Using Jets to access TMDs in proton-proton collisions

Renee Fatemi

University of Kentucky

Spatial and Momentum Tomography of Hadrons and Nuclei INT Workshop, September 26, 2017

Why Jets?

 TMD's have long been studied in semi-inclusive lepton-proton collisions where only the scattered lepton and the momentum of your chosen hadron is reconstructed.

• In the case of I+p scattering it is possible to explicitly reconstruct x, P_T^H and Q^2 .

Why Jets?

- In proton-proton collisions must use jet P_T as proxy for momentum transfer Q.
- The hadron momentum (j_T) is measured with respect to jet axis.
- Initial parton momentum cannot be reconstructed, unless dijets are identified, and even then only at leading order.

Why Jets?

 Access TMDs via modulation of transverse single spin asymmetries.

$$A_{UT}^{\sin(\phi)}\sin(\phi) = \frac{\sigma^{\uparrow}(\phi) - \sigma^{\downarrow}(\phi)}{\sigma^{\uparrow}(\phi) + \sigma^{\downarrow}(\phi)}$$

- Spin dependent terms:
- $d\sigma^{\uparrow}(\phi_{S},\phi_{H}) d\sigma^{\downarrow}(\phi_{S},\phi_{H})$ $\sim d\Delta\sigma_{0}\sin(\phi_{S})$ $+ d\Delta\sigma_{1}^{-}\sin(\phi_{S} - \phi_{H}) + d\Delta\sigma_{1}^{+}\sin(\phi_{S} + \phi_{H})$ $+ d\Delta\sigma_{2}^{-}\sin(\phi_{S} - 2\phi_{H}) + d\Delta\sigma_{2}^{+}\sin(\phi_{S} + 2\phi_{H})$
- $d\Delta\sigma$ include PDFs and FF

Why p+p?

•Gluons!

- One of the driving motivations behind an EIC is the study of gluons. Strong interactions access gluons directly and are ideally suited for studying observables like *Gluon Fragmentation Functions* and *Gluon Linear Polarization*.

• Factorization and Universality

- Separate intrinsic properties of hadrons from interaction dependent dynamics
- Ideally we need precision measurements from both SIDIS and pp to make meaningful comparisons.
- Push the theoretical envelop

• Evolution

- TMD evolution is area of active theoretical research! Unlike in the k_T integrated case there are non-perturbative factors that can only be constrained by experimental measurements.
- Proton colliders routinely access higher Q² than fixed target experiments (as well as some running scenarios for an EIC).

Current and Projected TMD Data

Jet Measurements at STAR

- STAR is uniquely suited to make jet TMD measurements in the era preceeding the turn-on of an EIC
- Classic collider detector
 - Full azimuthal coverage at midrapidity
 - TPC provides charged hadron PID
 - Long standing jet reconstruction program in both cross-sections and polarized observables.
 - Nearly complete EM calorimetry coverage out to $\eta = 4$.

• Relatively inexpensive upgrades would build on existing strengths at mid-rapidity by extending jet reconstruction and charge sign identification into forward region.

STAR Forward Calorimeter + Tracking Upgrade

Install in forward region $2.3 > \eta > 4.0$

4-interaction length thick Pb-scintillator plate HCAL

Designed to provide charge-sign & vertex determination.

Timelines & TMDs

* twist-3 related to TMDs via ETQS eq.

YEAR	TMD	OBSERVABLE	SPECIES + √s
2017	Sea Quark Sivers, Transversity & Collins FF Gluon linear polarization Gluon + Quark Sivers [*] Gluon FF GPD E _G	A_N for W, Z and DY A_{UT} in jets A_{UT} in jets A_{UT} in jets Hadrons in jets A_{UT} for J/ Ψ in UPC	P [↑] P 500 GeV
2018-20	iTPC and Forward	Upgrade installation	Beam Energy Scan
2021	Hi/low x Transversity & Collins Precision Sea Quark Sivers?	A_{UT} in jets A_N for W, Z and DY	P [↑] P 500 GeV
2022	sPHENIX	installation	
2023	Transversity & Collins FF Gluon linear polarization Gluon + Quark Sivers* Gluon FF	A _{UT} in jets A _{UT} in jets A _{UT} in jets Hadrons in jets	P [↑] P 200 GeV
2023	A-Dependence of TMDs	A _{UT} /Hadrons in jets	P [↑] A 200 GeV

Collins $A_{UT}^{sin(\Phi_s - \Phi_H)}$ Mid-rapidity Jets

STAR : arXiv:1708.07080

Theory :

U. D'Alesio, F. Murgia, and C. Pisano, Phys.Lett. B773 (2017) 300-306 Z.-B. Kang, A. Prokudin, F. Ringer, and F. Yuan, arXiv:1707.00913

- First signature of Collins effect in p+p!
- Excellent agreement
 with calculations
 based on SIDIS and
 e+e- data. Implies
 universality holds
 for Collins FF and
 factorization breaking effects are
 small!
- Agreement holds for more precise 200 GeV data.

Collins $A_{UT}^{sin(\Phi_s - \Phi_{\mu})}$ Mid-rapidity jets

- Interesting j_T dependence shows fall-off at higher values
- Paper also includes multvariable binning in p_T and z.

Collins $A_{UT}^{sin(\Phi_s-\Phi_{H})}$ vs. j_T at 200 GeV (xF>0)

- General shape is preserved and clearer in 200 GeV data.
- Maximum is shifting down.
 Note that average jet p_T is ~ 12 GeV compared to 31 in 500 GeV data.
- Final results will be differential in z as well.

Collins $A_{UT}^{sin(\Phi_s-\Phi_{H})}$ vs. j_T at 200 GeV (xF>0)

- Same data now compared with curves from U.
 D'Alesio, F. Murgia, and C. Pisano, Phys.Lett. B773 (2017) 300-306
- Good agreement at high j_T (k_⊥). Need to explore low J_T region both theoretically and experimentally.

Collins Evolution: 200-> 500 GeV

- Apply cuts to ensure same quark fraction and average hadron J_T.
- Excellent agreement between 200 and 500 GeV for π+ ... π- not as strong.
- Need more statistics in 500 GeV to match precision of 200 GeV.

Collins Evolution: 200-> 500 GeV

STAR data compared to calculations by Z.-B. Kang, A. Prokudin, F. Ringer, and F. Yuan, (arXiv:1707.00913) without and with evolution.

At the current level of precision the data implies universality holds for p+p collisions and TMD Evolution effects are small. Need more data!

Fragmentation Properties in Nuclei

- What happens if we repeat this analysis but instead of p+p we collide p+A?
- First dataset collected on p+Au in 2015.
- Running in 2023 will permit the study of A-dependence.
- Analogous to EMC effect but in spin dependent proton collisions!

A_{UT} of Charged Hadrons in Forward Jets

- Mid-rapidity jet A_{UT} samples an x range of 0.2-0.3.
- STAR could push sensitivity to higher (> 0.3) and lower x (~10⁻³) at high Q² by reconstructing jets and charged hadrons (h⁺/h⁻) in the forward direction.
- Pion purity for h-(h+) estimated to by 87(78)%. Pbar highly surpressed in forward region.

A_{UT} of Forward Jets with high z hadrons

- Tests connection between twist-3 and TMDs via ETQS relationship
- Facilitates interpretation of the small inclusive jet A_{UT} measured by AnDY.

Jet A_{UT} is sensitive to twist-3 "Siverslike" correlators, which are expected to be opposite sign for u and d quarks.

No PID in forward region, only charged sign separation for h+/h-.

Gluon Fragmentation Functions

Recent work by Kaufmann, Mukherjee & Vogelsang show that cross-sections of hadrons in jets:

$$rac{d\sigma^{^{pp
ightarrow jet+X}}}{dp_{_T}^{^{jet}}d\eta^{^{jet}}dz_h}$$

differential in $z_h = p_T^H / p_T^{JET}$ may be used to access universal FF in protonproton collisions.

This new observable is sensitive to **GLUON FF** which are particularly difficult to extract from traditional e+e- scattering measurements.

STAR can contribute by measuring this at both 200 and 500 GeV. Complimentary to analysis at the LHC.

Gluon Fragmentation Functions

Projected measurements for π + in mid-rapidity jets at 200 and 500 GeV

Curves are from Kaufmann et al using DSSV14 FF and PDF.

Gluon TMD FF

Recent work by Kang, Liu, Ringer and Xing defined a universal TMD FF:

$$F(z_h, j_T; p_T, \eta, R) = \frac{\frac{d\sigma^{pp \to jet + X}}{dp_T^{jet} d\eta^{jet} d^2 j_T dz_h}}{\frac{d\sigma^{pp \to jet + X}}{dp_T^{jet} d\eta^{jet}}}$$

Similar to collinear case it is especially sensitive to the **GLUON** TMD FF, which is at this time virtually unconstrained.

Unlike in SIDIS, the TMDFF's accessed in pp do not depend on the TMDPDFs!

arXiv:1705.08443v1

Gluon Linear Polarization

- $sin(\Phi_s-2\Phi_H)$ modulation in jet A_{UT} is sensitive to gluon linear polarization signal.
- First measurement completely unconstrained! Possible cause of the ridge in pp/pA? *Phys.Rev. D94 no.1, 014030, arXiv:1708.08625*
- Shaded bands represent maximal predictions from U. D'Alesio, F. Murgia, and C. Pisano, arXiv:1707.00914 utilizing Kretzer and DSS fragmentation functions.

Wrap-up

- As recommended by the Long Range Plan, we should utilize the existing RHIC infrastructure to continue to explore the structure of the proton and cold nuclear matter.
 - Complete the measurements best done at a pp/pA collider, such as Gluon FF and Gluon linear polarization.
 - Pursue measurements that will allow us to optimize and enhance the EIC program, for example tests of Universality and Factorization and TMD evolution.
 - Keep the cold QCD community strong and engaged as we move towards an EIC.
- The RHIC Spin and cold QCD community has developed a plan to complete the RHIC mission. arXiv: 1602.03922

Generalized Parton Distributions

- RHIC can access the GPD E function for gluons via measurements of A_{UT} of J/ψ in ultra-peripheral collisions
- A significant asymmetry would be the FIRST sign of a non-zero GPD E_g.
- GPD E_g is sensitive to spin-orbit correlations and provides input on angular momentum component of the spin puzzle.
- DETECTOR: EMCals to reconstruct mid-rapidity J/ψ and Roman pots to reconstruct elastically scattered proton