Constraining Nuclear PDFs at an EIC

Salvatore Fazio Brookhaven National Lab

Proton PDFs from HERA

Differential cross section:

What we Know:

- ✓ Extensive program carried at HERA
- \checkmark F₂ precisely measured in a large-x range
- ✓ At low-*x* gluons dominate

Nuclear Structure Functions

Inclusive DIS on e+A analog to e+p:

$$\frac{d^2\sigma^{eA\to eX}}{dxdQ^2} = \frac{4\pi\alpha^2}{xQ^4} \left[\left(1 - y + \frac{y^2}{2} \right) F_2(x,Q^2) - \frac{y^2}{2} F_L(x,Q^2) \right]$$

quark+anti-quark

(or tag on F_2 -charm)

Theory/models have to be able to describe the structure functions and their evolution

DGLAP:

predicts Q² but not A-dependence and x-dependence Saturation models:

predict A-dependence and x-dependence but not Q^2

 \rightarrow Need: large Q² lever-arm for fixed x, A-scan

Aim at extending our knowledge on structure functions into the realm where gluon saturation effects emerge ® different evolution

Electron-Ion Collider's Phase Space

An EIC at its highest extends kinematic coverage for e+A data by a decade in x at a fixed Q² by a decade in Q² at a fixed x

Nuclear Modifications – Present Knowledge

Measure different structure functions in e+A → constrain nPDF Latest state-of-the-art nPDF is EPPS16

K. J. Eskola, P. Paakkinen, H. Paukkunen, C. A. Salgado [Eur.Phys.J. C77 (2017) no.3, 163]

- Replacing EPS09. Quark flavors are now separated
- includes latest LHC data
- EPPS16* → functional form with less constraints (for gluons) in extrapolating for x < x_{data} ® critical to study the impact of the high precision EIC data!
- What is the possible impact of an Electron-Ion Collider?

Ratio: $g(x,Q^2)_{Pb}/g(x,Q^2)_p$

5

Reduced Cross Section & Structure Functions

$$S_{r} = F_{2}(x,Q^{2}) - \frac{y^{2}}{1 + (1 - y)^{2}}F_{L}(x,Q^{2}) \qquad \qquad \frac{y^{2}}{1 + (1 - y)^{2}} = Y^{+}$$

- Structure functions can be extracted from the reduced cross section
- > Pseudo-data are generated using **PYTHIA** and according to **EPS09** central values
- In order to extract F₂ from the reduced cross section, we adopted the same method used at HERA [e.g. see HERMES paper on arXiv:1103.5704]
- ➢ F_L extracted from the reduced cross section by fitting the slopes in Y⁺ for different Vs at fixed x, Q² → requires running at (at least) three different c-o-m energies

Simulation:

e+Au sample simulated using PYTHIA 5(20) GeV electrons X 50 GeV Au [Vs = 32(63) GeV] $\rightarrow L = 2 \text{ fb}^{-1}/\text{A}$ 5(20) GeV electrons X 75 GeV Au [Vs = 39(78) GeV] $\rightarrow L = 4 \text{ fb}^{-1}/\text{A}$ 5(20) GeV electrons X 100 GeV Au[Vs = 45(89) GeV] $\rightarrow L = 4 \text{ fb}^{-1}/\text{A}$

Total simulated event sample (for each electron energy) L = 10 fb⁻¹/A

Reduced Cross Section & F₂ (e+Au)

$$S_r = F_2(x, Q^2) - \frac{y^2}{1 + (1 - y)^2} F_L(x, Q^2)$$

♦ Systematics = 3%

- Stat. and Sys. error summed in quadrature (Sys. dominate!)
- → Gluon extraction via scaling violation
 → do(x,Q²)/dlnQ² (requires ~> 1 decade in Q² at a fixed x)
- Comparison of linear with nonlinear evolution in x will signal saturation

[®]needs low-x reach An EIC at its highest energy provides a factor 10 larger reach in Q² and low-x compared to available data

Radiated photons

We use **Django simulator** including $O(\alpha)$ radiative effects

S. Fazio (BNL)

We look at photons radiated from the electron before or after the interaction

Radiated photons are

- Low energy (most of them < 1 GeV)
- uniformly distributed in the azimuthal angle
- collinear to the scattered electron (θ_{γ} > 3 rad)

Correction factor: $Rc = \frac{S_{red}}{C}$

Radiative corrections - 20 GeV x 100 GeV

Extracting F_L (e+Au)

Higher energy EIC: $\sqrt{s} = 63, 78, 89 \text{ GeV}$

х

F_L (e+Au)

Errors dominated by the systematics in the cross section measurement →Not luminosity hungry! Study: 10 fb⁻¹ → 100 fb⁻¹ has negligible impact (see backup slide)

Charm production: a unique tool!

Selection of charm-production events

We select kaons in the final state of the **D** meson decay, looking for:

- a displaced vertex: 0.01 cm < |Vertex | < 3 cm
- Momentum within the acceptance of an EIC model detector (BeAST @ eRHIC)

 CENTRAL DETECTOR (-1 < η < 1)</th>

 dE/dx -> 0.2 GeV < P < 0.8 GeV</td>

 RICH -> 2 GeV < P < 5 GeV</td>

 INT-17-3 Program

FORWARD (1 < η < 3.5)

RICH -> 2 GeV < P < 40 GeV

REAR (-3.5 < η < -1) RICH -> 2 GeV < P < 15 GeV

Charm - reduced Cross Section & F₂ (e+Au)

Charm - F_L (e+Au)

Enough Lever Arm required (three points, y + > 0.2)

Errors dominated by the systematics in the cross section measurement →Not luminosity hungry! Study: 10 fb⁻¹ → 100 fb⁻¹ has negligible impact (see backup slide) →High energy EIC: huge impact on current

predictions

Charm selection: background & efficiency

Background study We look at background from DIS events with kaons that pass the whole selection but are not coming from a charm decay. The fraction of background over signal events is: (selected bkg events) / (selected Charm Events) Conclusion: The B/S fraction is expected in the order of ~1% with a very light energy dependence

Efficiency study We look at the efficiency of selection charm production events. The efficiency is defined as: (selected Charm Events) / (charm Events in Acceptance) Conclusion: The charm selection efficiency is expected in the order of ~28% with no significant energy dependence

The EIC impact

Fits to the EIC simulated data

EPPS16^{*} → EPPS16 using a flexible function with a couple of extra free parameters at small x for gluon (not for the quarks)

EIC: vs = 32, 39, 45 GeV

The EIC impact – sea quarks

Fits to the EIC simulated data

The EIC impact – gluons

low-energy scenario

high-energy scenario

Inclusive DIS alone has a huge effect at low-x Charm has a dramatic effect at high-x

Proton SFs

Proton F₁ - HERA

H1 and ZEUS

Not only for nuclei!

Comparable precision for proton Structure Functions in e+p scattering, to even higher Q² at high x

 \rightarrow Beyond what HERA achieved: precise measurement of proton F_{L}

Proton PDFs

Therefore EIC can have large impact on proton PDFs too!

- e+Deutrium data are sensitive to u/d quark flavor separation (need to correct for nuclear modifications)
- Electroweak data allow to constrain s quark PDFs as well as SIDIS +FF

Conclusions

e+A physics program at a future Electron-Ion Collider provides an unprecedented opportunity to study quarks and gluons in nuclei

- Precise measurements of nuclear structure functions in a large phase-space
- Constrain gluon nPDFs at large-x by tagging photon-gluon fusion through precise measurements of charm production
- ♦ Large impact in constraining gluon nPDFs at low-x
- Same or better precision expected for proton SFs too, Plus constraining large x gluons and separate u/d/s flavors

This is day 1 high impact physics!

Recent publication:

E.C. Aschenauer, S. F., M.A.C. Lamont, H. Paukkunen, P. Zurita

arXiv:1708.05654

Impact from and on p+A and A+A physics

- PDFs required as input to physics in A+A
- p+A @ LHC has so far only moderate impact (see arXiv:1612.05741) on constraining nPDFs

LHC/RHIC x coverage at rapidity |y|<1

Higher energy configurations of an EIC

constrain nPDFs in an x-range critical for the A+A program at the LHC