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4+ Present an implementation combining TMD factorization and collinear
factorization for studying nucleon structure in SIDIS

Phys.Rev. D 94 (2016) J. Collins, L.Gamberg, A. Prokudin, N. Sato, T. Rogers, B. Wang

4+ This entails a modification of the so called “W+Y” construction of the
SIDIS cross section

+ Address “sftandard matching prescription” traditionally used in CSS
formalism relating low & high g; behavior cross section @ moderate Q



Overview comments

+ Addressing the role of so called Y term * matching of low and high gr

behavior of cross section @ moderate Q gy
Virtual photon y u r: o
4+ Collins Soper Sterman NPB 1985, Altarelli et al, NPB 1985 ":ﬂ -
+ Bozzi, Catani et al. NPB 2006, JHEP 2015 s 43 o

4+ Davies Webber, Stirling, NPB 1985, Arnold and Kauffman NPB 1991 AN Sing breaking ¢ 7

+ A. Bacchetta, D. Boer, M. Diehl, and P. J. Mulders, JHEP (2008)
+ Boglione, Gonzoles, Melis, Prokudin JHEP 2014

4 Phys.Rev. D 94 (2016) J. Collins, L.Gamberg,A. Prokudin, N. Sato, T. Rogers, B. Wang
4+ In progress: an extended treatment transversely polarized case, the Sivers Effect

+ Transverse case, Jiet al. 2006, Kang et al. 2011, Eguchi et al. 2007 ...
+ new ...L.Gamberg,A. Metz, D. Pitonyak, A. Prokudin, T. Rogers ... 2017

4+ We are able to recover the well-known relations between TMD and collinear
guantities one expects from the parton model.

4+ We recover the LO collinear twist 3 result from a weighted g integral of the
differential cross section and derive the well known relation between the TMD Sivers
function and the collinear twist 3 Qiu Sterman function
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4+ There are a number of pieces to this:

4+ From matching cross section point by point in gt
(especially @ relatively low Q)

+ To improved methods relating TMD & collinear factorization for unpolz.

4+ To relating the twist 2 and twist 3 formulations of TSSAs



Review of Resummation | ast week 9/22/17

-

The “W +Y” prescription to describing the qr dependent cross section now being
applied to SIDIS in the language of TMD factorization has its origin in the study of

generic high mass systems (vector bosons, Higgs particles,...) produced in Drell Yan
collisions (e.g. at the Tevatron and now at the LHC)

+ CollinsSoperSterman NPB 1985,

+ Altarelli et al, NPB 1984

+ Davies Webber, Stirling, NPB 19835,
+ Arnold and Kauffman NPB 1991

+ Nadolsky, Stump, Yuan zPRD 2000
+ J.-W. Qiu, Zhang, PRL 2001,

+ Berger, J.-W. Qiu, PRD 2003

+ A. Bacchetta, D. Boer, M. Diehl, and P. J. Mulders, JHEP
(2008)

+ Boglione, Gonzoles, Melis, Prokudin JHEP 2014
+ Bozzi, Catani et al. NPB 2006, JHEP 2015 ...

+ Collins, Gamberg, Prokudin, Sato, Rogers, Wang, PRD
(2016)



Review of Resummation | ast week 9/22/17

e.g., to obtain a precise measurement of the W mass it is important to have accurate
theoretical calculations of the W and Z bosons gt spectra (...talk of Andrea Signori)

In the large-g; region (gr ~ my ), where the transverse momentum is of the order of the
vector boson mass my, one applies conventional perturbation theory to get at the gt

dependent cross section QCD corrections are known up to O(02 ) and in some case
beyond...



Review of Resummation | ast week 9/22/17

However, the bulk of the vector boson cross section is produced in small-q7 region
(gt < my ), where reliability of the fixed-order expansion is spoiled by the presence of

large logarithmic corrections, &N (m2, /g2 ) In™(m2, /q;2 ) of soft & collinear origin



Review of Resummation | ast week 9/22/17

To obtain reliable predictions, these logarithmically-enhanced terms have to be evaluated
and systematically “resummed"” to all orders in perturbation theory

For large energy and Q2 the “resummed” and fixed-order calculations, valid at small and
large gt , respectively, can be consistently matched at intermediate values of gt to

achieve a uniform theoretical accuracy for the entire range of transverse momenta

However at lower phenomenologically interesting values of Q, neither of
the ratios ¢p/Q or m/qr are necessarily very small and matching can be
problematic

It is this matching that | will focus on in the context of TMD factorization physics and its
connection to collinear limit.

In recent years, the resummation of small-qt logarithms has been reformulated by using
SCET & and TMD factorization



Review of Resummation | ast week 9/22/17

At large transverse momentum qr one calculates the cross section
for W & Z production by factorized conventional pert. theory

1 1
dUF dorap
—Z(QT, M, S):Z/dxl/dXZfa/hl(Xl,/L%)fb/hz(XZ,M%:) 12 (g7, M, §; as(ug), ks LF)
qu a,b 0 0 dr
— W

do 9 V I

—:ozwozs(ul—l—ozsm—l—aug—l—...) St LU LLANRCLLLLLLL )

dq? 8 () (b)

(c) (d)

Some examples of Feynman diagrams contributing to W or Z production at non-zero gq: (a,d)
qq - We, (b) gg > Wq, (c) qq — Wee.



Review of Resummation | ast week 9/22/17

At low gt , however, the convergence of the perturbation series

deteriorates as dominant contributions have the form o:ln” (%)
2

The convergence of the series is governed by o, In? (Q_> rather

2
than simply O/ i

QZ

+rv.aln?| =
3%s qz

T

do  a,a, [0 0’
~ > In — 1V +Ua In? —5
T

Fortunately, the coefficients v; of the “leading-logarithm”

approximation are not independent and it is possible to sum the

2

: : : 2 (@7 .
series exactly so that it may be applied even when «:In (E) is large



Fixed order theory calculation “asymptotically”
diverges at low grcannot by itself describe data
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Figure 5.8 The distribution in transverse momentum, pr, of muon pairs, u* s~
produced in pp collisions at W = /s = 27.4GeV compared with the leading or-
der perturbative QCD result. The “Compton® and “annibilation™ contributions are
given by the dashed and dotted curves, respectively (taken from Ref. 9).



From Resummation to CSS

This reorganization and resummation was carried out by
Collins and Soper in b space; the result is

+ Collins Soper, NPB 1982
+ CSS NPB 1985

do 43y, o [ d? bT Jiarb
I dCP (resum) = 3, © / T TZW br, Q)

Wilbr, Q) = Hi(Q) (CP¥ (wa/,br) © fiya(@,m)) (CI¥(wp/2,br) ® f/5(#, pmy) ) e 5O:@

.. TMD factorization
This expression contains the OPE on the Fourier
transforms of the TMDs with soft gluon resummation in
exponent. We will unpack this!




“resummation” Soft gluons

Small gr effects factorize into the Soft Factor
.

d g
v/ Z

SH
=
+

k

Associated with rapidity divergences _@@ _> A
Effects factorizes into the Soft Factor WW< _< i > _

p

Switch now to SIDIS + Nadolsky Stump C.P. Yuan PRD 1999 P



Y-term & Matching
dP2 ZH.?J sois (s ( ),M/Q)/dszeibTPT fijm (@,b75 1, C1) Dy e (2,015 1, (2)  + Y3iDIs

In full QCD, the auxiliary parameters [/ and C are exactly arbitrary
and this is reflected in the the Collins-Soper (CS) equations for the TMD
PDF and the renormalization group (RG) equations

JCC Cambridge Press 201 |, Collins arXiv: 1212.5974, Collins, Gamberg, Prokudin, Roger, Sato,Wang PRD 2016



Factorized Evolved TMDs

® Separate small b7 -Perturbative

® & Large br -non-perturbative

b

b (br) = \/1 + b2 /bman

d?b -
fi(x, kr; p, Cr) :/(QW;Q_ZkT.bel(ma br; 1, Cr)




Summary of elements of TMD factorization

WUU($,Z,b, QZ) — HUU(QaM — Q) Zegf{](xa balua CF)D%(Zha ba:ua CD>
q
— HUU(Q? H = Q) Z egf{](xa b*7 M CF)[)%(Zha b*a M CD)G_Spert(b*’Q)_SUU (6:)
q

= Hyu(Q.u = Q) Y e Col® ® fila, ) G55 @ D (w, wy)e™ Svert (b D= 500 (@)
q

Formalism expresses evolution of TMDS via OPE in terms of collinear
pdfs in b-space

Evolution of Collinear PDFs and multiparton correlation
functions relevant single transverse-spin asymmetry
through DGLAP and its generalization



Summary of elements of TMD factorization

With uy = C1/bs as hard scale, the b dependence of TMDs is calculated in
perturbation theory and related to their collinear parton distribution (PDFs),
fragmentation functions (FFs), or multiparton correlation functions , ... OPE

g1

3 | ; -
fi(z,b;Q) = C1 . ® fi(x, up)e2Srert(@:b:)=Syp(Qd)

Ldx X -
Cq<—i ® fll (XBa /’tb) = Z chei (fﬂ/’tb)fll ()C, /’tb)

i YAB

058 n n . / . .
C = Z (—) C™ \Wilson coefficient



TMD factorization & evolution from b-space rep of SIDIS cross section
interpret as a multipole expansion in terms of 57 [Gev~'] conjugate P},

do B Wuu (z,2,b, Q%)
dz,, dy dog dzp, doy, |PM|d|PM| ;
062 2 db
02 (1y_8) (1+ 21. ) / (’ T)||bT|{J0(|bT||PhL|) vu,r + €Jo(|br||Pril|) Fuu,L
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+ 15| [Slﬂ(¢h — ¢s) J1([br||Pp]) ‘F(s/};z{h ?) 1 e f(s}l:r;(%h ¢S)) @hCﬁS) Pl 1(1ﬁ
'sm ur,T - = 1
2 sinon +05) A (Ibrl|Pr)) £ B

| éln 3‘
+ € sin(3¢p, — ¢g) J3(|bT||PhJ_|) ( o ¢S)\@S) Pl HL(l)]\

/
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Matching TMD & large gt cross section

® With this insight on connection of TMD
factorization and collinear/FO factorization
theorems, one can study matching of large gr
cross section & the TMD

+ Collins Soper Sterman NPB 1982

4+ A. Bacchetta, D. Boer, M. Diehl, and P. J. Mulders, JHEP (2008)

+ Boglione, Gonzalez, Melis, Prokudin JHEP 2014

4 Phys.Rev. D 94 (2016) J. Collins, L.Gamberg,A. Prokudin, N. Sato, T. Rogers, B. Wang

+ new ...Gamberg, Metz, Pitonyak, Prokudin, Rogers ... 2017



dP2 ZH]] SIDIS aS )7“/@)/d2bT€ibT.PT Fj/Hl(vaT;,ua Cl)DHg/j’(zabT;:u7C2) + YSIDIS

The Y term ???Remainder/correction ???

JCC Cambridge Press 2011, Collins arXiv: 1212.5974, Collins, Gamberg, Prokudin, Roger, Sato,VWang PRD 2016



Y-term & Matching Last week 9/22/17

dP2 ZHJJ sipis (s (1 M/Q)/dszeibTPT Fj/Hl(x7bT;/'L7 Cl)ﬁHg/j’(ZabT3M7C2> +  YsIDIS

Consider the full gr spectrum of the DY process: one resums the low gr
contribution to get sensible result @ low qr: but we still have the FO which
describes reasonably well the large qr CS.

Should we just add the FO and the W term?

do(m < gr S Q,Q) = W(gr, Q) + FO(qr, Q)+?? 29

JCC Cambridge Press 2011, Collins arXiv: 1212.5974, Collins, Gamberg, Prokudin, Roger, Sato,Wang PRD 2016



Y-term & Matching

dP2 ZHJJ sipis (s (1 M/Q)/d%T@ibT'PT Fj/Hl(x7bT;/'L7 Cl)DH2/j’(ZabT;M,C2) +  YsIDIS

do(m S gr S Q) = Wlar, Q) + FOlar,@+77 0 () dol4r.0) 77

Y

If we do we double count

We add & subtract out the double counting such that the cross section is
matched (SIDIS,DY, e* e-) in the “overlap region™.Designed s.t. valid to leading

order in m/Q uniformly in g (see role of “approximations” in TMD factorization)

Y(QTv Q) — FO(QTa Q) o ASY(QTa Q)

do(m Sqr S Q,Q)=W(qr,Q) +Y(qr,Q) +

JCC Cambridge Press 201 |, Collins arXiv: 1212.5974, Catani et al. NPB 06, 15, Collins, Gamberg, Prokudin, Roger,
Sato,Wang PRD 2016 ......



“Matching-1” W + Y-schematic Last week 9/22/17

® Was designed with the aim to have a formalism that is valid to leading power
in m/Q uniformly in qr, where m is a typical hadronic mass scale

® and where there is a broad intermediate range of transverse momentum
characterized by M < q17 <K Q

Implementations/studies

FI"Om Ted Roge 'S w + Y 4+ Nadolsky Stump C.P. Yuan PRD 1999 HERA data
4+ Y. Koike, J. Nagashima, W. Vogelsang NPB (2006) eRHIC
4 /\Fun stuff

H
=
E].' I ><
© |gr £ O(m) qr 2 O(Q)
S|
& < — =
S O(m) < qr < O(Q)
| T
\. v— /
W-term ¥ . Y-term
"""" . Cross section doesn’t
........ factorize into TMD
............. functions
-.------.--------;- note PhT — ZqT
Prr

do m
=W4+Y O| —=
dQ? dz dz d2 Pyt e ( )



Comments Message

e — -

+ The standard W + Y prescription was arranged to apply for large Q situations where there
IS a broad range of transverse momentum s.t. m << qr <<Q

+ Thatis where g1/Q is small s.t. TMD factorization is valid & ...
+ m/qris sufficiently small (i.e. gt~ Q) s.t. collinear factorization is valid

+ N.B. keeping full accuracy when m << qr <<Q), give rise to situation where both pure TMD
and pure collinear factorization have degraded accuracy “outside design regions”

+ TMD factorization degrade as gt increases q1/Q ~ O(1) or g1 ~Q
+ Other hand, as gt decreases, m/qr~O(1)or gr~m

+ Generally get results valid over all gr need to combine info TMD & collinear factorization



Matching: A unified picture of TMD & conventional FO factorization
over the entire range (“point by point”) in gr for SIDIS/Drell Yan

TMD
Q> Qr 2 Agep

QT
Aacp << Qr << Q



Matching: A unified picture of TMD & conventional FO factorization
over the entire range (“point by point”) in gr for SIDIS/Drell Yan

TMD
Q> Qr 2 Aqcp

inear/twist-3
, Q17 > Agep

Aacp



A unified picture of TMD and Collinear SIDIS/Drell Yan

Intermediate Q7
Q> Qr > AQCD

TMD
Q> Qr 2 Aqep

inear/twist-3
, Q1 > Aqcp

Aaco << Qr << Q



Connection of twist 3 and twist 2 approach for
Sivers Effect:“overlap regime”
Ji, Qiu,Vogelsang,Yuan PRL 2006 ...Bacchetta, Boer, Diehl, Mulders JHEP 2008

Intermediate Qr
Q> Qr > Aqcep

A
TMD Collinear/twist-3
Q> Qr 2 Aqep e Q. Qr > Aqcp
>QT
Aaco << Qr << Q

Same mechanism in both approaches ISI/FS| 22?

Explore role parton model processes in twist-2&3 approaches
Gamberg, Kang, PLB(2010,2011,2012) Sivers & Collins, Gamberg, Kang, Prokudin PRL2013 ...

Or just match the fixed order to the TMD twist-2 contribution which dominates
gr~Q Collins TMD formalism do(Q,q7) = WY Coliins, Gamberg, Prokudin, Rogers, Sato, Wang PRD 2016



“Matching-17 W + Y studies

® This was designed with the aim to have a formalism that is valid to leading

power in m/Q uniformly in qr, where m is a typical hadronic mass scale

Last week 9/22/17

e and where there is a broad intermediate range of transverse momentum
characterized by m < qr < ()

dz., I do(e+tA—e+B+X)
2 2:Ef z > .4z
dxdQ~dqy; B Jzu, dxdzdQ"dq7y
1 dz,,

0.3
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Q.1

Implementations/studies

4+ “z-flow” Nadolsky Stump C.P. Yuan PRD 1999 HERA data

+ SIDIS Y. Koike, J. Nagashima, W. Vogelsang NPB (2006) eRHIC

5

10

g GeV

14
C T T T T T
3 (a) Unpolarized cross section
- _ [pb/GeV™] )
C x=0.00083 1ok o |
= ' — - Complex-b (g=0)
— Q*=28.8 GeV? 10l | Complex-b (g=0.6) |
- n —— Complex-b (g=0.8)
Y Iﬂ“\ —--— b*-method (g=0.8)
o sl A, —-— b*-method (g=1.3) i
C $=100° GeV?
61 \ Q=100 GeV* i
) \ ¥;=0.012
Al \ \ \ z -integrated (2>0.2) |
I ST N R T RN N
AN
0 5 10 o "N
g. GeV 0 . T
0 2 6 8
ar [GeV]
B x=0.00063
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[pb/GeV?’]
0.4
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0.2

0.1

0.0

' (b) Polarized cross section

w\\ ------ Complex-b (g=0.6)

T T T T

—- LO
— - Complex-b (g=0)

—— Complex-b (g=0.8)
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8=100° GeV*

Q=100 GeV?
%,=0.012
zr-integrated (z>0.2)




“Matching-1” and W + Y-schematic  Last week 9/22/17

® However at lower phenomenologically interesting values of Q, neither of
the ratios q¢r/Q or m/CJT are necessarily very small and matching
can be problematic

W+Y
L rmst From Ted Rogers
; /\
E," S <
i, gr < O(m) gr 2 0(Q)
o |3
<
%g < e >
o [T— O(m) < qr < O(Q)
=20
N S J/
W-term ¥ ™. Y-term
~~~~~ R Cross section doesn’t
......... factorize into TMD
............... functions

Py, note Prr=zgr
do

dQ? dox dz d? Pyt

Wy + 0(5)



Matching and W + Y-schematic Last week 9/22/17

® However at lower phenomenologically interesting values of Q, neither of

the ratios ¢qp/Q or M / dT are necessarily very small and matching can be
problematic

W+Y

do
dQ? dz dz d2P),t

Py, note Prr=zgr

do m
=W4+Y .
dQ@? dz dz d? Py o (Q)



Matching and W + Y -studies Last week 9/22/17

This impacts studies of non-perturbative nucleon structure @ COMPASS & JLAB !l
< <
mSqr S

Implementations

+ Y. Koike, J. Nagashima, W. Vogelsang NPB (2006). “...COMPASS no data at the time...”

800 I | | T | | 70 T | T | | |
[pb/GeVS] (a) Unpolarized cross section [pb/GeVS] (b) Polarized cross section
‘ —- Lo ok | —- Lo _
Y e Complex-b (g=0.6) PR Complex-b (g=0.6)
600 | — Complex-b (g=0.8) | \ —— Complex-b (g=0.8)
' —--— b*-method (g=0.8) 50 |- ! —--— b*-method (g=0.8) |
\ —-— b*-method (g=0.4) \ —-— b*-method (g=0.4)
\ S=300 GeV* i \ S=300 GeV’ |
2 2 40 LT~ 2 2
N Q?=10 GeV SRR Q*=10 GeV
400 - /.\’ N X;=0.04 - ;0\ \. X,=0.04
, ‘\ \, zi-integrated (z; >0.2) 30 / ‘\/‘_,-;.--'-'::\.;\.:,\ zrintegrated (2>0.2) —
3 20 |-
200 -
10
0 0
0.0 0.0




Matching and W + Y -studies Compass Example

Boglione Prokudin et al. JHEP 2015
e When qgr is above some small fraction of Q, W deviates alot from do (g7, Q)

e Then it becomes negative and “asymptotes” to

Nadolsky et al. PRD 1999, Y. Koike, J. Nagashima, and W. Vogelsang, NPB744, 59 (2006)

be augmented (ASY!)

10_30 -\
PRD 94 2016 Collins, Gamberg, Prokudin, Sato, Rogers, Wang ;
__ 10
. =
Matching becomes a ©
o -32
challenge COMPASS/Jlab 5 ™
like energies S
5 103 =
° {absolute value
1074




Matching and W + Y -studies

Last week 9/22/17

e At small grthe Y term is in principle suppressed: it is the difference
of the FO perturbative calculation of the cross section and the
asymptotic contribution of W for small gr

e But there can be a difference of of large terms and truncation
errors are augmented: Here the Y term is larger than W ?!
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P. Sun F Yuan et al arXiv: 1406.3073
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® Thus the region between large and small gr needs special treatment if
errors are to be strictly power suppressed point-by-point in gr

We address & extend formalism

Phys.Rev. D 94 Collins, L.G, Prokudin, Sato, Rogers, Wang

qgr Sm and qr 2 @



Extend/enhanced formalism
Phys.Rev. D 94 Collins, L.G, Prokudin, Sato, Rogers, Wang

qr S m
® For gr < m collinear factorization is not applicable for the
differential cross section. But this region is actually where the
W-term has its highest validity. So one simply must ensure that
the Y -term is sufficiently suppressed in Eq. (10) for g < m

Y(qr,Q) =1FO0(qr,Q) — ASY (qr, Q) } X (q7/A)

with “switching function at small gr

Pointed out by Collins 201 | Cambridge press

X(gr/A) =1—exp{—(qr/A)"*}



(do/dqt)

10000

100

0.01

do(gr S Q,Q) =W(qr,Q) +Y(qr,Q) + O

® Now we can extend the power suppression error estimate down to gr = 0 to get

Asymptotic (x=0.1, z=0.5)
Fixed Order (x=0.1, z=0.5)

Term

\%Y
W+Y

Q,=2 GeV, Q=5 GeV

o L

g do(qr, Q)

Use analytic expressions for the
collinear correlation functions,

from GRV ZPC 1992 for up-quark
pdf and from KKP NPB 2001 for the
up-quark-to-pion ffs.



Extend/enhanced formalism
Phys.Rev. D 94 Collins, L.G, Prokudin, Sato, Rogers, Wang

qr 2,

Modification of the cross section leaves the standard
treatment of TMD factorization only slightly modified

In particular the op. definitions along with evolution
properties are the same as in the usual formalism

We do this Iin two steps however now we need
explicit expression for W from JCC formalism

Many sources ....see Collins Rogers PRD 2015



Summary of elements of TMD factorization

A°DT o by i3 Collins 2011 QCD
Wiqr,Q) = / 2m)2° T (br, Q) Aybat Rogers PRD 201 |
- Factorization and TMD evolution in br space
- Solve the CSS & RG evolution egs. for W b (by) — bz
term in SIDIS with “boundary condition” to TN T 402 bnan

freeze br above some bmax

2 ~ ~
W(gr, Q) = / %ei‘”’b”—r WOPE (b, (br), Q) W p(br, Q; bmags)



Summary of elements of TMD factorization

d?br . - : :
_ 1qT b Collins, L.G, Prokudin, Sato, Rogers, Wang
W(QT7 Q) T / (27T)2 € W(bT7 Q) Phys.ReV.D 9

- Factorization and TMD evolution in br space

- Solve the CSS & RG evolution egs. for W b (by) = b3

term in SIDIS with “boundary condition” to TN T 402 bnan

freeze br above some bmax

~ 2 . ~ ~
Wi(gr,Q) = / %e%qﬂﬁ WOPE (b, (br), Q) W p(br, Q; bmags)

WOPE (bu(br), Q) = Hi(Q) ClJi(2a /2, b:b2) @ fuyal i) O (2p/2,6.) @ di (2, pa)e 0

Collinear pdfs

2 _ nQ d / 2
e~ Srert = oxp {ln Q—ZK(b*(bT); Uy, ) +/ N—Lf [27(043(1/); 1) —1In 32%(043(#/))] }

Evolution kernel




Summary of elements of TMD factorization

A°DT o by i3 Collins 2011 QCD
Wiqr,Q) = / 2m)2° T W(br, Q) Aybat Rogers PRD 201 |
- Factorization and TMD evolution in br space
- Solve the CSS & RG evolution egs. for W b (by) — bz
term in SIDIS with “boundary condition” to TN T 402 bnan

freeze br above some bmax

~ 2 . ~ ~
Wi(qr, Q) = / %em% WOPE (b, (br), Q) W p(br, Q; bmags)

Wxp(br, Qi bmag) = e~ 57 (br:Qibmas)

SNP(bT7 Q; bmax) — gA(an bT; bmaaz) + gB<ZB, bT; bmaa:) — 29K(bT; bmaw) In (g)
0

Aidala, Field, Gamberg, Rogers PRD 2015 9k (b13 bimax) =

Fourier Transforms of TMDs and universal soft function gk




Two modifications

Similar to Catani et al. NPB 2006,
Bessel Weighting-Boer LG Musch Prokudin JHEP 201 |

) = /02 + B3/ (C5Q) = b.(0) ~ 1/Q

a) B.C. Introduce small b-cuttoff

I
=3

( TMDIreglon Qr< @ )I ‘Y region”, QTN Q

Regulate unphysical divergences from in W term 5 s
= = P_L
§ [P |res Apmp P
b) Introduce large gr-switching s.t. that .
1 Similar to Nadolsky et al. PRD 1999, % ; Pl T T~
Whew vanishes at large gr Bozzi & Catani et al NPB 2015 i v v
r—— RNl
L L /

 “good” Br -range /

a= | |
qT . qT - | Nl//l Nl/iP ‘ >BT
_J 3 77 — eXp [— (—) ] TMD hllres
( Q ) nQ

N 2h X N
Wen(ar, @i, o) = = (5,1 [ om0 iOPE (b (0 (62)), Q) Wiy (b 0r). Qs )

Generalized B.C.

(bmin bT < bmin
b* (bc(bT)) — < bT bmin < bT < bmax
\bmax bT > bmax .




Now Y term 1s further modified

Yyew(ar, Q) = Teondo(qr, Q) — Toou Ty do(qr, @) X (a7 /)

= | F'O(qr, Q) — ASYNew(gr, Q)] X (gr/N)

Method of “approximators” in factorization
Collins PRD, 58, 1998 JCC ch 8, summarized in our paper
PRD 2016
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Cutoff Functions
Q = 2.0 GeV

__________________ and large g1/Q (brown solid line) for Q = 20.0 GeV

o =

Switching functions

The cutoff functions in for low gr/lambda (blue dashed line)

See also Altarelli et al NPB 1984, Bozzi, Catani et al NPB 2015 Arnold and Kauffman 1991,
Alternative approach Qiu & Zhang PRL 2001



do(qr, Q) = Trypdo(qr, Q) + Teou [do(qr, Q) — Try/p do(qr, Q)]

+0 <%) C do(qr, Q)

or

m

Q>CdU(QT, Q)

da(QT? Q) ~ WNew(QTv Q) - YNew(QTa Q) T O (



Putting all together demonstration

lllustration: we have performed sample calculations of the Y -term using analytic approximations for the collinear pdfs
and collinear ffs. We consider only the target up-quark gamma g -> g+g channel, and for the running alphas we use the
two-loop beta function f = 3 since we are mainly interested in the transition to low Q.

Thus we use Agcp = 0.330

To further simplify our calculations, we use analytic expressions for the collinear correlation functions, taken from
appendix A1 of GRV ZPC 1992 for the up-quark pdf and from Eq. (A4) of KKP NPB 2001 for the up-quark-to-pion

fragmentation function

Y—-term

Q = 20.0 GeV
100y

0.100 |
0.010}

0.001}

::| 1 I I I ‘\. I I I 1 I I I 1 I I |.V|I Gev
6 8 10 12 g TV




Putting all together demonstration

Cutoff Functions

The cutoff functions in for low gr/lambda (blue dashed line)
and large q1/Q (brown solid line) for Q = 20.0 GeV
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Semi-inclusive to Collinear integrate over gr

® Parton Model (expectation) W-term

WPM(QTa Q) — HLO,j',z"(QO)/d2kaj//A(il7, kT)dB/z"(Za qr + k’T)

/d2qT Wpnm(ar, Q) = Hro j,i(Qo) firja(x)dp i (2)

Underlies Model building
w/ and w/o evolution using TMD
and collinear evolution approach

® Standard CSS W-term Anselmino et al. 2005-2016

d?b
WCSS(QTaQ) :/(ZW)T ' i7" TWcss(bT Q)

[ arWess(ar.@) =0

Phys.Rev. D 94 (2016) J. Collins, L.Gamberg, A. Prokudin, N. Sato, T. Rogers, B. Wang



B.C. Introduce small b-cuttoft

belbr) = \J¥ + B3/ (C5Q) = be(0) ~1/Q

Cures this property



A little detail: dependence driven by
perturbative part of ev. Kernel

by . -
WCSS(QT7 Q) — / (271_;2 quT oT WCSS(bT7 Q)

/ d*qrWess(qr, Q) = / 6% (br) by x logarithmic corrections

/d2QTWCSS(QT7Q) =0 |

See Phys. Rev. D 94 (2016) for details
J. Collins, L.Gamberg, A. Prokudin, N. Sato, T. Rogers, B. Wang



A little detail: dependence driven by
perturbative part of ev. Kernel

~

He du! |
eXP/ na
L U * H _

W(bT — 0, Q) ~ eXP

= exp

_CF

o

2
" Hae 12
In p
In ,ug

Cr C%
In 55
B0 bT/LQ

= exp

)

(s (1): 1) — 21n <§) (as())|

= b7 where, a = 2Cr/(75y) > 0

— 0




Phys. Rev. D 94 (2016) for details

Collins, Gamberg, Prokudin, Sato, Rogers, Wang B.C. Introduce small b -cuttoff

)= /02 4+ 83/ (C5Q) = b.(0) ~ 1/Q

Whew(qr, Q) = / é::)T "1 PTI N (br, Q) bimin = bo/(C5Q)

/dQQTWNew(QT7Q) = W (bymin, Q) # 0

/d2qT Wiewlar, Q) = Hro j i [ 7a(x, pe)dp i (2, pe) + O(as(Q))

Has a normal collinear factorization in
pe = C1C5Q/bo  terms of collinear pdfs w/ hard scale

/dqu WNew(qr, Q) + Y (qr,Q) = Hro.j i fir/a(x, pe)dp i (2, ne) + O(as(Q))

+ terms dominated by large g contributiontoY term

With modified W+Y we can match to the collinear formalism
Has implications for modeling TMD and fitting



Comments

With our method, the redefined W term allowed us to construct a relationship
between integrated-TMD-factorization formulas and standard collinear factorization
formulas, with errors relating the two being suppressed by powers of 1/Q

Importantly, the exact definitions of the TMD pdfs and ffs are unmodified from the
usual ones of factorization derivations. We preserve transverse-coordinate space
version of the W term, but only modify the way in which it is used

This work has dealt only with unpolarized cross sections

studying the analogous topic applied to polarized phenomena

We have a new now applied to transverse polarized phenomena



Enhanced expression for W (b, Q)

W (ten). @) = 010 Q) / O G (b (b (b)) 2 i s (7)) (5 ) %

/ e Ol (22,5 (0o b)) 2 s () o (22 ) %

2

[27(043(//); 1) —1In %W{(%(M’))] }
X exp {_QA(LBA, be(b1); bmax) = 9B (2B, be(b1); bmax) — 29K (be(b7); bmax) In (%) }

/

Q - HQ d,LL
xp 4 In -~ K (b, be(bT)); —
X e p{ e (bx(be(bT)) M)"‘/ﬁ u

Boundary bt b1 < b

Conditions b*(bc(bT)) — bT bmin < bT <K bmax
\bmax bT > bmax .




Comments

o —

What impact does this have on the collinear
limit of the transverse polarization case?

+Some observations ...



Recall the correlator in b-space Bessel Transform

O (2, br) = fi(x,b2) — i eby, Sy Mfit" (2, b2)

Boer Gamberg Musch Prokudin JHEP 201 |

It obeys Collins Soper Equation

0’ p(x, brs , (r)€;S)

oln+/Cr

=K(by; M)Cg}/p(x» briu, fF)GijSJf-

Aybat Rogers Collins Qiu PRD 2012
also see Kang Yuan Xiao PRL 201 |



Transverse spin case

+So it Is the derivative of Sivers function
or first moment evolves

W FLE b Ce) _
91n/Cr |




The FT transform of the e.g. Sivers asympt. reduces to first

moment of Sivers TMD _

~1(1 2 0 -
1T( )(il?,bT) = M2 abQ flJ_T(aj7bT)
T
> 2 [ k2
5 wbr) = o5 [ dkr (L krbr) S ()
0 T
. F1(1) 2 - k. krbr .|
bl}I_I)lO 17 (2, 07) = WQW/O Ak 2 9 fir(z, kr)
m fir(2,0) = fig" Boer Mulders PRD 1998
bEI—I:o 7 (2,0) ir ()

This informs us how to study the collinear limit of
transversely polarized cross section



CSS Sivers Structure Function

A ySin — ~ ~  apert NP -
WUT(¢h ¢S)(.’L‘,Z,b, Q) :HUT(Q;'“)fl(;)z’/P(CEvb*;ﬂb)DH/j(Z,b*;/,Lb)e S (b*,Q)e Svr (b,Q,z,2)

Abyat, Collins, Qiu, Rogers PRD (2011),

NP

e uT (b,Q,x,2) = exp {_ [91(m, b7; bmax) + 92(2, 073 bmax) + 29k (b7) In. (Q)] }
Q UT

Non perturbative factor contribution must be fit

CSS NPB 85



d2bT 1qT b1 1
(27T)2 & Wcss(bT, Q)

/dQQTWCSS(QTaQ) =0 |

Wess(qr, Q) = /

Use projection method: for unpolarized trivial

/ qrWyuu(qr, Q) = / d*b6%(br) b% x logarithmic corrections

bl/iino d2qrJo(qrb ) Weu (qr, Q) = QW/dQTC]T/debTJO(QTb/T)JO(QTbT)WUU(bTaQ)

— T / de(S(bT)WUU(bTa Q)

— / dbrd(br) b7 x logarithmic corrections

=0 !



Use projection method: for unpolarized trivial
Sivers Wut and study collinear limit

sin(¢pp— : J1(q b sin(¢p —
WUT(¢h ?s) (7,2,Q) = blflino 2m / dqrqr 1§WTbT) WUT(¢h ?s) (7, 2,97, Q)
p
— . dbb 6([) _ b/) #(1) b.: B _ b.: — 8P (b, ,Q) —Sgg(b,@,x,z)
— UT(QMU) b 1T¢/p(x7 *a:ub) H/j(Z7 *nub)e €

— / dbo(b)b” x log corrections
=0

Due to same perturbative evolution kernel as unpolarized:
Not surprising however two surprising consequences



Due to same perturbative evolution kernel as unpolarized:

Not surprising however two surprising consequences

1) The first moment of the Sivers function is not divergent, its
zero in the requlated CSS formalism

2 ) With modification, the first moment of the Sivers
function is well defined and the operator structure relation
between the the 1st moment and the Qiu-Sterman
function is finite.



Matching TMD to Collinear factorization for Transverse
Polarization based

Wour(Q) = H(ug. 0)|-2Mp £ (x: 0%, o) | diyj(z8: Q% p1g)  + O(a5(Q))

- 1
= H;p(ug, Q) [—5 F, j/A(Xa, XA;,uc)] dp;j(zp; pc) + O(as(Q)),

Mybr [ d#y di
p T/ 1 2 SlveI‘S(x CU2 b /’Lb Wb, g(:ub))TFj/P<.fUl 332 ,ub)

C
i1 o f/i

<o {1 L b o) + [ B el 1) 10 S 9| | x o {350, 0r) = gneomy 1 2L

Kb uy M 0

Fiz (2,073 11, Cr) :Z
J




Matching TMD to Collinear factorization for Transverse
Polarization based

“Improved CSS” (Polarized) (Gamberg, Metz, DP, Prokudin, Rogers, in preparation)

0,513 @, 1) = f1(@(bry @7, o) — iMeP)s) Fir” (2(brs Q2 1q)
o / ~N

b.-> b (b,) NO b;-> b (b) replacement — b;->b_ (b;)
kinematic factor NOT associated
with the scale evolution



Matching TMD to Collinear factorization for Transverse
Polarization based

“Improved CSS” (Polarized) (Gamberg, Metz, DP, Prokudin, Rogers, in preparation)

OV (2, b, b (b1); Q2 1) = fa(, be(br); Q% o) — iMeTbhS2 f12) (@, be (br); Q2 po)

Fid? (@, be(br); Q% png)  ~ (éf”(fla 29, by (be(b7)); 1%, i, s (1)) @ Frp (1, £2; ﬁ)

X exp [_Spert(b* (bc(bT))a 1, Qa :uQ) — S]]:;}T;(bc(bT)? Q):|



Matching TMD to Collinear factorization for Transverse
Polarization based

We then define the momentum-space functions...

d2by

(2m)? e~ T f (z, be(br); Q% 1q)

fl(wa kT; Qza .U'Q) = /

D1 (z,pr; Q% 1q) E/deT T Dy (2, be(br); Q% o)
’ 9 ’ (27_‘_)2 9 Q

2 by
sape fin ks @ ng) = [ G e £ @, be(br); Q% o)




Matching TMD to Collinear factorization for Transverse
Polarization based

Moreover, from a phenomenology standpoint with TMD observables...

f#l) (ZU, br; Qza .UJQ)

1
H1 (1) (Z7 br; Q27 I"'Q)

Y

Y

Frr(x, x; pp,)

1
H;" M (25 s, )

XD | =Sper (b (br)s o, Qs ) = SEE(br, Q)

gflJ-T (Q?, bT)

+ 9k (br) In(Q/ Qo)

xp |~ Spert (. (br); 11, Q. 1Q) — Sy (b7, Q)]

/

9u+(2,br)|+ gk (br) In(Q/Qo)

The CT3 functions (along with the NP g-functions) are what get extracted
in analyses of TSSAs in TMD processes that use CSS evolution!
(Echevarria, Idilbi, Kang, Vitev (2014); Kang, Prokudin, Sun, Yuan (2016))



Comments

+ With our method, the redefined W term allowed us to construct a relationship
between integrated-TMD-factorization formulas and standard collinear factorization
formulas, & for transverse polarization.






® Jo get a sense of these fruncation errors we further
“‘unpack” W+ Y via their “Approximators™ and its
construction in terms of W, Y, FO, ASY terms




Comments Message

+ Collinear fact. valid in two ways
1. For cross sections differential in gr w/ gr~ Q (OPE)

2. Also valid when we integrate over gt

/dQQT do(qr, Q)

+ However CSS did not specifically address the issue of matching to collinear
factorization for the cross section integrated over gr



Comments Message

e — ————

dQQT dU(QT7 Q)

+ We develop a prescription to which matches the integrated-TMD-factorization
formulas and standard collinear factorization formulas, with errors relating the two
which suppressed by powers of 1/Q

+ Importantly, the exact definitions of the TMD PDFs and FFs are unmodified
from the usual ones of factorization derivations

+ We preserve transverse-coordinate space version of the Wrmp term, but only modify
the way in which it is used



/ Review of Region Analysis “Construction”

Phys.Rev. D 94 (2016) J. Collins, L.Gamberg, A. Prokudin, N. Sato, T. Rogers, B. Wang

CONSTRUCTION: one starts with smallest-size region which is in a neighborhood of
gt = 0, where Trup gives a very good approximation adding and subtracting the Truvp
approx.

dO’(C]T, Q) = 17rmp dU(QTa Q) T [d(QT7 Q) — 1rmp dO_(QT? Q)]

The error in the bracket is order (q77/Q)2 and is only unsuppressed at g7 >> m

Now, extend the range of qr...

e.g. Collins PRD 1998, Cambridge Press 201 |



/ Review of Region Analysis “Construction”
W Y, FO, ASY Definitions

e Extending qr, one then applies Tcon to the bracket & uses the fixed order
(FO) perturbative expansion

The Result iIs the combination

da(m Saqr S Q, Q) ~ Irup dU(QTa Q) |

m

do(m Sqgr S Q,Q) =~ W(gr,Q) +Y(qr,Q)+ O (Q

>C do(qr, Q)

qr/Q << 1 qgr~ Q or m/gr<<1



Y(QT? Q) = Tcoll dO-(QT? Q) D TcollTTMD dO(QT? Q)

Y(qr,Q) = FO(qr, Q) — ASY (¢r, Q)

® It is the difference of the cross section calculated with collinear pdfs and ffs at
fixed order FO and the asymptotic contribution of the cross section

® N.B. At small qr the FO and ASY are dominated by the same diverging terms

1 1 2
—  and — log Q_2
dr dr 4T

® Thus its expected that the Y term is small or zero leaving

do(qr < Q,Q) ~ W(qr, Q)



The Asymptotic piece of the NLO cross section in detail

Y(qr,Q) = FO(qr, Q) — ASY (¢r, Q)

dogy, :UOFZ a, 1 A(¢,0)
dxdzdQ%dqrd ¢ Sea T 2q7 27

asym

X2 €
J

DB/j(Z9“){(qu®fj/A)(x7/'L)—I_(qu®fg/A)(x’lu’)}

+ {(DB/j® qu)(Z a/u) + (D :.‘»;’;f‘ _j‘)}fj/A(xnu)
| l/. Q2 3 \ as ;
+2DB/j(ZaM)fj/A(x’M CFlogq—z - ECF o o odr) |-

e Nadolsky et al. PRD 1999, Y. Koike, J. Nagashima, and W. Vogelsang, Nucl. Phys. B744, 59 (2006)



The Sivers and Qiu-Sterman
functions

Transverse single
spin asymmetry:

Differential in (small) P, + :
— Sivers Function: fi7(z, k)

— Distribution of quarks with transverse momentum k; inside
transversely polarized proton.

— Sign flip.

Qiu-Sterman: Collinear but higher twist : Tr(x1, 22)

07 oy kLl p1g, o
Integrate: Ty, r(x,x) = —/d ]ﬂv 17 (2, k1 )|sipis



e.g. BW Example Sivers Function

“Deconvolution”-Structure function simple product P

C[wa} =X Z 63/d2PT koT 5 (PT —kr — PhL/Z) w(py, kr) fa(xap%) D*(z, k%)

sin hp
FUT(?h ?s) = C[— MTffrD1], . |
dipole structure

sin — d‘bT‘ o ~J_a 1 ~a
W) - N2 / B )|b QM o) (. 2b2) DY (=, b3.).

~

f1, 1(1) ~and Dy are Fourier Transf. of TMDs/FFs and finite

Boer, LG, Musch, Prokudin JHEP 201 |



Review of TMD factorization

*  Collins Soper (81), Collins, Soper, Sterman (85), Boer (01) (09) (13), Ji,Ma,Yuan (04), Collins-Cambridge University
Press (11), Aybat Rogers PRD (11), Abyat, Collins, Qiu, Rogers (11), Aybat, Prokudin, Rogers (11), Bacchetta, Prokudin
(13), Sun, Yuan (13),Echevarria, Idilbi, Scimemi JHEP 2012, Collins Rogers 2015 ....

* TMDs w/Gauge links: color invariant:
emerges from region analysis and Ward
|dentities

*/n addition Soft factor w/Gauge links
eHard cross section

*TMD PDFs & Soft factor have rapidity/LC divergences

* Rapidity regulator introduced to regulate these divergences
*Some effects of evolution cancel in Bessel weighted asymmetries

e Boer, Gamberg, Musch, Prokudin JHEP 2011



Inconsistency

do
[ Car o7 = [ Earw s [ Pary
T e o o

From these properties arises a severe problem in getting the integral over qT of the W +Y
formula to agree with the collinear factorization results

On the left-hand side, the integral da/d2qT is given by collinear factorization starting at LO, i.e., Xso, up
to a power-suppressed error. Fixed-order calculations of the hard scattering are appropriate

On the right-hand side, the integral of W is zero. So the integral of the right-hand side is the integral of
Y plus the error term butY is obtained from collinear factorization starting at NLG, i.e., Xs



