K ロ ▶ K 伊

Towards a covariant calculation of nuclear GPDs

Adam Freese

Argonne National Laboratory

September 25, 2017

重

 299

人名英格兰人姓氏

1 [Importance of covariance](#page-2-0)

2 [GPD Convolution](#page-3-0)

3 [Nuclear vertices](#page-11-0)

4 [Outlook](#page-30-0)

G.

 299

メロメ メ御き メミメ メミメ

GPDs and Lorentz covariance

- GPDs are, by definition, covariant.
- However, nuclear calculations are not traditionally covariant.
	- Non-relativistic potentials are used, or
	- Spectator models project some particles onto their mass shells.
- Covariance is what gives polynomiality:

$$
\int \frac{dx}{x} x^{n+1} H(x,\xi,t) = \sum_{k \text{ even}}^{n} A_{n+1,k}(t) (2\xi)^{k} + \text{mod}(n,2) C_{n+1}(t) (2\xi)^{n+1}
$$

Actually, some GPDs are odd in ξ rather than even; I'm using even here as an illustrative example.

- Also, different calculations are easier in different frames:
	- Photon frame best to account for target mass and finite-t effects (cf. literature by Braun, Manashov, and Pirnay).
	- Lab frame best to calculate DVCS cross sections.
	- Need covariance to reliably transform between frames.

 $2Q$

イロト イ御 ト イヨ ト イヨ ト

The impulse approximation

Assume the impulse approximation:

- Virtual photon interacts with one nucleon.
- The active nucleon behaves like a free nucleon.
- There are no final state interactions.

- The impulse approximation is incomplete.
- It's still useful, as a first approximation, and because deviations indicate nuclear effects (EMC effect, shadowing, ...)

Convolution matrix equation

As the GPD is a sort of PDF-form factor "hybrid," the convolution relation will also be a hybrid: The form factor "convolution" relation is just matrix multiplication:

$$
\begin{bmatrix}\nF_{1A}(Q^2) \\
F_{2A}(Q^2) \\
\vdots\n\end{bmatrix} = \begin{bmatrix}\nF_{1V}(Q^2) & F_{1T}(Q^2) \\
F_{2V}(Q^2) & F_{2T}(Q^2)\n\end{bmatrix} \begin{bmatrix}\nZF_{1p}(Q^2) + (A-Z)F_{1n}(Q^2) \\
ZF_{2p}(Q^2) + (A-Z)F_{2n}(Q^2)\n\end{bmatrix}
$$

The number of form factors depends on the target's spin.

PDF convolution relation is an integral equation:

$$
f_{i/A}(x,\mu)=\int_x^A \frac{dy}{y} \left[Zf_{i/p}\left(\frac{x}{y},\mu\right)f_{p/A}(y)+(A-Z)f_{i/n}\left(\frac{x}{y},\mu\right)f_{n/A}(y)\right]
$$

The GPD convolution equation is a hybrid integral matrix equation:

$$
\begin{bmatrix}\nH_{1A}(x,\xi,t;\mu) \\
H_{2A}(x,\xi,t;\mu) \\
\vdots\n\end{bmatrix} = \int \frac{dy}{y} \begin{bmatrix}\nH_{1V}(y,\xi,t) & H_{1T}(y,\xi,t) \\
H_{2V}(y,\xi,t) & H_{2T}(y,\xi,t) \\
\vdots & \vdots\n\end{bmatrix} \begin{bmatrix}\nZH_p\left(\frac{x}{y},\frac{\xi}{y},t;\mu\right) + (A-Z)H_n\left(\frac{x}{y},\frac{\xi}{y},t;\mu\right) \\
ZE_p\left(\frac{x}{y},\frac{\xi}{y},t;\mu\right) + (A-Z)E_n\left(\frac{x}{y},\frac{\xi}{y},t;\mu\right)\n\end{bmatrix}
$$

Number of GPDs depends on the spin of the target.

 299

イロメ イ母メ イヨメ イヨメ

About the matrix

$$
\begin{bmatrix}\nH_{1A}(x,\xi,t;\mu) \\
H_{2A}(x,\xi,t;\mu) \\
\vdots\n\end{bmatrix} = \int \frac{dy}{y} \begin{bmatrix}\nH_{1V}(y,\xi,t) & H_{1T}(y,\xi,t) \\
H_{2V}(y,\xi,t) & H_{2T}(y,\xi,t) \\
\vdots & \vdots\n\end{bmatrix} \begin{bmatrix}\nZH_p\left(\frac{x}{y},\frac{\xi}{y},t;\mu\right) + (A-Z)H_n\left(\frac{x}{y},\frac{\xi}{y},t;\mu\right) \\
ZE_p\left(\frac{x}{y},\frac{\xi}{y},t;\mu\right) + (A-Z)E_n\left(\frac{x}{y},\frac{\xi}{y},t;\mu\right)\n\end{bmatrix}
$$

The convolution matrix comes from the matrix elements:

$$
\langle p_A^\prime,s\mid \left(\rlap{\hspace{0.02cm}/}{\bar n}H_N+\frac{in_\mu\Delta_\nu\sigma^{\mu\nu}}{2m_N}E_N\right)\mid p_A,s\rangle
$$

- This is an on-shell nucleon electromagnetic current operator.
- H_{iV} are coefficients multiplying H_N in the convolution relation for producing H_{1A} .
- H_{iT} are the coefficients multiplying E_N in the convolution relation for producing H_{1A} .

重

 299

→ イ重→ イ重→

Convolution for scalar nucleus

- Let's look at a scalar nucleus (e.g., ⁴He) as a simple example.
- \bullet Only one chiral-even GPD!

$$
H_A(x,\xi,t;\mu)=\sum_{N=p,n}\int\frac{dy}{y}\left[H_V\left(y,\xi,t\right)\zeta_NH_N\left(\frac{x}{y},\frac{\xi}{y},t;\mu\right)+H_T\left(y,\xi,t\right)\zeta_NE_N\left(\frac{x}{y},\frac{\xi}{y},t;\mu\right)\right]
$$

 $\zeta_p = Z$ and $\zeta_n = (A - Z)$.

- In this case, H_V and H_T are just the factors that multiply H_N and E_N , respectively, in the convolution equation.
- In general, when a nucleus has multiple GPDs:

$$
H_{jA}(x,\xi,t;\mu) = \sum_{N=p,n} \int \frac{dy}{y} \left[H_{jV}(y,\xi,t) \zeta_N H_N\left(\frac{x}{y},\frac{\xi}{y},t;\mu\right) + H_{jT}(y,\xi,t) \zeta_N E_N\left(\frac{x}{y},\frac{\xi}{y},t;\mu\right) \right]
$$

重

 299

イロト イ御 ト イヨ ト イヨ ト

Convolutions and polynomiality

Both nucleon GPD and nuclear coefficient matrix should satisfy polynomiality:

$$
\int \frac{dx}{x} x^{n+1} H_N(x, \xi, t) = \sum_{k \text{ even}}^n A_{n+1,k}^{(N)}(t) (2\xi)^k + \text{mod}(n, 2) C_{n+1}^{(N)}(t) (2\xi)^{n+1}
$$

$$
\int \frac{dx}{x} x^{n+1} h_{N/A}(x, \xi, t) = \sum_{k \text{ even}}^n A_{n+1,k}^{(A)}(t) (2\xi)^k + \text{mod}(n, 2) C_{n+1}^{(A)}(t) (2\xi)^{n+1}
$$

 $h_{N/A}$ and H_N are rectangular and column matrices here!

 \bullet \bullet \bullet Actually, som[e](#page-2-0) GPDs are odd in ξ ξ ξ rather th[an](#page-6-0) even; I'm using even here as an il[lus](#page-8-0)[tr](#page-6-0)[ati](#page-7-0)[v](#page-8-0)e ex[am](#page-11-0)[p](#page-2-0)[l](#page-3-0)[e.](#page-10-0)

Convolutions and polynomiality

Mellin moment of total nuclear GPD:

$$
\mathcal{M}_n(\xi, t) = \int \frac{dx}{x} x^{n+1} \int \frac{dy}{y} h_{N/A}(y, \xi, t) H_N\left(\frac{x}{y}, \frac{\xi}{y}, t\right)
$$

$$
= \int \frac{dy}{y} y^{n+1} h_{N/A}(y, \xi, t) \int \frac{dz}{z} z^{n+1} H_N\left(z, \frac{\xi}{y}, t\right)
$$

If $\xi = 0$, we get a product of Mellin moments, but not in general.

$$
\mathcal{M}_n(\xi,t)=\int\frac{dy}{y}y^{n+1}h_{N/A}(y,\xi,t)\left[\sum_{k\text{ even}}^nA_{n+1,k}^{(N)}(t)\left(2\frac{\xi}{y}\right)^k+\text{mod}(n,2)C_{n+1}^{(N)}(t)\left(2\frac{\xi}{y}\right)^{n+1}\right]
$$

Important: z integral produced a polynomial in ξ/y . After some maths:

$$
\mathcal{M}_{n}(\xi,t) = \sum_{l \text{ even}}^{n} (2\xi)^{l} \sum_{k \text{ even}}^{l} A_{n+1-l,l-k}^{(A)}(t) A_{n+1,k}^{(N)}(t)
$$

+
$$
\text{mod}(n,2) (2\xi)^{n+1} \left\{ \sum_{k \text{ even}}^{n} C_{n-k+1}^{(A)}(t) A_{n+1,k}^{(N)}(t) + \int \frac{dy}{y} h_{N/A}(y,\xi,t) C_{n+1}^{(N)}(t) \right\}
$$

A. Freese (ANL)

$$
\text{Nuclear GPDs}
$$

$$
\text{Nuclear GPDs}
$$

$$
\text{Superember 25, 2017} \qquad \text{9 } / 32
$$

Discrete convolution relations

Mellin moments / Polynomiality : Discrete convolution relations are obeyed for generalized form factors:

$$
A_{n+1,l}^{(q/A)}(t) = \sum_{\substack{k=0 \text{even}}}^{l} A_{n+1-l,l-k}^{(N/A)}(t) A_{n+1,k}^{(q/N)}(t) \longrightarrow_{n=0}^{l} F^{(q/A)}(t) = F^{(N/A)}(t) F^{(q/N)}(t)
$$

$$
C_{n+1}^{(q/A)}(t) = \sum_{\substack{k=0 \text{even}}}^{l} C_{n-k+1}^{(N/A)}(t) A_{n+1,k}^{(q/N)}(t) + \int \frac{dy}{y} h_{N/A}(y,\xi,t) C_{n+1}^{(q/N)}(t)
$$

- Strictly, these are matrices.
- $A^{(q/A)}(t)$ and $A^{(q/N)}(t)$ are column matrices.
- $A^{(N/A)}(t)$ is a rectangular matrix.
- \bullet Get form factor matrix equation in $n = 0$ case.
- Unsure the meaning (or convergence) of the $\int \frac{dy}{y} h_{N/A}(y,\xi,t)$ term.

重

 299

イロト イ御 ト イヨ ト イヨ ト

Nuclear GPDs in the impulse approximation

- Three limiting factors to knowledge of nuclear GPDs:
	- **1** The nucleon GPDs.
	- **2** The coefficient functions H_{1V} , etc.
	- What happens beyond the impulse approximation.
- We focus on issue #2 here.
- The limiting factor to calculation of the coefficient functions is **knowledge of the** nuclear wave function.
- Good news: High-precision nuclear wave functions exist for light nuclei! $(AV18+IIIinois7)$
- Bad news: These wave functions are not Lorentz covariant.
- Lorentz covariance is needed for polynomiality.

▶ 4回 ▶ 4回 ▶

A covariant nuclear vertex

- The raison d'etre of this work is to find Lorentz covariant nuclear wave functions.
- Light nuclei are the obvious (easiest) starting point; first case, the deuteron.
- Cano and Pire (Eur Phys J A19 (2004) 423) give a theoretical treatment, but their numerical results violate polynomiality.
- A worthwhile investigation may be: a simple, exactly-solvable model of the deuteron as two nucleons. Simplify the problem with a simple potential.
- Keep Lorentz invariance manifest from the start.

▶ 4 重 ▶ .4 重 ▶

Relativistic contact interactions

- The Nambu-Jona-Lasinio (NJL) model has been extremely successful in describing hadron structure.
- Contact interactions give a simple starting point for exact, Lorentz-invariant calculations.

Contact interaction Lagrangian for nucleon-nucleon interactions:

$$
\mathcal{L} = \sum_{I} G_{I} (\psi^{T} C^{-1} \tau_{2} \Omega_{I} \psi) (\bar{\psi} \Omega_{I} C \tau_{2} \bar{\psi}^{T})
$$

It is always possible to write the contact interaction Lagrangian in this form, via Fierz rearrangement.

Two-nucleon bilinears

Contact interaction Lagrangian:

$$
\mathcal{L} = \sum_{I} G_{I} \left(\psi^{T} C^{-1} \tau_{2} \Omega_{I} \psi \right) \left(\bar{\psi} \Omega_{I} C \tau_{2} \bar{\psi}^{T} \right)
$$

The matrices Ω_I are tensor products of Clifford algebra matrices, isospin matrices, and derivatives.

Fermion fields are classically Grassmann numbers:

\n- \n
$$
\begin{aligned}\n \phi_1 \psi_2 &= -\psi_2 \psi_1 \\
 \bullet \ \psi_1^2 &= 0 \\
 \bullet \ \psi^T \psi &= 0 \\
 \bullet \ \psi^T M \psi &= -\psi^T M^T \psi \text{ for any matrix } M.\n \end{aligned}
$$
\n
\n

All bilinears in our Lagrangian should use antisymmetric matrices.

REPARE

Two-nucleon bilinears

Contact interaction Lagrangian:

$$
\mathcal{L} = \sum_{I} G_{I} \left(\psi^{T} C^{-1} \tau_{2} \Omega_{I} \psi \right) \left(\bar{\psi} \Omega_{I} C \tau_{2} \bar{\psi}^{T} \right)
$$

For simplicity, consider only first-order derivatives.

- Matrices $\Omega_I C_{\tau_2}$ are made by mixing and matching, to get an overall antisymmetric matrix.
- A total of 21 terms available for Lagrangian.
- 10 of [t](#page-13-0)hese terms are is[o](#page-10-0)scala[r](#page-30-0) $(I = 0)$ $(I = 0)$. Focus on these (rele[va](#page-13-0)[nt](#page-15-0) to [d](#page-15-0)[eu](#page-10-0)[t](#page-11-0)[e](#page-29-0)ro[n](#page-11-0))[.](#page-30-0) メス 重 メス 重 メ

Isoscalar Lagrangian

Isoscalar contact Lagrangian:

$$
\mathcal{L}_{I=0} = \mathcal{L}_0 + \mathcal{L}_k + \mathcal{L}_p
$$

No-deritatives terms:

$$
\mathcal{L}_0 = G_V \left(\bar{\psi} \gamma^{\mu} C \tau_2 \bar{\psi}^T \right) \left(\psi^T C^{-1} \tau_2 \gamma_{\mu} \psi \right) + \frac{1}{2} G_T \left(\bar{\psi} \sigma^{\mu \nu} C \tau_2 \bar{\psi}^T \right) \left(\psi^T C^{-1} \tau_2 \sigma_{\mu \nu} \psi \right)
$$

Minus-derivative terms:

$$
\mathcal{L}_{k} = G_{1} \left(\bar{\psi} \partial^{-\mu} C \tau_{2} \bar{\psi}^{T} \right) \left(\psi^{T} C^{-1} \tau_{2} \partial_{\mu}^{-} \psi \right) + G_{2} \left(\bar{\psi} \partial^{-\mu} \gamma_{5} C \tau_{2} \bar{\psi}^{T} \right) \left(\psi^{T} C^{-1} \tau_{2} \partial_{\mu}^{-} \gamma_{5} \psi \right) + G_{3} \left(\bar{\psi} \partial^{-\mu} \gamma_{5} \gamma^{\nu} C \tau_{2} \bar{\psi}^{T} \right) \left(\psi^{T} C^{-1} \tau_{2} \partial_{\mu} \gamma_{5} \gamma_{\nu} \psi \right) + G_{4} \left(\bar{\psi} \gamma_{5} \bar{\phi}^{-} C \tau_{2} \bar{\psi}^{T} \right) \left(\psi^{T} C^{-1} \tau_{2} \gamma_{5} \bar{\phi}^{-} \psi \right)
$$

Plus-derivative terms:

$$
\mathcal{L}_{p} = G_{5} \left(\bar{\psi} \partial^{+\mu} \gamma^{\nu} C \tau_{2} \bar{\psi}^{T} \right) \left(\psi^{T} C^{-1} \tau_{2} \partial_{\mu}^{+} \gamma_{\nu} \psi \right) + \frac{1}{2} G_{6} \left(\bar{\psi} \partial^{+\mu} \sigma^{\nu \pi} C \tau_{2} \bar{\psi}^{T} \right) \left(\psi^{T} C^{-1} \tau_{2} \partial_{\mu}^{+} \sigma_{\nu \pi} \psi \right) + G_{7} \left(\bar{\psi} \partial^{+} C \tau_{2} \bar{\psi}^{T} \right) \left(\psi^{T} C^{-1} \tau_{2} \partial^{+} \psi \right) + G_{8} \left(\bar{\psi} \partial_{\nu}^{+} \sigma^{\mu \nu} C \tau_{2} \bar{\psi}^{T} \right) \left(\psi^{T} C^{-1} \tau_{2} \partial^{+\pi} \sigma_{\mu \pi} \psi \right)
$$

Bethe-Salpeter equation for the deuteron

- Apply our contact interaction to the deuteron.
- Deuteron obeys the Bethe-Salpeter equation:

Derivatives in momentum space:

$$
\partial_{\mu}^{+} \mapsto \frac{i}{2} p_{\mu}
$$

$$
\partial_{\mu}^{-} \mapsto i k_{\mu}
$$

 \bullet The contact potential is separable, so the deuteron vertex i[s l](#page-15-0)i[ne](#page-17-0)[a](#page-15-0)[r i](#page-16-0)[n](#page-17-0) k [.](#page-29-0)

$$
\Gamma_d^{\mu}(p,k) = \longrightarrow^p
$$
\n
$$
\bar{\Gamma}_d^{\mu}(p,k) = \longrightarrow^p
$$

Most general deuteron vertex compatible with our Lagrangian:

$$
\Gamma_d^{\mu}(p,k) = \left[\alpha_V \left(\gamma^{\mu} - \frac{pp^{\mu}}{p^2} \right) + i \alpha_T \frac{p_{\nu} \sigma^{\mu \nu}}{M_d} + \frac{\alpha_E}{M_d} \left(k^{\mu} - \frac{k \cdot p}{p^2} p^{\mu} \right) + \alpha_D \left(\frac{p \gamma^{\mu} k - k \gamma^{\mu} p}{2p^2} \right) \right] C \tau_2
$$

Several Lagrangian terms either vanish or become redundant in BSE.

$$
\mathcal{L}_{\text{effective}} = G_V \left(\bar{\psi} \gamma^{\mu} C \tau_2 \bar{\psi}^T \right) \left(\psi^T C^{-1} \tau_2 \gamma_{\mu} \psi \right) + \frac{1}{2} G_T \left(\bar{\psi} \sigma^{\mu \nu} C \tau_2 \bar{\psi}^T \right) \left(\psi^T C^{-1} \tau_2 \sigma_{\mu \nu} \psi \right) + G_E \left(\bar{\psi} \partial^{-\mu} C \tau_2 \bar{\psi}^T \right) \left(\psi^T C^{-1} \tau_2 \partial_{\mu} \psi \right) + G_D \left(\bar{\psi} \partial^{-\mu} \gamma_5 \gamma^{\nu} C \tau_2 \bar{\psi}^T \right) \left(\psi^T C^{-1} \tau_2 \partial_{\mu} \gamma_5 \gamma_{\nu} \psi \right)
$$

Now only four terms!

È.

 299

- 4 周 ド 3 周 ド

(□) (_○

Also, $C = -1$ vector meson

- Odd-C vector mesons also require antisymmetric vertices.
- If we set H_N and E_N instead to GPDs of the dressed quark, and replace m_N with a dressed quark mass, our "deuteron GPD" becomes a ρ meson GPD!
- Thus, by finding the dueteorn GPDs in the contact formalism, we are also calculating the ρ meson GPDs in the NJL model.

Matrix form of the BSE

The BSE can be thought of as a matrix equation.

 $\Gamma_d(p,k) = \mathcal{M}_{\text{BSE}} \Gamma_d(p,k)$ $\sqrt{ }$ $\Big\}$ α_V α _T α_E α_D 1 \parallel $= 4$ $\sqrt{ }$ $\Big\}$ $G_V \Pi_{VV}$ $G_V \Pi_{VT}$ $G_V \Pi_{VE}$ $G_V \Pi_{VD}$ $G_T\Pi_{TV}$ $G_T\Pi_{TT}$ $G_T\Pi_{TE}$ $G_T\Pi_{TD}$ $G_E\Pi_{EV}$ $G_E\Pi_{ET}$ $G_E\Pi_{EE}$ $G_E\Pi_{ED}$ $G_D\Pi_{DV}$ $G_D\Pi_{DT}$ $G_D\Pi_{DE}$ $G_D\Pi_{DD}$ 1 $\sqrt{ }$ $\Big\}$ α_V α _T α_E α_D 1 $\Big\}$

- The interactions mix up components of the vertex.
- The bubble diagrams Π_{VV} etc. contain all the difficulties (UV divergences, etc.).
- Once the bubbles are known, solving the BSE is simply linear algebra.
- Theory is non-renormalizable, so cutoff is an additional parameter.

Deuteron form factors

- To determine the G's (or α 's), empirical input is needed.
- Electromagnetic properties of the deuteron are well-known.
- Deuteron current decomposes into three Lorentz-invariant form factors:

$$
j_d^{\mu;\alpha\beta}(p';p) = (p+p')^{\mu}g^{\alpha\beta}F_{1d}(Q^2) - (q^{\alpha}g^{\beta\mu} - q^{\beta}g^{\alpha\mu})F_{2d}(Q^2) - (p+p')^{\mu}\frac{q^{\alpha}q^{\beta}}{2M_d^2}F_{3d}(Q^2)
$$

This can be calculated in the covariant contact model:

4 0 K

Deuteron form factors

Using nucleon form factors for the photon-nucleon coupling, we get a matrix equation:

$$
\begin{bmatrix} F_{1d}(Q^2) \\ F_{2d}(Q^2) \\ F_{3d}(Q^2) \end{bmatrix} = \begin{bmatrix} F_{1V}(Q^2) & F_{1T}(Q^2) \\ F_{2V}(Q^2) & F_{2T}(Q^2) \\ F_{3V}(Q^2) & F_{3T}(Q^2) \end{bmatrix} \begin{bmatrix} F_{1p}(Q^2) + F_{1n}(Q^2) \\ F_{2p}(Q^2) + F_{2n}(Q^2) \end{bmatrix}
$$

 F_{1V} , F_{1T} , etc. are the body form factors.

つへへ

Sachs-like form factors

Sachs-like form factors are closer to empirical observation.

$$
G_Q(Q^2) = F_{1d}(Q^2) - F_{2d}(Q^2) + (1 + \eta)F_{3d}(Q^2)
$$

\n
$$
G_M(Q^2) = F_{2d}(Q^2)
$$

\n
$$
G_C(Q^2) = F_{1d}(Q^2) - \frac{2}{3}\eta G_Q(Q^2)
$$

\n
$$
G_Q(Q^2) = F_{1d}(Q^2) - \frac{2}{3}\eta G_Q(Q^2)
$$

\n
$$
G_Q(Q^2) = G_Q(Q^2) - \frac{2}{3}\eta G_Q(Q^2)
$$

\n
$$
Q = \frac{1}{M_d^2}G_Q(Q^2 = 0)
$$

\n
$$
G_Q(Q^2 = 0)
$$

They are related to electromagnetic structure functions:

$$
A(Q^2) = G_C^2(Q^2) + \frac{2}{3}\eta G_M^2(Q^2) + \frac{8}{9}\eta^2 G_Q^2(Q^2)
$$

$$
B(Q^2) = \frac{4}{3}\eta(1+\eta)G_M^2(Q^2).
$$

ă

Full contact model

- Attempt fit to data up to $Q^2 = 1 \text{ GeV}^2$.
- Fit fails when higher- Q^2 data are used: necessity of long-range pion exchange?

Contact model

- Contact model is imperfect.
- The static quadrupole moment is off by a factor of 2.
- Otherwise, quite good description for a contact model. $\frac{1}{2}$

Long-range pion exchange is likely necessary for a perfect description.

4 D F

Contact model

- For now, proceed with relativistic contact model.
- The UV cutoff is close to the pion mass, suggesting a breakdown of the contact model when pion exchange becomes relevant.
- The close values of the α 's suggests a finely-tuned cancellation between attractive and repulsive forces.

$$
\mathcal{L}_{\text{effective}} = G_V \left(\bar{\psi} \gamma^{\mu} C \tau_2 \bar{\psi}^T \right) \left(\psi^T C^{-1} \tau_2 \gamma_{\mu} \psi \right) + \frac{1}{2} G_T \left(\bar{\psi} \sigma^{\mu \nu} C \tau_2 \bar{\psi}^T \right) \left(\psi^T C^{-1} \tau_2 \sigma_{\mu \nu} \psi \right) + G_E \left(\bar{\psi} \partial^{-\mu} C \tau_2 \bar{\psi}^T \right) \left(\psi^T C^{-1} \tau_2 \partial_{\mu} \psi \right) + G_D \left(\bar{\psi} \partial^{-\mu} \gamma_5 \gamma^{\nu} C \tau_2 \bar{\psi}^T \right) \left(\psi^T C^{-1} \tau_2 \partial_{\mu} \gamma_5 \gamma_{\nu} \psi \right)
$$

Deuteron PDFs related to nucleon PDFs by convolution formula:

$$
q_{i/d}^{(\lambda)}(x_A, Q^2) = \sum_{N=p,n} \int_{x_A}^2 \frac{dy}{y} q_{i/N} \left(\frac{x_A}{y}, Q^2\right) f_{N/d}^{(\lambda)}(y)
$$

The deuteron light cone density (LCD) $f_{N/d}^{(\lambda)}(y)$ can be found by Feynman rules:

- We find exact expressions for the LCD.
- For example, the "pure vector" $(\alpha_V\text{-only})$ part:

$$
f_d^{(\text{unpol})}(y) = \alpha_V^2 \frac{1}{48\pi^2} \int d\tau e^{-\Delta(y)\tau} \left(\frac{1}{\tau} + \frac{M_d^2}{8} y(2-y)[4-y(2-y)] + \frac{3}{4}m^2 y(2-y) \right)
$$

$$
f_d^{(\text{tensor})}(y) = -\alpha_V^2 \frac{1}{32\pi^2} \int d\tau e^{-\Delta(y)\tau} \left(\frac{2-3y(2-y)}{\tau} - \frac{M_d^2}{2} y(2-y)(y-1)^2 \right)
$$

$$
\Delta(y) = m_N^2 - \frac{M_d^2}{4} y(2-y)
$$

Full expressions available in upcoming paper.

- 4 重 ド 3 重 ド

ă

Structure function calculations

 $Q^2 = 1$ GeV² exhibits quark-hadron duality.

 \bullet We can't describe HERMES b_1 data, but no impulse

$$
Q^2=15~\rm GeV^2
$$

approximation calculation can.

(□) (_○

Deuteron GPD

- \bullet Unfortunately, the deuteron (and ρ meson) GPDs are still a work in progress.
- But we're close.
- The formalism is in place: it's just a technical matter of calculating some inverse Mellin transforms.

▶ 4 重 ▶ 4 重 ▶

- Deuteron GPDs in a relativistic contact model are on the horizon.
- These GPDs **do** satisfy polynomiality.
- These GPDs are also ρ GPDs in the NJL model (with some constants changed).
- It will also be straightforward to generalize to GTMDs.
- The contact formalism will be applied to 3 He and 4 He next.
- Lorentz-invariant inclusion of pion exchange would be ideal ... but our primary focus is the convolution formalism itself.
- Contact formalism should work better for helium and ρ , since these are not loosely bound.
- ⁴He is higher priority, since data is being collected for it now.

Thank you for listening!

重

 299

 $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$

 $\begin{picture}(160,17)(-0.4) \put(0,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,$