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GPDs and Lorentz covariance

GPDs are, by definition, covariant.

However, nuclear calculations are not traditionally covariant.
Non-relativistic potentials are used, or
Spectator models project some particles onto their mass shells.

Covariance is what gives polynomiality:∫
dx

x
xn+1H(x, ξ, t) =

n∑
k even

An+1,k(t)(2ξ)
k + mod(n, 2)Cn+1(t)(2ξ)n+1

Actually, some GPDs are odd in ξ rather than even; I’m using even here as an illustrative example.

Also, different calculations are easier in different frames:
Photon frame best to account for target mass and finite-t effects (cf. literature by
Braun, Manashov, and Pirnay).
Lab frame best to calculate DVCS cross sections.
Need covariance to reliably transform between frames.
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The impulse approximation

Assume the impulse approximation:

Virtual photon interacts with one nucleon.
The active nucleon behaves like a free nucleon.
There are no final state interactions.

jµA =
∑

nucleons
...

HA =
∑

nucleons
...

The impulse approximation is incomplete.

It’s still useful, as a first approximation, and because deviations indicate nuclear
effects (EMC effect, shadowing, ...)
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Convolution matrix equation
As the GPD is a sort of PDF-form factor “hybrid,” the convolution relation will also be a hybrid:

The form factor “convolution” relation is just matrix multiplication: F1A(Q2)
F2A(Q2)

...

 =

 F1V (Q2) F1T (Q2)
F2V (Q2) F2T (Q2)

...
...

[ ZF1p(Q2) + (A− Z)F1n(Q2)
ZF2p(Q2) + (A− Z)F2n(Q2)

]

The number of form factors depends on the target’s spin.
PDF convolution relation is an integral equation:

fi/A(x, µ) =

∫ A

x

dy

y

[
Zfi/p

(
x

y
, µ

)
fp/A(y) + (A− Z)fi/n

(
x

y
, µ

)
fn/A(y)

]
The GPD convolution equation is a hybrid integral matrix equation: H1A(x, ξ, t;µ)

H2A(x, ξ, t;µ)
...

 =

∫
dy

y

 H1V (y, ξ, t) H1T (y, ξ, t)
H2V (y, ξ, t) H2T (y, ξ, t)

...
...


 ZHp

(
x
y
, ξ
y
, t;µ

)
+ (A− Z)Hn

(
x
y
, ξ
y
, t;µ

)
ZEp

(
x
y
, ξ
y
, t;µ

)
+ (A− Z)En

(
x
y
, ξ
y
, t;µ

) 
Number of GPDs depends on the spin of the target.
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About the matrix

 H1A(x, ξ, t;µ)
H2A(x, ξ, t;µ)

...

 =

∫
dy

y

 H1V (y, ξ, t) H1T (y, ξ, t)
H2V (y, ξ, t) H2T (y, ξ, t)

...
...


 ZHp

(
x
y
, ξ
y
, t;µ

)
+ (A− Z)Hn

(
x
y
, ξ
y
, t;µ

)
ZEp

(
x
y
, ξ
y
, t;µ

)
+ (A− Z)En

(
x
y
, ξ
y
, t;µ

) 

The convolution matrix comes from the matrix elements:

〈p′A, s |
(
/nHN +

inµ∆νσµν

2mN
EN

)
| pA, s〉

This is an on-shell nucleon electromagnetic current operator.

HjV are coefficients multiplying HN in the convolution relation for producing H1A.

HjT are the coefficients multiplying EN in the convolution relation for producing H1A.
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Convolution for scalar nucleus

Let’s look at a scalar nucleus (e.g., 4He) as a simple example.

Only one chiral-even GPD!

HA(x, ξ, t;µ) =
∑

N=p,n

∫
dy

y

[
HV (y, ξ, t) ζNHN

(
x

y
,
ξ

y
, t;µ

)
+HT (y, ξ, t) ζNEN

(
x

y
,
ξ

y
, t;µ

)]

ζp = Z and ζn = (A− Z).

In this case, HV and HT are just the factors that multiply HN and EN , respectively, in the convolution
equation.

In general, when a nucleus has multiple GPDs:

HjA(x, ξ, t;µ) =
∑

N=p,n

∫
dy

y

[
HjV (y, ξ, t) ζNHN

(
x

y
,
ξ

y
, t;µ

)
+HjT (y, ξ, t) ζNEN

(
x

y
,
ξ

y
, t;µ

)]
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Convolutions and polynomiality

P =
1

2

(
Pi + Pf

)
p =

1

2

(
pi + pf

)
k =

1

2

(
ki + kf

)
x =

k · n
P · n

y =
p · n
P · n

ξ = −
∆ · n
2P · n

ξN = −
∆ · n
2p · n

=
ξ

y ...

pf

Pi Pf

pi

ki kf

Both nucleon GPD and nuclear coefficient matrix should satisfy polynomiality:∫
dx

x
xn+1HN (x, ξ, t) =

n∑
k even

A
(N)
n+1,k(t)(2ξ)k + mod(n, 2)C

(N)
n+1(t)(2ξ)n+1

∫
dx

x
xn+1hN/A(x, ξ, t) =

n∑
k even

A
(A)
n+1,k(t)(2ξ)k + mod(n, 2)C

(A)
n+1(t)(2ξ)n+1

hN/A and HN are rectangular and column matrices here!

Actually, some GPDs are odd in ξ rather than even; I’m using even here as an illustrative example.
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Convolutions and polynomiality
Mellin moment of total nuclear GPD:

Mn(ξ, t) =

∫
dx

x
xn+1

∫
dy

y
hN/A(y, ξ, t)HN

(
x

y
,
ξ

y
, t

)
=

∫
dy

y
yn+1hN/A(y, ξ, t)

∫
dz

z
zn+1HN

(
z,
ξ

y
, t

)
If ξ = 0, we get a product of Mellin moments, but not in general.

Mn(ξ, t) =

∫
dy

y
yn+1hN/A(y, ξ, t)

[
n∑

k even

A
(N)
n+1,k(t)

(
2
ξ

y

)k
+ mod(n, 2)C

(N)
n+1(t)

(
2
ξ

y

)n+1
]

Important: z integral produced a polynomial in ξ/y. After some maths:

Mn(ξ, t) =
n∑

l even

(2ξ)l
l∑

k even

A
(A)
n+1−l,l−k(t)A

(N)
n+1,k(t)

+ mod(n, 2) (2ξ)n+1

{
n∑

k even

C
(A)
n−k+1(t)A

(N)
n+1,k(t) +

∫
dy

y
hN/A(y, ξ, t)C

(N)
n+1(t)

}
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Discrete convolution relations

Mellin moments / Polynomiality : Discrete convolution relations are obeyed for generalized form factors:

A
(q/A)
n+1,l(t) =

l∑
k=0
even

A
(N/A)
n+1−l,l−k(t)A

(q/N)
n+1,k(t)−−−→

n=0
F (q/A)(t) = F (N/A)(t)F (q/N)(t)

C
(q/A)
n+1 (t) =

n∑
k=0
even

C
(N/A)
n−k+1(t)A

(q/N)
n+1,k(t) +

∫
dy

y
hN/A(y, ξ, t)C

(q/N)
n+1 (t)

Strictly, these are matrices.

A(q/A)(t) and A(q/N)(t) are column matrices.

A(N/A)(t) is a rectangular matrix.

Get form factor matrix equation in n = 0 case.

Unsure the meaning (or convergence) of the
∫ dy

y
hN/A(y, ξ, t) term.
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Nuclear GPDs in the impulse approximation

Three limiting factors to knowledge of nuclear GPDs:
1 The nucleon GPDs.
2 The coefficient functions H1V , etc.
3 What happens beyond the impulse approximation.

We focus on issue #2 here.

The limiting factor to calculation of the coefficient functions is knowledge of the
nuclear wave function.

Good news: High-precision nuclear wave functions exist for light nuclei!
(AV18+Illinois7)

Bad news: These wave functions are not Lorentz covariant.

Lorentz covariance is needed for polynomiality.
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A covariant nuclear vertex

The raison d’etre of this work is to find Lorentz covariant nuclear wave
functions.

Light nuclei are the obvious (easiest) starting point; first case, the deuteron.

Cano and Pire (Eur Phys J A19 (2004) 423) give a theoretical treatment, but their
numerical results violate polynomiality.

A worthwhile investigation may be: a simple, exactly-solvable model of the deuteron
as two nucleons. Simplify the problem with a simple potential.

Keep Lorentz invariance manifest from the start.
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Relativistic contact interactions

The Nambu-Jona-Lasinio (NJL) model has been
extremely successful in describing hadron structure.

Contact interactions give a simple starting point for
exact, Lorentz-invariant calculations.

Contact interaction Lagrangian for nucleon-nucleon interactions:

L =
∑
I

GI
(
ψTC−1τ2ΩIψ

) (
ψ̄ΩICτ2ψ̄

T
)

It is always possible to write the contact interaction Lagrangian in this form, via
Fierz rearrangement.
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Two-nucleon bilinears

Contact interaction Lagrangian:

L =
∑
I

GI
(
ψTC−1τ2ΩIψ

) (
ψ̄ΩICτ2ψ̄

T
)

The matrices ΩI are tensor products of Clifford algebra matrices, isospin matrices, and
derivatives.

Fermion fields are classically Grassmann numbers:

ψ1ψ2 = −ψ2ψ1

ψ2
1 = 0
ψTψ = 0
ψTMψ = −ψTMTψ for any matrix M .

All bilinears in our Lagrangian should use antisymmetric matrices.
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Two-nucleon bilinears

Contact interaction Lagrangian:

L =
∑
I

GI
(
ψTC−1τ2ΩIψ

) (
ψ̄ΩICτ2ψ̄

T
)

For simplicity, consider only first-order derivatives.

∂±µ =

−→
∂ µ ±

←−
∂ µ

2

(∂±µ )T = ±∂±µ

Symmetric Antisymmetric

Clifford γµC, σµνC C, γ5C, γ5γµC

Isospin τjτ2 τ2

Derivative 1, ∂+
µ ∂−µ

Matrices ΩICτ2 are made by mixing and matching, to get an overall antisymmetric
matrix.

A total of 21 terms available for Lagrangian.

10 of these terms are isoscalar (I = 0). Focus on these (relevant to deuteron).
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Isoscalar Lagrangian
Isoscalar contact Lagrangian:

LI=0 = L0 + Lk + Lp

No-deritatives terms:

L0 = GV
(
ψ̄γµCτ2ψ̄

T
)(

ψTC−1τ2γµψ
)

+
1

2
GT

(
ψ̄σµνCτ2ψ̄

T
)(

ψTC−1τ2σµνψ
)

Minus-derivative terms:

Lk = G1

(
ψ̄∂−µCτ2ψ̄

T
)(

ψTC−1τ2∂
−
µ ψ

)
+G2

(
ψ̄∂−µγ5Cτ2ψ̄

T
)(

ψTC−1τ2∂
−
µ γ5ψ

)
+G3

(
ψ̄∂−µγ5γ

νCτ2ψ̄
T
)(

ψTC−1τ2∂µγ5γνψ
)

+G4

(
ψ̄γ5 /∂

−
Cτ2ψ̄

T
)(

ψTC−1τ2γ5 /∂
−
ψ
)

Plus-derivative terms:

Lp = G5

(
ψ̄∂+µγνCτ2ψ̄

T
)(

ψTC−1τ2∂
+
µ γνψ

)
+

1

2
G6

(
ψ̄∂+µσνπCτ2ψ̄

T
)(

ψTC−1τ2∂
+
µ σνπψ

)
+G7

(
ψ̄ /∂

+
Cτ2ψ̄

T
)(

ψTC−1τ2 /∂
+
ψ
)

+G8

(
ψ̄∂+

ν σ
µνCτ2ψ̄

T
)(

ψTC−1τ2∂
+πσµπψ

)
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Bethe-Salpeter equation for the deuteron

Apply our contact interaction to the deuteron.

Deuteron obeys the Bethe-Salpeter equation:

k

p

k

p

k̄

=

Derivatives in momentum space:

∂+
µ 7→

i

2
pµ

∂−µ 7→ ikµ

The contact potential is separable, so the deuteron vertex is linear in k.
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Deuteron vertex

Γµd(p, k) =
p k

Γ̄µd(p, k) =
pk

Most general deuteron vertex compatible with our Lagrangian:

Γµd(p, k) =

[
αV

(
γµ − /ppµ

p2

)
+ iαT

pνσ
µν

Md
+
αE
Md

(
kµ − k · p

p2
pµ
)

+ αD

(
/pγµ/k − /kγµ/p

2p2

)]
Cτ2

Several Lagrangian terms either vanish or become redundant in BSE.

Leffective = GV
(
ψ̄γµCτ2ψ̄

T
) (
ψTC−1τ2γµψ

)
+

1

2
GT
(
ψ̄σµνCτ2ψ̄

T
) (
ψTC−1τ2σµνψ

)
+GE

(
ψ̄∂−µCτ2ψ̄

T
) (
ψTC−1τ2∂

−
µ ψ
)

+GD
(
ψ̄∂−µγ5γ

νCτ2ψ̄
T
) (
ψTC−1τ2∂µγ5γνψ

)
Now only four terms!
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Also, C = −1 vector meson

Odd-C vector mesons also require antisymmetric vertices.

If we set HN and EN instead to GPDs of the dressed quark, and replace mN with a
dressed quark mass, our “deuteron GPD” becomes a ρ meson GPD!

Thus, by finding the dueteorn GPDs in the contact formalism, we are also calculating
the ρ meson GPDs in the NJL model.
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Matrix form of the BSE

The BSE can be thought of as a matrix equation.

Γd(p, k) =MBSEΓd(p, k)
αV
αT
αE
αD

 = 4


GV ΠV V GV ΠV T GV ΠV E GV ΠV D

GTΠTV GTΠTT GTΠTE GTΠTD

GEΠEV GEΠET GEΠEE GEΠED

GDΠDV GDΠDT GDΠDE GDΠDD



αV
αT
αE
αD


The interactions mix up components of the vertex.

The bubble diagrams ΠV V etc. contain all the difficulties (UV divergences, etc.).

Once the bubbles are known, solving the BSE is simply linear algebra.

Theory is non-renormalizable, so cutoff is an additional parameter.
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Deuteron form factors

To determine the G’s (or α’s), empirical input is needed.

Electromagnetic properties of the deuteron are well-known.

Deuteron current decomposes into three Lorentz-invariant form factors:

jµ;αβ
d (p′; p) = (p+ p′)µgαβF1d(Q

2)− (qαgβµ − qβgαµ)F2d(Q
2)− (p+ p′)µ

qαqβ

2M2
d

F3d(Q
2)

This can be calculated in the covariant contact model:

jµ;αβ
d (p′; p) =

p

−k

p′

p + k p′ + k

q = p′ − p

p

−k

p′

p + k p′ + k

q = p′ − p

+
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Deuteron form factors

jµ;αβ
d (p′; p) =

p

−k

p′

p + k p′ + k

q = p′ − p

p

−k

p′

p + k p′ + k

q = p′ − p

+

Using nucleon form factors for the photon-nucleon coupling, we get a matrix equation: F1d(Q
2)

F2d(Q
2)

F3d(Q
2)

 =

 F1V (Q2) F1T (Q2)
F2V (Q2) F2T (Q2)
F3V (Q2) F3T (Q2)

[ F1p(Q
2) + F1n(Q2)

F2p(Q
2) + F2n(Q2)

]
F1V , F1T , etc. are the body form factors.
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Sachs-like form factors

Sachs-like form factors are closer to empirical observation.

GQ(Q2) = F1d(Q
2)− F2d(Q

2) + (1 + η)F3d(Q
2)

GM (Q2) = F2d(Q
2)

GC(Q2) = F1d(Q
2)− 2

3
ηGQ(Q2)

where η = Q2

4M2
d

.

〈rE〉rms =

√
−6

∂GC(Q2 = 0)

∂Q2

µd =
mN

Md
GM (Q2 = 0)

Q =
1

M2
d

GQ(Q2 = 0)

They are related to electromagnetic structure functions:

A(Q2) = G2
C(Q2) +

2

3
ηG2

M (Q2) +
8

9
η2G2

Q(Q2)

B(Q2) =
4

3
η(1 + η)G2

M (Q2).
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Full contact model

Attempt fit to data up to Q2 = 1 GeV2.

Fit fails when higher-Q2 data are used: necessity of long-range pion exchange?

0 1 2 3 4
Q2 (GeV2)

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

A
(Q

2
)

Pure vector

Vector+tensor

Full vertex

0 1 2 3 4
Q2 (GeV2)

10−11

10−9

10−7

10−5

10−3

B
(Q

2
)

Pure vector

Vector+tensor

Full vertex
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Contact model

Model Empirical

rrms (fm) 2.15 2.1413(25)

µd 0.91 0.8574382311(48)

Qd (fm2) 0.122 0.2859(3)

Contact model is imperfect.

The static quadrupole moment is off by
a factor of 2.

Otherwise, quite good description for a
contact model. 0 1 2 3 4

Q2 (GeV2)

−1.5

−1.0

−0.5

0.0

0.5

t̃ 2
0
(Q

2
)

Pure vector

Vector+tensor

Full vertex

Long-range pion exchange is likely necessary for a perfect description.
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Contact model

For now, proceed with relativistic
contact model.

The UV cutoff is close to the pion mass,
suggesting a breakdown of the contact
model when pion exchange becomes
relevant.

The close values of the α’s suggests a
finely-tuned cancellation between
attractive and repulsive forces.

GV −(6.14 fm)2

GT (6.28 fm)2

GE (3.60 fm)4

GD −(2.63 fm)4

Λ 142 MeV

αV 46

αT -48

αE -45

αD 18

Leffective = GV
(
ψ̄γµCτ2ψ̄

T
) (
ψTC−1τ2γµψ

)
+

1

2
GT
(
ψ̄σµνCτ2ψ̄

T
) (
ψTC−1τ2σµνψ

)
+GE

(
ψ̄∂−µCτ2ψ̄

T
) (
ψTC−1τ2∂

−
µ ψ
)

+GD
(
ψ̄∂−µγ5γ

νCτ2ψ̄
T
) (
ψTC−1τ2∂µγ5γνψ

)
A. Freese (ANL) Nuclear GPDs September 25, 2017 26 / 32



Outline Importance of covariance GPD Convolution Nuclear vertices Outlook

Deuteron PDFs

Deuteron PDFs related to nucleon PDFs by convolution formula:

q
(λ)
i/d(xA, Q

2) =
∑
N=p,n

∫ 2

xA

dy

y
qi/N

(
xA
y
,Q2

)
f

(λ)
N/d(y)

The deuteron light cone density (LCD) f
(λ)
N/d(y) can be found by Feynman rules:

f
(λ)
N/d(y) =

p

p − k

p

(n · γ)δ(n · [k − yp/A])τN

p

p − k

p

(n · γ)δ(n · [k − yp/A])τN

+
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Deuteron LCD

We find exact expressions for the LCD.

For example, the “pure vector” (αV -only) part:

f
(unpol)
d (y) = α2

V

1

48π2

∫
dτe−∆(y)τ

(
1

τ
+
M2
d

8
y(2− y)[4− y(2− y)] +

3

4
m2y(2− y)

)
f

(tensor)
d (y) = −α2

V

1

32π2

∫
dτe−∆(y)τ

(
2− 3y(2− y)

τ
− M2

d

2
y(2− y)(y − 1)2

)
∆(y) = m2

N −
M2
d

4
y(2− y)

Full expressions available in upcoming paper.
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Structure function calculations

We get a good agreement with DIS data for the deuteron.
Q2 = 1 GeV2

10−3 10−2 10−1 100

x

0.0

0.1

0.2

0.3

0.4

F
2D

(x
)

NMC (1992)

Fermilab (1996)

JLab (2006)

JLab (2010)

HERMES (2011)

Q2 = 5 GeV2

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.1

0.2

0.3

0.4

F
2D

(x
)

NMC (1992)

Fermilab (1996)

NMC (1997)

JLab (2006)

HERMES (2011)

Q2 = 15 GeV2

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F
2D

(x
)

NMC (1992)

NMC (1997)

Q2 = 1 GeV2 exhibits quark-hadron duality.

We can’t describe HERMES b1 data, but no impulse
approximation calculation can.

0.0 0.2 0.4 0.6 0.8 1.0
x

−0.002

−0.001

0.000

0.001
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Deuteron GPD

Unfortunately, the deuteron (and ρ meson) GPDs are still a work in progress.

But we’re close.

The formalism is in place: it’s just a technical matter of calculating some inverse
Mellin transforms.
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Outlook

Deuteron GPDs in a relativistic contact model are on the horizon.

These GPDs do satisfy polynomiality.

These GPDs are also ρ GPDs in the NJL model (with some constants changed).

It will also be straightforward to generalize to GTMDs.

The contact formalism will be applied to 3He and 4He next.

Lorentz-invariant inclusion of pion exchange would be ideal
... but our primary focus is the convolution formalism itself.

Contact formalism should work better for helium and ρ, since these are not loosely
bound.
4He is higher priority, since data is being collected for it now.
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The End

Thank you for listening!

A. Freese (ANL) Nuclear GPDs September 25, 2017 32 / 32


	Importance of covariance
	GPD Convolution
	Nuclear vertices
	Outlook

