
stance, the transverse momentum P 2

h⊥ ≫ Λ2
QCD of the

produced hadron in proton-proton (pp) collisions. It de-

scribes the spin asymmetry in terms of twist-3 three-
parton correlation functions. One of the well-known
examples is the so-called Efremov-Teryaev-Qiu-Sterman
(ETQS) function Tq,F (x, x) [8].
Of central importance in the study of SSAs is the

Sivers [10] effect which has attracted great attention in
recent years. In part this is due to the unique prediction
from TMD factorization theorems that the Sivers effect
is process-dependent: that is its existence relies on the
initial-state and final-state interactions (ISIs and FSIs)
between the struck parton and the remnant of the polar-
ized hadron. These interactions depend on the color flow
of the specific scattering process considered, thus giv-
ing rise to process-dependent Wilson lines in the gauge-
invariant definition of the relevant TMD PDFs - in this
case so-called Sivers functions f⊥

1T (x, k
2
⊥). The often dis-

cussed case is the difference between the FSIs in SIDIS
and the ISIs in Drell-Yan (DY) production in pp colli-
sions which leads to an opposite sign in the Sivers func-
tion probed in these two processes, indicating that the
Sivers function is not universal [11].
On the other hand in the twist-3 collinear factoriza-

tion approach, the process-dependence of the ISIs and
FSIs is absorbed into the short-distance, perturbative cut
scattering amplitudes, where the relevant twist-3 three-
parton correlation functions are universal. As a result,
TMD and collinear twist-3 factorization formalisms are
closely related to each other [12]. The relevant functions
- the Sivers function and the ETQS twist-3 function are
connected through the following relation [13, 14],

Tq,F (x, x) = −
∫

d2k⊥
|k⊥|2

M
f⊥q
1T (x, k2⊥)|SIDIS. (1)

where the subscript emphasizes that the Sivers function
is probed in the SIDIS process. In other words, starting
from the Sivers functions extracted from SIDIS, one can
derive a functional form for ETQS function Tq,F (x, x). In

??"
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Using the equation of motion for the quark field, the following relations can be established

between the functions appearing in the above correlator and the functions in the quark-

quark correlator (3.38):

E
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4. Results for structure functions

Inserting the parameterizations of the different correlators in the expression (3.9) of the

hadronic tensor and using the equation-of-motion constraints just discussed, one can calcu-

late the leptoproduction cross section for semi-inclusive DIS and project out the different

structure functions appearing in eq. (2.7). To have a compact notation for the results, we

introduce the unit vector ĥ = P h⊥/|P h⊥| and the notation
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where w(pT ,kT ) is an arbitrary function and the summation runs over quarks and anti-

quarks. The expressions for the structure functions appearing in eq. (2.7) are
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ĥ ·kT

Mh

(

xhLH⊥
1 +

Mh

M
g1L

G̃⊥

z

)

+
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For example, Φ̃ transforms under hermitian conjugation as

(†) :
[
Φ̃[Γ]

unsub(b, P, S; v)
]∗

= Φ̃[γ0Γ†γ0]
unsub (−b, P, S; v) . (C.8)

Let f(p,w) be any of the structures preceding the invariant amplitudes in the param-

eterization of Φ. The structure f(p,w) is a homogeneous function of some degree

n in p, i.e., f(αp,w) = αnf(p,w) for any number α. For example, the structure

f(p,w) = 1
M(v·P )(p·S)ϵµναβPνpαvβ preceding B(+)

9 in eq. (4.3) has degree n = 2. If we

define f̃(b, w) ≡ f(−iM2b, w), then
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This shows that f̃ transforms like Φ̃ in eq. (C.7). We conclude that the parameterization

of Φ̃ can be found by the substitution p → −iM2b in the structures parameterizing Φ, and

we arrive at eq. (4.4). The amplitudes Ã(+)
i and B̃(+)

i introduced this way are no longer

constrained to be real valued functions. Instead, hermitian conjugation eq. (C.8) yields the

relation
[
Ã(+)

i (b2, b·P, v·b/(v·P ), ζ−2, µ2)
]∗

= Ã(+)
i (b2,−b·P,−v·b/(v·P ), ζ−2, µ2) . (C.10)

D Structure functions in terms of Fourier transformed TMD PDFs and

FFs

The structure functions of ref. [8] can be expressed in terms of Fourier-transformed TMD

PDFs and FFs as
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T H⊥

1 −
Mh

M
f⊥
1T

D̃⊥

z

)]}

, (4.15)

F sin(2φh−φS)
UT =

2M

Q
C
{

2 (ĥ ·pT )2 − p2
T

2M2

(

xf⊥
T D1 −

Mh

M
h⊥

1T

H̃

z

)

−
2
(

ĥ ·kT

) (

ĥ ·pT

)

− kT ·pT

2MMh

[(

xhT H⊥
1 +

Mh

M
g1T

G̃⊥

z

)

+

(

xh⊥
T H⊥

1 −
Mh

M
f⊥
1T

D̃⊥

z

)]}

, (4.16)

F cos(φh−φS)
LT = C

[

ĥ ·pT

M
g1T D1

]

, (4.17)

F cos φS

LT =
2M

Q
C
{

−
(

xgT D1 +
Mh

M
h1

Ẽ

z

)

+
kT ·pT

2MMh

[(

xeT H⊥
1 −

Mh

M
g1T

D̃⊥

z

)

+

(

xe⊥T H⊥
1 +

Mh

M
f⊥
1T

G̃⊥

z

)]}

, (4.18)

F cos(2φh−φS)
LT =

2M

Q
C
{

−
2 (ĥ ·pT )2 − p2

T

2M2

(

xg⊥T D1 +
Mh

M
h⊥

1T

Ẽ

z

)

+
2
(

ĥ ·kT

) (

ĥ ·pT

)

− kT ·pT

2MMh

[(

xeT H⊥
1 −

Mh

M
g1T

D̃⊥

z

)

−
(

xe⊥T H⊥
1 +

Mh

M
f⊥
1T

G̃⊥

z

)]}

. (4.19)

Notice that distribution and fragmentation functions do not appear in a symmetric fashion

in these expressions: there are only twist-three fragmentation functions with a tilde and

only twist-three distribution functions without tilde. This asymmetry is not surprising

because in eq. (2.7) the structure functions themselves are introduced in an asymmetric

way, with azimuthal angles referring to the axis given by the four-momenta of the target

nucleon and the photon, rather than of the target nucleon and the detected hadron.

Equations (4.2) to (4.19) are a main result of this paper. A few comments concerning

the comparison with the existing literature are in order here. First of all, it has to be
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forts to interpret transverse momentum spectra in terms
of hadronic structure, where a detailed separation and
identification of large and small qT/Q behavior and its
potential interplay is important.

Generally, to get results that are valid over all qT we
need to combine the information given by TMD factor-
ization and by collinear factorization. TMD factorization
is appropriate for qT ⌧ Q; its accuracy degrades as qT
increases and eventually it does not give even a qual-
itatively correct account of the cross section. Collinear
factorization is valid in two ways. One is for the cross sec-
tion di↵erential in qT with qT ⇠ Q; the accuracy degrades
as qT decreases, and collinear factorization becomes en-
tirely inapplicable for the di↵erential cross section once
qT is of order m or smaller. But collinear factorization is
also valid for the cross section integrated over qT.

In this article, we argue for an enhanced formalism.
As already stated, the W +Y formalism as given by CSS
was designed to combine the best of TMD and collinear
factorization at intermediate qT. What was not done
was to adjust the formalism to work nicely also for the
cross section integrated over all qT. We summarize an
interconnected set of problems as follows:

• A standard way of presenting the W term, with the
solution to the evolution equations, is as a Fourier
transform from a transverse coordinate bT to trans-
verse momentum. When bT ! 0, the bT-space in-
tegrand W̃ (bT) goes to zero. (See Appendix A.)
Therefore, the integral over all transverse momen-
tum of the corresponding momentum-space contri-
bution W (qT) is zero. Now, at small qT, W (qT) is
the dominant TMD-factorized contribution to the
cross section, and is necessarily positive. Therefore,
at some larger qT, the W (qT) term must become
negative. By construction, the Y term compensates
to give the physical positive cross section, so this is
not a problem in principle. However, if W becomes
large and negative at qT ⇠ Q, the Y term becomes
large and positive, so the formalism involves im-
plementing a cancellation of two large quantities.
This can enormously magnify the e↵ects of trun-
cation errors in perturbative quantities, since these
have di↵erent structures in W and Y .

• In pure parton-model treatments of TMD func-
tions, the transverse momentum integral of the W -
term gives the collinear factorization parton model
for the cross section integrated over qT. The pre-
vious item shows that, at least within the original
CSS approach, this connection is not merely sub-
ject to higher-order perturbative corrections, but is
totally lost.

• In real QCD, consider the cross section integrated
over all qT; it is of the form of factors of collinear
parton densities and/or fragmentation functions at
scale Q convoluted with hard scattering that is ex-
panded in powers of ↵

s

(Q). The lowest order for

the integrated cross section itself is correctly given
by a perturbative expansion of the hard scatter-
ing, with the first term being zeroth order in ↵

s

(Q)
(concentrated at qT = 0). We can try doing this
for all quantities in
Z

d2qT

d�

d2qT . . .
=

Z
d2qT W +

Z
d2qT Y. (1)

Since the integral over W is zero, the integrated
cross section is given by the integral over qT of
the Y term. But the CSS construction of the Y
term shows that its lowest term is the same order as
for collinear factorization for the di↵erential cross
section, which is first order in ↵

s

(Q) [3] .

We thus have a paradox: a mismatch of orders in
↵
s

(Q) between the left and right hand sides of Eq.
(1). The real source of the paradox and an indica-
tions of what to do about are indicated next.

• The zero value of
R
d2qT W is not obtained from

a fixed order perturbative application of collinear
factorization to W̃ (bT, Q) at bT = 0, but from the
solution of evolution equations for W̃ , as seen in
Eq. (35) below. Each order of the perturbative
expansion in powers of ↵

s

(Q) contains up to two
logarithms per loop of QbT. These logarithms are
evidently infinite at bT = 0, and fixed order per-
turbative calculations are entirely inapplicable toR
d2qT W with the original CSS definition.

Recall that W is an approximation to the cross
section only for qT ⌧ Q. Thus the transverse-
coordinate-space quantity W̃ (bT, Q) is important
for a physical cross section only for bT bigger
than about 1/Q. Finite perturbative orders of the
collinear expansion are useful when bT is of order
1/Q.

• Even without the issue of W (qT) becoming nega-
tive at large qT, there is the issue that it involves,
in momentum space, a convolution of two indepen-
dent TMD densities. At large qT, these can be com-
puted perturbatively in terms of collinear parton
distribution functions (pdfs) and/or collinear frag-
mentation functions (↵s). Power counting indicates
that they are roughly of order 1/q2T. Therefore,
the basic TMD factorization formula gives a cross
section that has this same power counting, and ex-
tends infinitely far beyond the kinematic limit. The
Y term compensates this in principle, but the dif-
ferent perturbative truncations in Y and W imply
that the result can be numerically a bad approxi-
mation.

The culprit in each of the above is that the TMD factor-
ization formula used in W (qT) was derived to be a good
approximation to the cross section for qT ⌧ Q, but in
the integral over qT, the formula is being used far beyond
its domain of applicability.

From these properties arises a severe problem in getting the integral over qT of the W + Y 
formula  to agree with the collinear factorization results

On the left-hand side, the integral                is given by collinear factorization starting at LO, i.e., αs0, up 
to a power-suppressed error. Fixed-order calculations of the hard scattering are appropriate

On the right-hand side, the integral of W is zero. So the integral of the right-hand side is the integral of  
Y plus the error term but Y is obtained from collinear factorization starting at NLO, i.e., αs

Inconsistency


