
Baryon spectrum and structure,
nucleon Compton scattering

Gernot Eichmann

INT Workshop „Tomography of Hadrons and Nuclei at Jefferson Lab“

August 30, 2017
Seattle, WA, USA

Gernot Eichmann (IST Lisboa) Aug 30, 2017 1 / 30



Why?

origin of mass generation and confinement?

need to understand spectrum and interactions!
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if it only were that simple... 
we don’t measure quarks and gluons, but hadrons

mesons
baryons
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pentaquarks??

glueballs?
hybrids? tetraquarks?
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Compton scattering
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FIGURE 1. (Color online). The scalar polarizabilities of the proton. Magenta blob represents the PDG summary [15]. Experi-
mental results are from Federspiel et al. [16], Zieger et al. [17], MacGibbon et al. [18], and TAPS [19]. ‘Sum Rule’ indicates the
Baldin sum rule evaluations of αE1 + βM1 [19] (broader band) and [20]. ChPT calculations are from [10] (BChPT—red blob) and
the ‘unconstrained fit’ of [21] (HBChPT—blue ellipse).

proton Compton scattering, where these polarizabilities prominently appear, the calculations show that upon inclusion
of O(p4) contributions the HBChPT achieves roughly the same results as O(p3 + p4/∆) BChPT [13], albeit with a
loss of some predictive power due to the appearance of two new LECs.

The present status of the BChPT, HBChPT, as well as “more empirical" extractions of proton polarizabilities, as
summarised in [14], is shown in Fig. 1. Note the significant discrepancy of the BChPT prediction with the current
Particle Data Group values, which thes far has been attributed to a sizeable underestimate of uncertainty in the TAPS
and subsequently PDG values.

3. RELEVANCE: HYDROGEN LAMB SHIFT

The electric polarizability of the proton is responsible for a zero-range force in atoms, which lead to a shift in the
S-levels:

∆E(pol.)
nS = −4αem φ 2

n (0)

∞∫

0

dQ

[√
1+

Q2

4m2
�

− Q
2m�

]
αE1(Q2), (1)

where αem is the fine-structure constant, φ 2
n (0) = α3

emm3
r /(πn3) is the square of the hydrogen wave-function at the

origin, m� is the lepton mass and mr is the reduced mass: mr = Mpm�/(Mp +m�). The effect of magnetic polarizability
is suppressed.

The effect in Eq. (1) is of order α5
em; there is one αem implicit in the polarizability. It is therefore of the same order as

the effects of 3rd Zemach radius and can make an impact on "charge radius puzzle" [22, 23], i.e., the 7σ discrepancy
between the proton charge radius extraction based on either the electronic (eH) or muonic (µH) hydrogen Lamb shift.
The factor in the square brackets of Eq. (1) acts a soft cutoff at the scale of order of the lepton mass m�, and hence the
proton polarizability contribution in µH is expected to be bigger than in eH. How much bigger?

The transfer-momentum dependence of αE1 is inferred from the forward doubly-virtual Compton scattering, and
hence is not accessible in a direct experiment. Only the sum, αE1(Q2)+βM1(Q2), is accessible through a generalized
Baldin sum rule. The Baldin sum rule has been evaluated in several works leading to the so-called ‘inelastic’
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B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)

’

RCS

VCS

FW
D
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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Two-photon corrections to form factors:
can explain difference between Rosenbluth 
and polarization transfer measurements

Proton radius puzzle:
can TPE explain discrepancy between 𝑒 & 𝜇 
measurements? So far: probably not, but . . .

Nucleon polarizabilities:
efforts from ChPT & dispersion relations

𝛥 𝛥

+ + . . .
Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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Compton scattering

3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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Forward limit:
determined by photoabsorption cross section
and nucleon structure functions

Virtual CS: generalized polarizabilities,
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pp annihilation @ PANDA
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mechanism in WACS?
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e´

e

GPD

scribes the coupling of the external particles to the ac-
tive quarks, and the overlap of soft nonperturbative wave
functions.

Various theoretical approaches have been applied to
RCS in the hard scattering regime, and these can be dis-
tinguished by the number of active quarks participat-
ing in the hard scattering subprocess, or equivalently,
by the mechanism for sharing the transferred momen-
tum among the constituents. Two extreme pictures have
been proposed. In the perturbative QCD (pQCD) ap-
proach (Fig. 1a) [4, 5, 6, 7], three active quarks share
the transferred momentum by the exchange of two hard
gluons. In the handbag approach (Fig. 1b)[8, 9, 10, 11],
there is only one active quark whose wave function has
sufficient high-momentum components for the quark to
absorb and re-emit the photon. In any given kinematic
regime, both mechanisms will contribute, in principle, to
the cross section. It is generally believed that at suffi-
ciently high energies, the pQCD mechanism dominates.
However, the question of how high is “sufficiently high” is
still open, and it is not known with any certainty whether
the pQCD mechanism dominates in the kinematic regime
that is presently accessible experimentally.

  a) b)

FIG. 1: RCS diagrams for the (a) pQCD and (b) handbag
reaction mechanism.

One prediction of the pQCD mechanism for RCS is
the constituent scaling rule [12], whereby dσ/dt scales
as s−6 at fixed θCM . The only data in the few GeV
regime from the pioneering experiment at Cornell [13] are

Hamilton et al.,  PRL 94 (2005)
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FIGURE 1. (Color online). The scalar polarizabilities of the proton. Magenta blob represents the PDG summary [15]. Experi-
mental results are from Federspiel et al. [16], Zieger et al. [17], MacGibbon et al. [18], and TAPS [19]. ‘Sum Rule’ indicates the
Baldin sum rule evaluations of αE1 + βM1 [19] (broader band) and [20]. ChPT calculations are from [10] (BChPT—red blob) and
the ‘unconstrained fit’ of [21] (HBChPT—blue ellipse).

proton Compton scattering, where these polarizabilities prominently appear, the calculations show that upon inclusion
of O(p4) contributions the HBChPT achieves roughly the same results as O(p3 + p4/∆) BChPT [13], albeit with a
loss of some predictive power due to the appearance of two new LECs.

The present status of the BChPT, HBChPT, as well as “more empirical" extractions of proton polarizabilities, as
summarised in [14], is shown in Fig. 1. Note the significant discrepancy of the BChPT prediction with the current
Particle Data Group values, which thes far has been attributed to a sizeable underestimate of uncertainty in the TAPS
and subsequently PDG values.

3. RELEVANCE: HYDROGEN LAMB SHIFT

The electric polarizability of the proton is responsible for a zero-range force in atoms, which lead to a shift in the
S-levels:

∆E(pol.)
nS = −4αem φ 2

n (0)

∞∫

0

dQ

[√
1+

Q2

4m2
�

− Q
2m�

]
αE1(Q2), (1)

where αem is the fine-structure constant, φ 2
n (0) = α3

emm3
r /(πn3) is the square of the hydrogen wave-function at the

origin, m� is the lepton mass and mr is the reduced mass: mr = Mpm�/(Mp +m�). The effect of magnetic polarizability
is suppressed.

The effect in Eq. (1) is of order α5
em; there is one αem implicit in the polarizability. It is therefore of the same order as

the effects of 3rd Zemach radius and can make an impact on "charge radius puzzle" [22, 23], i.e., the 7σ discrepancy
between the proton charge radius extraction based on either the electronic (eH) or muonic (µH) hydrogen Lamb shift.
The factor in the square brackets of Eq. (1) acts a soft cutoff at the scale of order of the lepton mass m�, and hence the
proton polarizability contribution in µH is expected to be bigger than in eH. How much bigger?

The transfer-momentum dependence of αE1 is inferred from the forward doubly-virtual Compton scattering, and
hence is not accessible in a direct experiment. Only the sum, αE1(Q2)+βM1(Q2), is accessible through a generalized
Baldin sum rule. The Baldin sum rule has been evaluated in several works leading to the so-called ‘inelastic’

Griesshammer, McGovern, Phillips, Feldman,
Prog. Part. Nucl. Phys. 67 (2012)
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η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
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tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
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so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)
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t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.

3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =
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2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
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4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)
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t =
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2
, σ =
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2
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ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail
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+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have
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upper panel of Fig. 4 in Ref. [1].
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Q2 = Q′2 = 0 ⇒ η+ = ω = 0.
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4.2.4 Leading-order structure contributions and polarisabilities

It is gratifying that the basic low-energy theorems of Eq. (2.3) are reproduced in this EFT, but our
interest is in the predictions made by the theory for the structure-dependent amplitudes, including the
static polarisabilities αE1, βM1 and the γ’s. As just described, the leading-order HBχPT Compton-
scattering amplitude is simply the Thomson term. At NLO—O(P 3)—there are the spin-dependent
Born contributions described above, but there are also contributions from pion loops [182], specifically
the diagrams depicted in Fig. 4.3. Individually these diagrams are divergent and violate the LETs, but

t

Figure 4.3: (Colour online) O(P 3) loop diagrams in HBχPT; all orderings of vertices and crossed as
well as direct photons are implied. Vertices (shown without dots) are all from the LO Lagrangian, that

is, L(1)
πN for the nucleonic coupling and L(2)

π for the γπ couplings. These also count as ε3 and e2δ2.

the sum is finite and leaves the Born contributions intact. Thus the sum of the loop diagrams contributes
only to the structure parts of the six amplitudes and hence vanishes quadratically for A1 and A2 as
ω → 0 and as the third power of ω for A3−6. The coefficients of these terms are the polarisabilities,
and at this order they are the same for both the proton and neutron. The results, first calculated by
Bernard et al. [98, 182], are

αE1 = 10βM1 =
10αEMg

2
A

192πmπf 2
π

= 12.5 , γE1E1 = 5γM1M1 = −5γM1E2 = −5γE1M2 = − 5αEMg
2
A

96π2m2
πf

2
π

= −5.6.

(4.13)
It should be stressed that up to third order the full amplitudes, as well as the polarisabilities, are

entirely predicted in terms of the well-known quantities mπ, fπ and gA; there are no free parameters. Of
course, the best method to analyse experiments for extracting even αE1 and βM1 is the subject of this
review, but nonetheless, the many attempts made in the past to measure these quantities all come out
close to these values for both the proton and neutron; in particular, the order-of-magnitude difference
between αE1 and βM1 and their nearly isoscalar nature is not easily understood in most models. This
has long been lauded as a stunning early success of HBχPT. (As the spin polarisabilities are less well
known, it is harder to judge these predictions; see Section 4.3.)

There are a number of caveats, however. Even strictly within HBχPT, one would expect higher-
order corrections to be of order P/Λχ—around 20% if the scale of the expansion were Λχ ∼ mρ. There
is also good reason to expect that for βM1 (as well as γM1M1), the scale is actually set by the much
smaller ∆-nucleon mass difference M∆ −MN. Furthermore, in a relativistic framework, the predictions
from the diagrams in Fig. 4.3 are substantially smaller: α

(p)
E1 = 6.8, β

(p)
M1 = −1.8 [183, 184]. But, before

dismissing the success of third-order HBχPT as a fluke, we should step back and remember that the
calculation gives us full amplitudes as a function of ω, not merely the static polarisabilities. As will
be shown in more detail subsequently, the full third-order cross section extends the region in which
data can be well described substantially beyond that where the Petrun’kin cross section (Born plus
static scalar polarisabilities) is valid. In particular, it reproduces the pronounced cusp at the photopion
threshold which is seen at forward scattering angles (see Fig. 3.1). Beyond that point, the data show a
huge rise in the cross section which is obviously due to the ∆(1232) (see Fig. 3.2), and one could not
expect a theory without the ∆(1232) to work in that region.

For completeness, we should mention that a handful of calculations of polarisabilities have been
done in the framework of SU(3)×SU(3) chiral perturbation theory, involving kaons as well as pions and

36

all the octet baryons. Bernard et al. calculated the spin-independent static polarisabilities in HBχPT
[185] and showed that for nucleons the effect of kaon loops was small (see also Butler and Savage [186]);
Vijaya Kumar et al. found a similar result for γ0 [187]. Dynamical polarisabilities αE1(ω) and βM1(ω)
have also been calculated at NLO in a covariant framework by Aleksejevs and Barkanova [188].

4.2.5 Structure beyond leading order

Although the ability of third-order HBχPT to qualitatively describe low-energy data is encouraging,
the lack of any free parameters limits its use as a tool to extract more information from those data.
This situation changes at fourth order, because at that order we can construct Lagrangian terms like
ψ†F µνFµνψ which are multiplied by new, undetermined LECs. Such terms give rise to photon-nucleon
seagull diagrams which contribute terms proportional to ω2 to the amplitudes A1 and A2 [189]. In the
enumeration of Ref. [181], there are actually six such terms (numbers 89-94) but in the photon-nucleon

sector only four independent combinations of LECs enter, which we can call δα
(p)
E1, δα

(n)
E1, δβ

(p)
M1 and δβ

(n)
M1

(see L(4)
πN, Eq. (4.11), and Fig. 4.4). These are contributions to the spin-independent polarisabilities

of the proton and neutron which come from non-chiral physics—for example, quark substructure, or
resonances, according to perspective, and they obviously encode the leading effects of a ∆(1232) pole.
In addition, at fourth order a new set of πN diagrams has to be included. Finally, all the N2LO terms
in the expansion of the relativistic Born contributions to A1 and A2 are also generated via fourth-order
seagulls and diagrams like those of Fig. 4.4 with either one vertex taken from L(2)

πN or with an NLO
nucleon propagator.

Figure 4.4: (Colour online) O(P 4) diagrams in HBχPT; vertices labelled as in Figs 4.2 and 4.3 with

the addition of a (magenta) diced dot for the fourth-order counterterms δα
(p)
E1 etc. of L(4)

πN. All orderings
of vertices and crossed as well as direct photons are implied. Omitted are all diagrams obtained from
those in Fig. 4.3 by substituting an NLO vertex or propagator for an LO one. These also count as ε4

and e2δ4, though the final diagram is included at one order lower if polarisabilities are fit.

Of the loop diagrams, many are 1/MN corrections to the diagrams of Fig. 4.3 (no new LECs enter
in these). However, there are also two new types of diagrams—those with magnetic-moment couplings
as well as a pion loop, and those with a pion-nucleon seagull, as shown in Fig. 4.4. In the former, the
only new LECs are the well-known proton and neutron anomalous magnetic moments. In the latter,
however, the three πN LECs c1, c2 and c3 enter.

This time, the sum of all loop diagrams does make a O(ω) contribution to the Born terms. The
contributions are exactly those which are needed to replace the chiral-limit κ(0) with the correction that
shifts κ to its experimental value at this order. In the expansion of the γN vertex, this shift comes
from a diagram in which the photon couples to a pion loop, as in the third diagram of Fig. 4.4, but in
Compton scattering this is not the only diagram which gives δκ corrections to the Born term, nor is such
a correction the only contribution from this diagram [190–192]. The O(ω2) piece of the sum of all fourth-
order loop diagrams produces a logarithmically divergent result for the spin-independent polarisabilities.
These divergences are cancelled by the divergent parts of δα

(p)
E1 etc. to leave a finite but undetermined

total fourth-order contribution to the spin-independent polarisabilities [189]. By contrast, the O(ω3)
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The hadron zoo
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Light baryons
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Extraction of resonances? Gluon exchange vs.
flavor dependence?

Nature of Roper?

qqq vs. quark-diquark?

“Quark core” vs. 
chiral dynamics?

Hybrid baryons?
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QCD

DSEs = quantum equations of motion:  
derived from path integral, relate n-point functions

Γ−e=

Reviews:
Roberts, Williams, Prog. Part. Nucl. Phys. 33 (1994),

Alkofer, von Smekal, Phys. Rept. 353 (2001)

GE, Sanchis-Alepuz, Williams, Alkofer, Fischer,
Prog. Part. Nucl. Phys. 91 (2016),  1606.09602 [hep-ph]

S−e]ψ,A¯ψ,[D
∫

infinitely many coupled equations

reproduce perturbation theory,
but nonperturbative!-1

=
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+

-1 -1
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+

QCD’s classical action: Quantum “effective action”: 
]

µνFµνF4
1+ψ)m+A/ig

a

a+∂/ (ψ̄
[

x4d
∫

=

=

S
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systematic truncations:
neglect higher n-point functions 
to obtain closed system
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Hadrons?

Simplest n-point function that encodes information on baryons: quark 6-point correlator
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Hadrons?

Simplest n-point function that encodes information on baryons: quark 6-point correlator
〉)3y(τψ̄)2y(σψ̄)1y(ρψ̄)3x(γψ)2x(βψ)1x(αψ〈

𝐺
𝑥�

𝑥�

𝑥�

𝑥�

𝑥�

𝑥�

𝑦�

𝑦�

𝑦�

𝑦�

𝑦�

𝑦�
𝑃           �𝑚���

Bethe-Salpeter wave function:
residue at pole, contains all information about baryon

⇒ extract gauge-invariant 
    baryon poles from gauge-
    fixed 6-quark function

Lattice QCD: extract baryon poles from gauge-invariant two-point correlators

)y−x(G =

𝐺𝑥 𝑥𝑦 𝑦
𝑃           �𝑚���

=

=〉)y(
]

τψ̄σψ̄ρψ̄ρστΓ̄
[

)x] (γψβψαψαβγ[Γ〈

¯

¯

)x(J

�

)y(J

� )y(J)x(JS−e]ψ,A¯ψ,[D
∫

Re

Im

2P

2P

N(940)

N(1440)

N(1710)
N(1880)

)2P(G

Spectral decomposition:

Same singularity structure as in

i
2m+2P

···

λ

∑| →λ〉〈λ|
λ

∑

⇒
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DSEs & BSEs

Homogeneous Bethe-Salpeter equation for BS wave function:  

𝑃�           −𝑚�
𝐺 𝜒 𝜒𝐾=

Depends on QCD’s n-point functions as input, 
satisfy DSEs = quantum equations of motion

Kernel can be derived in accordance with chiral symmetry:

For reviews see:

Roberts, Williams, Prog. Part. Nucl. Phys. 33 (1994),
Alkofer, von Smekal, Phys. Rept. 353 (2001)
Fischer, J. Phys. G32 (2006)

infinitely many coupled eqs.,
in practice truncations:
model / neglect higher
n-point functions to obtain
closed system

-1
=

-1
+

-1 -1
= ++ + + . . .+

-1
=

=

=
-1

+ +

= + + + + +

+

Quark propagator

Dynamical chiral 
symmetry breaking 
generates ‘constituent-
quark masses’

350 MeV

3 MeV

10-2 10-1 100 101 102 103

10-4

10-3

10
-2

10
-1

10
0

10
1

Bottom
Charm
Strange
Up/down
Chiral limit

Quark mass 
function [GeV]:

𝑝� [𝐺𝑒𝑉�]

-1)
)2p(M+p/i)2p(A
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DSEs & BSEs

Kernel can be derived in accordance with chiral symmetry:

-1
=

=

=
-1

+ +

= + + + + +

+

Williams, Fischer, Heupel,
PRD 93 (2016)

GE, Sanchis-Alepuz, Williams,
Alkofer, Fischer, PPNP 91 (2016)

Light meson spectrum 
beyond rainbow-ladder:

1.5

1.0

0.5

0.0
+−0 −−1 ++0 −+1 ++1 −+0−−0 +−1

2PI-3L

3PI-3L

PDG

(1600) [ ]

(1260)
(1450)(1450)

(1300) (1235)
(1400)
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Mesons

Kernel can be derived in accordance with chiral symmetry:

-1
=

=

=
-1

+ +

= + + + + +

+

Rainbow-ladder:
effective gluon exchange

Maris,  Tandy, PRC 60 (1999),  Qin et al., PRC 84 (2011)

 (   ) =         ,  + ( ²)  2 ²
²

adjust scale  to observable, 
keep width  as parameter
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3

0
0 0.5 1 1.5 2

   [ ]

(    )

1.6
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1.8
1.9
2.0

 (   )2

 (   )2

Williams, Fischer, Heupel,
PRD 93 (2016)

GE, Sanchis-Alepuz, Williams,
Alkofer, Fischer, PPNP 91 (2016)

see Richard’s talk!

Light meson spectrum 
beyond rainbow-ladder:

1.5
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0.5

0.0
+−0 −−1 ++0 −+1 ++1 −+0−−0 +−1

2PI-3L

3PI-3L

PDG

(1600) [ ]

(1260)
(1450)(1450)

(1300) (1235)
(1400)

DSEs & BSEs
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Baryons

Covariant Faddeev equation for baryons:

Relativistic bound states carry OAM: 
64 (128) tensors for nucleon (𝛥)

3-gluon diagram vanishes ⇒ 3-body effects small?

Octet & decuplet baryons, pion cloud effects,
first steps beyond rainbow-ladder

GE, Alkofer, Krassnigg, Nicmorus, PRL 104 (2010)

Baryon form factors: 
nucleon and 𝛥 FFs, 𝑁→𝛥𝛾 transition, ...

++= +

94 GeV.= 0NM

+ ++

2-body kernels same as for mesons, 
no further approximations: 

Review:  GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, 
                  PPNP 91 (2016), 1606.09602

[ ]

0.10.0 0.2 0.3 0.4 0.5
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DSE / Faddeev landscape

++= +

Contact
interaction

QCD-based
model

Quark-diquark Three-quark

DSE 
(RL)

RL bRL bRL + 3q

γ∗N→N

γ∗N→N

γ∆→N

Roper

γ∗N→N

∆N, masses

∆N, em. FFs

� � � �
� � �

�� �

�
�

�
�

�

�
�

(1535), . . .∗N . . .

. . .

. . . . . .

. . .

. . .

. . .

. . .

�

�
. . .

. . .
�

�
. . .

Roberts, Bashir,
Segovia, Chen, 
Wilson, Lu, . . .

Oettel, Alkofer,
Roberts, Cloet, 
Segovia, . . .

GE, Alkofer,
Nicmorus, . . .

GE, Sanchis-Alepuz, 
Fischer, Alkofer, Williams, . . .
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The role of diquarks

− −

All diquark properties are calculated,
Bethe-Salpeter amplitudes:
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RL x c
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p [GeV]

f1
f2
f3
f4
f5
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f7
f8

sc dq: av dq: ps dq: v dq:C5γ Cµγ C C5γµγ

Mesons and ‘diquarks’ closely related: 
after taking traces, only factor 1/2 remains 
⇒ diquarks ‘less bound’ than mesons

⇔

⇔

Pseudoscalar & vector mesons
already good in rainbow-ladder

Scalar & axialvector diquarks
sufficient for nucleon and 𝛥 

Scalar & axialvector mesons
too light, repulsion beyond RL

Pseudoscalar & vector diquarks
important for remaining channels

𝐾= 𝐾=
2
1
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The role of diquarks

− −
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sc dq: av dq: ps dq: v dq:C5γ Cµγ C C5γµγ

Simulate beyond-RL effects:

Insert factor 0 < c < 1 in ‘bad’ meson and 
diquark channels ⇒ increases masses,
adjusted in meson sector (𝜌�𝑎� splitting)

⇒  reduces strength of ps + v diquarks

𝐾= c
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Baryon spectrum I

)
− −

Three-quark vs. quark-diquark in rainbow-ladder:    GE, Fischer, Sanchis-Alepuz, PRD 94 (2016)

# levels compatible with experiment: no states missing  

N, ∆ and their 1st excitations (including Roper) agree with experiment

qqq and q-dq agrees: N, ∆, Roper, N(1535)

But remaining states too low ⇒ wrong level ordering between Roper and N(1535)

+

2
1 −

2
1 +

2
1 −

2
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2
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2
3 −

2
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2
3

N(940)
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Baryon spectrum

)
− −

Quark-diquark with reduced pseudoscalar + vector diquarks:    GE, Fischer, Sanchis-Alepuz, PRD 94 (2016)

N(    ) and ∆(    ) depend on sc + av diquarks;
remaining ones “polluted” by ps + v diquarks

Correct level ordering between Roper and N(1535)

Quantitative agreement with experiment

Current-quark mass 𝑚� set by 𝑚�

𝜂 doesn’t change much

Scale 𝛬 set by 𝑓�

c adjusted to 𝜌�𝑎� splitting
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Baryon spectrum

)
− −

Quark-diquark with reduced pseudoscalar + vector diquarks:

Partial-wave content:

GE, FBS 58 (2017)

Here: ‘quark-model forbidden’ contributions are always present,
e.g. Roper: dominated by p waves ⇒ relativity is important!

in nonrelativistic quark model: 
N, ∆ ~ s waves, negative-parity states ~ p waves, etc.

s p d f

Orbital angular 
momentum content:

+

2
1 −

2
1 +

2
1 −

2
1−

2
3+

2
3 −

2
3+

2
3

N(940)

M [GeV]

N(1440)

N(1710)

N(1880) N(1900)

N(1720)

N(1895)

N(1650)

N(1535)

N(1700)

N(1875)

N(1520)

∆(1910)

∆(1232)

∆(1600)

∆(1920)

∆(1620)

∆(1900)

∆(1700)

∆(1940)

1.0

1.2

1.4

1.6

1.8

2.0
D12+(0)
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Strange baryons

Nucleon

)
− −
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Strange baryons

Nucleon
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Strange baryons

Delta
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− −
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Strange baryons

Omega

)
− −
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Strange baryons

Lambda
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− −
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Strange baryons

Sigma

)
− −
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Strange baryons
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Strange baryons
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    Ω → Δ    
Σ, Ξ → N + Δ 
     Λ → N + singlets

Strange baryons similar to light baryons:

Roper, Δ(1600), Λ(1405), Λ(1520):
levels are there, but additional dynamics?

Structure information? 
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Fig. 1. Quark-photon vertex and the ρ−meson poles it contains.

conservation for electromagnetic form factors, the Goldberger-Treiman relation for
axial form factors and so on, so that no ’fine-tuning’ is necessary.

In order to calculate nucleon form factors and polarizabilities, we must couple
photons to nucleons in a symmetry-preserving way [17–19]. To this end, we should
first understand how a photon microscopically interacts with a quark. Two of the
relevant Green functions that encode this interaction are the quark-photon vertex
and the quark Compton vertex. Here I will discuss some of their properties, the
role of electromagnetic gauge invariance in determining their structure, and their
implications for hadron properties.

2. Quark-photon vertex
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turbative structure of the dressed quark-photon vertex. The vertex is defined as the
γµ−contraction of the qq̄ four-point function, see Fig. 1. The four-point function
contains all intermediate hadronic states that can be formed by a valence quark and
antiquark. Therefore, its singularity structure in the vector channel will be inher-
ited by the quark-photon vertex, i.e., ’vector-meson dominance’ is implemented by
construction. On the other hand, the definition allows to derive an inhomogeneous
Bethe-Salpeter equation (BSE) for the vertex; it depends on the qq̄ kernel where
the truncation to rainbow-ladder is made. Its numerical solution has been first
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properties alone.

Electromagnetic gauge invariance entails that the quark-photon vertex can be
separated into a ’gauge part’ and a purely transverse part:

Γµ(k, Q) =
[
iγµ ΣA + 2kµ(i/k ∆A + ∆B)

]
+
[
i

8∑

j=1

fj τµ
j (k, Q)

]
. (1)

Here, Q is the photon momentum and k = (k+ + k−)/2 the average momentum
of the quark legs, see Fig. 1. The gauge part in the first bracket is the Ball-Chiu
vertex [21] that satisfies the vector WTI. It is completely determined by the dressed
fermion propagator. At large Q2 it reproduces the tree-level structure, whereas the
nonperturbative dressing effects are contained in ΣA, ∆A and ΣB. These are sums
and difference quotients of the quark dressing functions A(p2) and B(p2):

ΣF (k, Q) =
F (k2

+) + F (k2
−)

2
, ∆F (k, Q) =

F (k2
+) − F (k2

−)

k2
+ − k2

−
, (2)

with F ∈ {A, B}. A(p2) approaches the quark wave-function renormalization con-
stant Z2 at large p2 and is nonperturbatively enhanced. The quark mass function
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k, Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k, Q) = iγµ ΣA + 2kµ(i/k ∆A + ∆B), (72)

where the functions

ΣA(k, Q) :=
A(k2

+) + A(k2
−)

2
,

∆A(k, Q) :=
A(k2

+) − A(k2
−)

k2
+ − k2

−
,

∆B(k, Q) :=
B(k2

+) − B(k2
−)

k2
+ − k2

−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k, Q) = Γµ
BC(k, Q) + Γµ

T(k, Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k, Q) = C Γµ(−k, −Q)TCT = −Γµ(k, −Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµ
T

(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµ
T = Tµν

Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q2 γµ

T + f2 k ·Q Q2 i
2 [γµ

T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q2 kµ
T + f6 Q2 kµ

T /k

+ f7 k ·Q (k ·Q γµ − kµ /Q)

+ f8
i
2 [k ·Q γµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q2 = g1 + (k · Q)2g7 ,

f2 Q2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q2 = g5 ,

f6 Q2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
12

A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k, Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k, Q) = iγµ ΣA + 2kµ(i/k ∆A + ∆B), (72)

where the functions

ΣA(k, Q) :=
A(k2

+) + A(k2
−)

2
,

∆A(k, Q) :=
A(k2

+) − A(k2
−)

k2
+ − k2

−
,

∆B(k, Q) :=
B(k2

+) − B(k2
−)

k2
+ − k2

−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k, Q) = Γµ
BC(k, Q) + Γµ

T(k, Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k, Q) = C Γµ(−k, −Q)TCT = −Γµ(k, −Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµ
T

(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµ
T = Tµν

Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q2 γµ

T + f2 k ·Q Q2 i
2 [γµ

T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q2 kµ
T + f6 Q2 kµ

T /k

+ f7 k ·Q (k ·Q γµ − kµ /Q)

+ f8
i
2 [k ·Q γµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q2 = g1 + (k · Q)2g7 ,

f2 Q2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q2 = g5 ,

f6 Q2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)

12

A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k, Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k, Q) = iγµ ΣA + 2kµ(i/k ∆A + ∆B), (72)

where the functions

ΣA(k, Q) :=
A(k2

+) + A(k2
−)

2
,

∆A(k, Q) :=
A(k2

+) − A(k2
−)

k2
+ − k2

−
,

∆B(k, Q) :=
B(k2

+) − B(k2
−)

k2
+ − k2

−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k, Q) = Γµ
BC(k, Q) + Γµ

T(k, Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k, Q) = C Γµ(−k, −Q)TCT = −Γµ(k, −Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµ
T

(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµ
T = Tµν

Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q2 γµ

T + f2 k ·Q Q2 i
2 [γµ

T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q2 kµ
T + f6 Q2 kµ

T /k

+ f7 k ·Q (k ·Q γµ − kµ /Q)

+ f8
i
2 [k ·Q γµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q2 = g1 + (k · Q)2g7 ,

f2 Q2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q2 = g5 ,

f6 Q2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)

12

A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k, Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k, Q) = iγµ ΣA + 2kµ(i/k ∆A + ∆B), (72)

where the functions

ΣA(k, Q) :=
A(k2

+) + A(k2
−)

2
,

∆A(k, Q) :=
A(k2

+) − A(k2
−)

k2
+ − k2

−
,

∆B(k, Q) :=
B(k2

+) − B(k2
−)

k2
+ − k2

−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k, Q) = Γµ
BC(k, Q) + Γµ

T(k, Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k, Q) = C Γµ(−k, −Q)TCT = −Γµ(k, −Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµ
T

(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµ
T = Tµν

Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q2 γµ

T + f2 k ·Q Q2 i
2 [γµ

T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q2 kµ
T + f6 Q2 kµ

T /k

+ f7 k ·Q (k ·Q γµ − kµ /Q)

+ f8
i
2 [k ·Q γµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q2 = g1 + (k · Q)2g7 ,

f2 Q2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q2 = g5 ,

f6 Q2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)

12

A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k, Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k, Q) = iγµ ΣA + 2kµ(i/k ∆A + ∆B), (72)

where the functions

ΣA(k, Q) :=
A(k2

+) + A(k2
−)

2
,

∆A(k, Q) :=
A(k2

+) − A(k2
−)

k2
+ − k2

−
,

∆B(k, Q) :=
B(k2

+) − B(k2
−)

k2
+ − k2

−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k, Q) = Γµ
BC(k, Q) + Γµ

T(k, Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k, Q) = C Γµ(−k, −Q)TCT = −Γµ(k, −Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµ
T

(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµ
T = Tµν

Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q2 γµ

T + f2 k ·Q Q2 i
2 [γµ

T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q2 kµ
T + f6 Q2 kµ

T /k

+ f7 k ·Q (k ·Q γµ − kµ /Q)

+ f8
i
2 [k ·Q γµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q2 = g1 + (k · Q)2g7 ,

f2 Q2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q2 = g5 ,

f6 Q2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
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B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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(c) cat‘s ears diagrams(a) reproduces Born terms
and N* resonances

(b) reproduces handbag diagrams
and t-channel meson poles

=

=
pion loops

+ . . .
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t-channel
mesons

s/u-channel
N* resonancesBorn terms

  

  

Figure 5.4: Hadronic vs. quark-level decomposition of the nucleon Compton scattering amplitude. The first row depicts the hadronic
contributions as the sum of Born terms and a 1PI structure part. The latter encodes the polarisabilities and contains s/u−channel
nucleon resonances, t−channel meson exchanges and pion loops. The second row shows the microscopic decomposition (in rainbow-
ladder) featuring Bethe-Salpeter amplitudes, quark propagators, quark-photon and quark Compton vertices, and the three-quark scat-
tering matrix [691].

Is it then possible to connect these two facets by a common, underlying description at the level of quarks and
gluons that is valid in all kinematic regions and reproduces all established features, from hadronic poles to the
handbag picture?

Microscopic expression for the scattering amplitude. In analogy to the form factor diagrams in Fig. 4.3
one can derive a closed nonperturbative expression for the CS amplitude and other scattering amplitudes at
the quark level [691, 692]. The onshell scattering amplitude Mµν is the residue of the quark six-point function
that is coupled to two external currents with qq̄ quantum numbers:

Gµν
P 2
f=−m2

f , P
2
i =−m2

i−−−−−−−−−−−→ Ψf Mµν Ψi

(P 2
f + m2

f )(P
2
i + m2

i )
, (5.12)

where Ψf and Ψi again denote the Bethe-Salpeter wave functions, and mi = mf if the incoming and outgoing
baryons are the same. Following similar steps as in Sec. 4.1 one arrives at the following expression for the
scattering amplitude:

Mµν = Ψf

[(
G−1

){µ
G

(
G−1

)ν} −
(
G−1

)µν]
Ψi . (5.13)

The curly brackets denote a symmetrization of the indices and the quantities
(
G−1

)µ and
(
G−1

)µν read (in a
slightly simplified notation):

(
G−1

)µ
=

(
G0

−1
)µ − Kµ =

[
Γµ ⊗ S−1 ⊗ S−1 − Γµ ⊗ K(2) − S−1 ⊗ Kµ

(2) + perm.
]

− Kµ
(3)

(
G−1

)µν
=

(
G0

−1
)µν − Kµν =

[
Γµν ⊗ S−1 ⊗ S−1 − Γµν ⊗ K(2) + Γ{µ ⊗ Γν} ⊗ S−1

− Γ{µ ⊗ K
ν}
(2) − S−1 ⊗ Kµν

(2) + perm.
]

− Kµν
(3) .

(5.14)

Depending on the types of hadrons and currents involved, the resulting scattering amplitudes describe a variety
of different reactions such as Compton scattering, pion electroproduction, Nπ scattering, or crossed-channel
processes such as pp̄ annihilation into two photons or meson production. The approach can be applied to
mesons as well to derive the expressions for pion Compton scattering, ππ scattering (from the residue of the
correlator of four pseudoscalar currents) or the hadronic light-by-light amplitude (as the correlator of four
vector currents). This is worked out in detail in Refs. [692, 693]. For example, for a scattering amplitude with

101

· · · 〉)z(µj· · ·)1y(ψ̄· · ·)1x(ψ〈· · ·

3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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(c) cat‘s ears diagrams(a) reproduces Born terms
and N* resonances

(b) reproduces handbag diagrams
and t-channel meson poles

=

=
pion loops

+ . . .

+ . . .

t-channel
mesons

s/u-channel
N* resonancesBorn terms

  

  

Figure 5.4: Hadronic vs. quark-level decomposition of the nucleon Compton scattering amplitude. The first row depicts the hadronic
contributions as the sum of Born terms and a 1PI structure part. The latter encodes the polarisabilities and contains s/u−channel
nucleon resonances, t−channel meson exchanges and pion loops. The second row shows the microscopic decomposition (in rainbow-
ladder) featuring Bethe-Salpeter amplitudes, quark propagators, quark-photon and quark Compton vertices, and the three-quark scat-
tering matrix [691].

Is it then possible to connect these two facets by a common, underlying description at the level of quarks and
gluons that is valid in all kinematic regions and reproduces all established features, from hadronic poles to the
handbag picture?

Microscopic expression for the scattering amplitude. In analogy to the form factor diagrams in Fig. 4.3
one can derive a closed nonperturbative expression for the CS amplitude and other scattering amplitudes at
the quark level [691, 692]. The onshell scattering amplitude Mµν is the residue of the quark six-point function
that is coupled to two external currents with qq̄ quantum numbers:

Gµν
P 2
f=−m2

f , P
2
i =−m2

i−−−−−−−−−−−→ Ψf Mµν Ψi

(P 2
f + m2

f )(P
2
i + m2

i )
, (5.12)

where Ψf and Ψi again denote the Bethe-Salpeter wave functions, and mi = mf if the incoming and outgoing
baryons are the same. Following similar steps as in Sec. 4.1 one arrives at the following expression for the
scattering amplitude:

Mµν = Ψf

[(
G−1

){µ
G

(
G−1

)ν} −
(
G−1

)µν]
Ψi . (5.13)

The curly brackets denote a symmetrization of the indices and the quantities
(
G−1

)µ and
(
G−1

)µν read (in a
slightly simplified notation):

(
G−1

)µ
=

(
G0

−1
)µ − Kµ =

[
Γµ ⊗ S−1 ⊗ S−1 − Γµ ⊗ K(2) − S−1 ⊗ Kµ

(2) + perm.
]

− Kµ
(3)

(
G−1

)µν
=

(
G0

−1
)µν − Kµν =

[
Γµν ⊗ S−1 ⊗ S−1 − Γµν ⊗ K(2) + Γ{µ ⊗ Γν} ⊗ S−1

− Γ{µ ⊗ K
ν}
(2) − S−1 ⊗ Kµν

(2) + perm.
]

− Kµν
(3) .

(5.14)

Depending on the types of hadrons and currents involved, the resulting scattering amplitudes describe a variety
of different reactions such as Compton scattering, pion electroproduction, Nπ scattering, or crossed-channel
processes such as pp̄ annihilation into two photons or meson production. The approach can be applied to
mesons as well to derive the expressions for pion Compton scattering, ππ scattering (from the residue of the
correlator of four pseudoscalar currents) or the hadronic light-by-light amplitude (as the correlator of four
vector currents). This is worked out in detail in Refs. [692, 693]. For example, for a scattering amplitude with
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3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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(c) cat‘s ears diagrams(a) reproduces Born terms
and N* resonances

(b) reproduces handbag diagrams
and t-channel meson poles

=

=
pion loops

+ . . .
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t-channel
mesons

s/u-channel
N* resonancesBorn terms

  

  

Figure 5.4: Hadronic vs. quark-level decomposition of the nucleon Compton scattering amplitude. The first row depicts the hadronic
contributions as the sum of Born terms and a 1PI structure part. The latter encodes the polarisabilities and contains s/u−channel
nucleon resonances, t−channel meson exchanges and pion loops. The second row shows the microscopic decomposition (in rainbow-
ladder) featuring Bethe-Salpeter amplitudes, quark propagators, quark-photon and quark Compton vertices, and the three-quark scat-
tering matrix [691].

Is it then possible to connect these two facets by a common, underlying description at the level of quarks and
gluons that is valid in all kinematic regions and reproduces all established features, from hadronic poles to the
handbag picture?

Microscopic expression for the scattering amplitude. In analogy to the form factor diagrams in Fig. 4.3
one can derive a closed nonperturbative expression for the CS amplitude and other scattering amplitudes at
the quark level [691, 692]. The onshell scattering amplitude Mµν is the residue of the quark six-point function
that is coupled to two external currents with qq̄ quantum numbers:

Gµν
P 2
f=−m2

f , P
2
i =−m2

i−−−−−−−−−−−→ Ψf Mµν Ψi

(P 2
f + m2

f )(P
2
i + m2

i )
, (5.12)

where Ψf and Ψi again denote the Bethe-Salpeter wave functions, and mi = mf if the incoming and outgoing
baryons are the same. Following similar steps as in Sec. 4.1 one arrives at the following expression for the
scattering amplitude:

Mµν = Ψf

[(
G−1

){µ
G

(
G−1

)ν} −
(
G−1

)µν]
Ψi . (5.13)

The curly brackets denote a symmetrization of the indices and the quantities
(
G−1

)µ and
(
G−1

)µν read (in a
slightly simplified notation):

(
G−1

)µ
=

(
G0

−1
)µ − Kµ =

[
Γµ ⊗ S−1 ⊗ S−1 − Γµ ⊗ K(2) − S−1 ⊗ Kµ

(2) + perm.
]

− Kµ
(3)

(
G−1

)µν
=

(
G0

−1
)µν − Kµν =

[
Γµν ⊗ S−1 ⊗ S−1 − Γµν ⊗ K(2) + Γ{µ ⊗ Γν} ⊗ S−1

− Γ{µ ⊗ K
ν}
(2) − S−1 ⊗ Kµν

(2) + perm.
]

− Kµν
(3) .

(5.14)

Depending on the types of hadrons and currents involved, the resulting scattering amplitudes describe a variety
of different reactions such as Compton scattering, pion electroproduction, Nπ scattering, or crossed-channel
processes such as pp̄ annihilation into two photons or meson production. The approach can be applied to
mesons as well to derive the expressions for pion Compton scattering, ππ scattering (from the residue of the
correlator of four pseudoscalar currents) or the hadronic light-by-light amplitude (as the correlator of four
vector currents). This is worked out in detail in Refs. [692, 693]. For example, for a scattering amplitude with
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Figure 4.3: Elastic or transition current matrix element of a baryon.

The basic observation is that G[µ] is obtained from the six-point function G by insertion of an external
current j[µ](z). In the path-integral language this amounts to a functional derivative, which entails that the
current couples linearly to all diagrams that appear in G. In that way the operation G → G[µ] carries the
properties of a derivative, i.e., it is linear and satisfies the Leibniz rule, which is referred to as ‘gauging of
equations’ [430–433]. Hence we can formally write

G[µ] = −G
(
G−1

)[µ]
G

p2f=−m2
f , p

2
i=−m2

i−−−−−−−−−−−→ − ΨfΨf

p2f + m2
f

(
G−1

)[µ] ΨiΨi

p2i + m2
i

, (4.9)

where we have employed a compact notation: we omitted momentum arguments and integrals; pi and pf are
the baryon momenta and Ψi = Ψ(ki, qi, pi), Ψf = Ψ(kf , qf , pf ) the respective baryon wave functions with
different momentum dependencies. By comparison with (4.5) one obtains the current matrix element as the
gauged inverse Green function between the onshell hadron wave functions:

J [µ] = −Ψf

(
G−1

)[µ]
Ψi . (4.10)

The relation can be worked out explicitly by applying (3.36), which relates the Green function with the
kernel: G = G0 + G0KG or, equivalently, G−1 = G0

−1 − K. Therefore

(
G−1

)[µ]
=

(
G0

−1
)[µ] − K[µ] , (4.11)

where
(
G0

−1
)[µ] is obtained by gauging the product of three inverse quark propagators:

(
G0

−1
)[µ]

=
(
S−1 ⊗ S−1 ⊗ S−1

)[µ]
= Γ[µ] ⊗ S−1 ⊗ S−1 + perm. (4.12)

The quark-antiquark vertex Γ[µ] will be discussed in detail in Sec. 4.2. It is obtained by inserting a current
j[µ](z) into the quark propagator,

Sαβ(x, y) = 〈0|Tψα(x) ψβ(y) |0〉 → S
[µ]
αβ(x, y, z) = 〈0|Tψα(x) ψβ(y) j[µ](z) |0〉 , (4.13)

and removing two dressed propagators so that in momentum space S[µ] = −S Γ[µ]S ⇒ Γ[µ] = (S−1)[µ]. Hence
we arrive at the current matrix element that is visualized in Fig. 4.3. J [µ] is the sum of impulse-approximation
diagrams, where the current couples to the quarks only, plus terms where it couples to the kernel of the Bethe-
Salpeter equation, namely

K =
(
S−1 ⊗ K(2) + perm.

)
+ K(3) ⇒ K[µ] =

(
Γ[µ] ⊗ K(2) + S−1 ⊗ K

[µ]
(2) + perm.

)
+ K

[µ]
(3) . (4.14)

K(2) and K(3) are the irreducible two- and three-body kernels. The Bethe-Salpeter wave functions are the
bound-state amplitudes with dressed quark propagators attached, so the inverse propagators that appear in(
G0

−1
)[µ] and K[µ] cancel with the propagators in the spectator legs.

The resulting formula is complementary to the discussion above but completely equivalent. Instead of
extracting the pole residue of G[µ], we have derived the microscopic decomposition of the current matrix
element directly in terms of baryon Bethe-Salpeter amplitudes, quark propagators and two- and three-quark
kernels. Fig. 4.3 also provides an intuitive understanding of form factors. The incoming baryon splits into its
valence quarks which emit and reabsorb gluons in all possible ways, obtain a boost from the current (photons,
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B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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(c) cat‘s ears diagrams(a) reproduces Born terms
and N* resonances

(b) reproduces handbag diagrams
and t-channel meson poles

=

=
pion loops

+ . . .

+ . . .

t-channel
mesons

s/u-channel
N* resonancesBorn terms

  

  

Figure 5.4: Hadronic vs. quark-level decomposition of the nucleon Compton scattering amplitude. The first row depicts the hadronic
contributions as the sum of Born terms and a 1PI structure part. The latter encodes the polarisabilities and contains s/u−channel
nucleon resonances, t−channel meson exchanges and pion loops. The second row shows the microscopic decomposition (in rainbow-
ladder) featuring Bethe-Salpeter amplitudes, quark propagators, quark-photon and quark Compton vertices, and the three-quark scat-
tering matrix [691].

Is it then possible to connect these two facets by a common, underlying description at the level of quarks and
gluons that is valid in all kinematic regions and reproduces all established features, from hadronic poles to the
handbag picture?

Microscopic expression for the scattering amplitude. In analogy to the form factor diagrams in Fig. 4.3
one can derive a closed nonperturbative expression for the CS amplitude and other scattering amplitudes at
the quark level [691, 692]. The onshell scattering amplitude Mµν is the residue of the quark six-point function
that is coupled to two external currents with qq̄ quantum numbers:

Gµν
P 2
f=−m2

f , P
2
i =−m2

i−−−−−−−−−−−→ Ψf Mµν Ψi

(P 2
f + m2

f )(P
2
i + m2

i )
, (5.12)

where Ψf and Ψi again denote the Bethe-Salpeter wave functions, and mi = mf if the incoming and outgoing
baryons are the same. Following similar steps as in Sec. 4.1 one arrives at the following expression for the
scattering amplitude:

Mµν = Ψf

[(
G−1

){µ
G

(
G−1

)ν} −
(
G−1

)µν]
Ψi . (5.13)

The curly brackets denote a symmetrization of the indices and the quantities
(
G−1

)µ and
(
G−1

)µν read (in a
slightly simplified notation):

(
G−1

)µ
=

(
G0

−1
)µ − Kµ =

[
Γµ ⊗ S−1 ⊗ S−1 − Γµ ⊗ K(2) − S−1 ⊗ Kµ

(2) + perm.
]

− Kµ
(3)

(
G−1

)µν
=

(
G0

−1
)µν − Kµν =

[
Γµν ⊗ S−1 ⊗ S−1 − Γµν ⊗ K(2) + Γ{µ ⊗ Γν} ⊗ S−1

− Γ{µ ⊗ K
ν}
(2) − S−1 ⊗ Kµν

(2) + perm.
]

− Kµν
(3) .

(5.14)

Depending on the types of hadrons and currents involved, the resulting scattering amplitudes describe a variety
of different reactions such as Compton scattering, pion electroproduction, Nπ scattering, or crossed-channel
processes such as pp̄ annihilation into two photons or meson production. The approach can be applied to
mesons as well to derive the expressions for pion Compton scattering, ππ scattering (from the residue of the
correlator of four pseudoscalar currents) or the hadronic light-by-light amplitude (as the correlator of four
vector currents). This is worked out in detail in Refs. [692, 693]. For example, for a scattering amplitude with
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3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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(c) cat‘s ears diagrams(a) reproduces Born terms
and N* resonances

(b) reproduces handbag diagrams
and t-channel meson poles

=

=
pion loops

+ . . .

+ . . .

t-channel
mesons

s/u-channel
N* resonancesBorn terms

  

  

Figure 5.4: Hadronic vs. quark-level decomposition of the nucleon Compton scattering amplitude. The first row depicts the hadronic
contributions as the sum of Born terms and a 1PI structure part. The latter encodes the polarisabilities and contains s/u−channel
nucleon resonances, t−channel meson exchanges and pion loops. The second row shows the microscopic decomposition (in rainbow-
ladder) featuring Bethe-Salpeter amplitudes, quark propagators, quark-photon and quark Compton vertices, and the three-quark scat-
tering matrix [691].

Is it then possible to connect these two facets by a common, underlying description at the level of quarks and
gluons that is valid in all kinematic regions and reproduces all established features, from hadronic poles to the
handbag picture?

Microscopic expression for the scattering amplitude. In analogy to the form factor diagrams in Fig. 4.3
one can derive a closed nonperturbative expression for the CS amplitude and other scattering amplitudes at
the quark level [691, 692]. The onshell scattering amplitude Mµν is the residue of the quark six-point function
that is coupled to two external currents with qq̄ quantum numbers:

Gµν
P 2
f=−m2

f , P
2
i =−m2

i−−−−−−−−−−−→ Ψf Mµν Ψi

(P 2
f + m2

f )(P
2
i + m2

i )
, (5.12)

where Ψf and Ψi again denote the Bethe-Salpeter wave functions, and mi = mf if the incoming and outgoing
baryons are the same. Following similar steps as in Sec. 4.1 one arrives at the following expression for the
scattering amplitude:

Mµν = Ψf

[(
G−1

){µ
G

(
G−1

)ν} −
(
G−1

)µν]
Ψi . (5.13)

The curly brackets denote a symmetrization of the indices and the quantities
(
G−1

)µ and
(
G−1

)µν read (in a
slightly simplified notation):

(
G−1

)µ
=

(
G0

−1
)µ − Kµ =

[
Γµ ⊗ S−1 ⊗ S−1 − Γµ ⊗ K(2) − S−1 ⊗ Kµ

(2) + perm.
]

− Kµ
(3)

(
G−1

)µν
=

(
G0

−1
)µν − Kµν =

[
Γµν ⊗ S−1 ⊗ S−1 − Γµν ⊗ K(2) + Γ{µ ⊗ Γν} ⊗ S−1

− Γ{µ ⊗ K
ν}
(2) − S−1 ⊗ Kµν

(2) + perm.
]

− Kµν
(3) .

(5.14)

Depending on the types of hadrons and currents involved, the resulting scattering amplitudes describe a variety
of different reactions such as Compton scattering, pion electroproduction, Nπ scattering, or crossed-channel
processes such as pp̄ annihilation into two photons or meson production. The approach can be applied to
mesons as well to derive the expressions for pion Compton scattering, ππ scattering (from the residue of the
correlator of four pseudoscalar currents) or the hadronic light-by-light amplitude (as the correlator of four
vector currents). This is worked out in detail in Refs. [692, 693]. For example, for a scattering amplitude with
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3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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(c) cat‘s ears diagrams(a) reproduces Born terms
and N* resonances

(b) reproduces handbag diagrams
and t-channel meson poles
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Figure 5.4: Hadronic vs. quark-level decomposition of the nucleon Compton scattering amplitude. The first row depicts the hadronic
contributions as the sum of Born terms and a 1PI structure part. The latter encodes the polarisabilities and contains s/u−channel
nucleon resonances, t−channel meson exchanges and pion loops. The second row shows the microscopic decomposition (in rainbow-
ladder) featuring Bethe-Salpeter amplitudes, quark propagators, quark-photon and quark Compton vertices, and the three-quark scat-
tering matrix [691].

Is it then possible to connect these two facets by a common, underlying description at the level of quarks and
gluons that is valid in all kinematic regions and reproduces all established features, from hadronic poles to the
handbag picture?

Microscopic expression for the scattering amplitude. In analogy to the form factor diagrams in Fig. 4.3
one can derive a closed nonperturbative expression for the CS amplitude and other scattering amplitudes at
the quark level [691, 692]. The onshell scattering amplitude Mµν is the residue of the quark six-point function
that is coupled to two external currents with qq̄ quantum numbers:

Gµν
P 2
f=−m2

f , P
2
i =−m2

i−−−−−−−−−−−→ Ψf Mµν Ψi

(P 2
f + m2

f )(P
2
i + m2

i )
, (5.12)

where Ψf and Ψi again denote the Bethe-Salpeter wave functions, and mi = mf if the incoming and outgoing
baryons are the same. Following similar steps as in Sec. 4.1 one arrives at the following expression for the
scattering amplitude:

Mµν = Ψf

[(
G−1

){µ
G

(
G−1

)ν} −
(
G−1

)µν]
Ψi . (5.13)

The curly brackets denote a symmetrization of the indices and the quantities
(
G−1

)µ and
(
G−1

)µν read (in a
slightly simplified notation):

(
G−1

)µ
=

(
G0

−1
)µ − Kµ =

[
Γµ ⊗ S−1 ⊗ S−1 − Γµ ⊗ K(2) − S−1 ⊗ Kµ

(2) + perm.
]

− Kµ
(3)

(
G−1

)µν
=

(
G0

−1
)µν − Kµν =

[
Γµν ⊗ S−1 ⊗ S−1 − Γµν ⊗ K(2) + Γ{µ ⊗ Γν} ⊗ S−1

− Γ{µ ⊗ K
ν}
(2) − S−1 ⊗ Kµν

(2) + perm.
]

− Kµν
(3) .

(5.14)

Depending on the types of hadrons and currents involved, the resulting scattering amplitudes describe a variety
of different reactions such as Compton scattering, pion electroproduction, Nπ scattering, or crossed-channel
processes such as pp̄ annihilation into two photons or meson production. The approach can be applied to
mesons as well to derive the expressions for pion Compton scattering, ππ scattering (from the residue of the
correlator of four pseudoscalar currents) or the hadronic light-by-light amplitude (as the correlator of four
vector currents). This is worked out in detail in Refs. [692, 693]. For example, for a scattering amplitude with
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Figure 4.3: Elastic or transition current matrix element of a baryon.

The basic observation is that G[µ] is obtained from the six-point function G by insertion of an external
current j[µ](z). In the path-integral language this amounts to a functional derivative, which entails that the
current couples linearly to all diagrams that appear in G. In that way the operation G → G[µ] carries the
properties of a derivative, i.e., it is linear and satisfies the Leibniz rule, which is referred to as ‘gauging of
equations’ [430–433]. Hence we can formally write

G[µ] = −G
(
G−1

)[µ]
G

p2f=−m2
f , p

2
i=−m2

i−−−−−−−−−−−→ − ΨfΨf

p2f + m2
f

(
G−1

)[µ] ΨiΨi

p2i + m2
i

, (4.9)

where we have employed a compact notation: we omitted momentum arguments and integrals; pi and pf are
the baryon momenta and Ψi = Ψ(ki, qi, pi), Ψf = Ψ(kf , qf , pf ) the respective baryon wave functions with
different momentum dependencies. By comparison with (4.5) one obtains the current matrix element as the
gauged inverse Green function between the onshell hadron wave functions:

J [µ] = −Ψf

(
G−1

)[µ]
Ψi . (4.10)

The relation can be worked out explicitly by applying (3.36), which relates the Green function with the
kernel: G = G0 + G0KG or, equivalently, G−1 = G0

−1 − K. Therefore

(
G−1

)[µ]
=

(
G0

−1
)[µ] − K[µ] , (4.11)

where
(
G0

−1
)[µ] is obtained by gauging the product of three inverse quark propagators:

(
G0

−1
)[µ]

=
(
S−1 ⊗ S−1 ⊗ S−1

)[µ]
= Γ[µ] ⊗ S−1 ⊗ S−1 + perm. (4.12)

The quark-antiquark vertex Γ[µ] will be discussed in detail in Sec. 4.2. It is obtained by inserting a current
j[µ](z) into the quark propagator,

Sαβ(x, y) = 〈0|Tψα(x) ψβ(y) |0〉 → S
[µ]
αβ(x, y, z) = 〈0|Tψα(x) ψβ(y) j[µ](z) |0〉 , (4.13)

and removing two dressed propagators so that in momentum space S[µ] = −S Γ[µ]S ⇒ Γ[µ] = (S−1)[µ]. Hence
we arrive at the current matrix element that is visualized in Fig. 4.3. J [µ] is the sum of impulse-approximation
diagrams, where the current couples to the quarks only, plus terms where it couples to the kernel of the Bethe-
Salpeter equation, namely

K =
(
S−1 ⊗ K(2) + perm.

)
+ K(3) ⇒ K[µ] =

(
Γ[µ] ⊗ K(2) + S−1 ⊗ K

[µ]
(2) + perm.

)
+ K

[µ]
(3) . (4.14)

K(2) and K(3) are the irreducible two- and three-body kernels. The Bethe-Salpeter wave functions are the
bound-state amplitudes with dressed quark propagators attached, so the inverse propagators that appear in(
G0

−1
)[µ] and K[µ] cancel with the propagators in the spectator legs.

The resulting formula is complementary to the discussion above but completely equivalent. Instead of
extracting the pole residue of G[µ], we have derived the microscopic decomposition of the current matrix
element directly in terms of baryon Bethe-Salpeter amplitudes, quark propagators and two- and three-quark
kernels. Fig. 4.3 also provides an intuitive understanding of form factors. The incoming baryon splits into its
valence quarks which emit and reabsorb gluons in all possible ways, obtain a boost from the current (photons,

67

+  ++

Figure 4.3: Elastic or transition current matrix element of a baryon.

The basic observation is that G[µ] is obtained from the six-point function G by insertion of an external
current j[µ](z). In the path-integral language this amounts to a functional derivative, which entails that the
current couples linearly to all diagrams that appear in G. In that way the operation G → G[µ] carries the
properties of a derivative, i.e., it is linear and satisfies the Leibniz rule, which is referred to as ‘gauging of
equations’ [430–433]. Hence we can formally write

G[µ] = −G
(
G−1

)[µ]
G

p2f=−m2
f , p

2
i=−m2

i−−−−−−−−−−−→ − ΨfΨf

p2f + m2
f

(
G−1

)[µ] ΨiΨi

p2i + m2
i

, (4.9)

where we have employed a compact notation: we omitted momentum arguments and integrals; pi and pf are
the baryon momenta and Ψi = Ψ(ki, qi, pi), Ψf = Ψ(kf , qf , pf ) the respective baryon wave functions with
different momentum dependencies. By comparison with (4.5) one obtains the current matrix element as the
gauged inverse Green function between the onshell hadron wave functions:

J [µ] = −Ψf

(
G−1

)[µ]
Ψi . (4.10)

The relation can be worked out explicitly by applying (3.36), which relates the Green function with the
kernel: G = G0 + G0KG or, equivalently, G−1 = G0

−1 − K. Therefore

(
G−1

)[µ]
=

(
G0

−1
)[µ] − K[µ] , (4.11)

where
(
G0

−1
)[µ] is obtained by gauging the product of three inverse quark propagators:

(
G0

−1
)[µ]

=
(
S−1 ⊗ S−1 ⊗ S−1

)[µ]
= Γ[µ] ⊗ S−1 ⊗ S−1 + perm. (4.12)

The quark-antiquark vertex Γ[µ] will be discussed in detail in Sec. 4.2. It is obtained by inserting a current
j[µ](z) into the quark propagator,

Sαβ(x, y) = 〈0|Tψα(x) ψβ(y) |0〉 → S
[µ]
αβ(x, y, z) = 〈0|Tψα(x) ψβ(y) j[µ](z) |0〉 , (4.13)

and removing two dressed propagators so that in momentum space S[µ] = −S Γ[µ]S ⇒ Γ[µ] = (S−1)[µ]. Hence
we arrive at the current matrix element that is visualized in Fig. 4.3. J [µ] is the sum of impulse-approximation
diagrams, where the current couples to the quarks only, plus terms where it couples to the kernel of the Bethe-
Salpeter equation, namely

K =
(
S−1 ⊗ K(2) + perm.

)
+ K(3) ⇒ K[µ] =

(
Γ[µ] ⊗ K(2) + S−1 ⊗ K

[µ]
(2) + perm.

)
+ K

[µ]
(3) . (4.14)

K(2) and K(3) are the irreducible two- and three-body kernels. The Bethe-Salpeter wave functions are the
bound-state amplitudes with dressed quark propagators attached, so the inverse propagators that appear in(
G0

−1
)[µ] and K[µ] cancel with the propagators in the spectator legs.

The resulting formula is complementary to the discussion above but completely equivalent. Instead of
extracting the pole residue of G[µ], we have derived the microscopic decomposition of the current matrix
element directly in terms of baryon Bethe-Salpeter amplitudes, quark propagators and two- and three-quark
kernels. Fig. 4.3 also provides an intuitive understanding of form factors. The incoming baryon splits into its
valence quarks which emit and reabsorb gluons in all possible ways, obtain a boost from the current (photons,

67

impulse approximation + coupling to kernels

gauge invariance is automatic, 
as long as all ingredients calculated from same symmetry-preserving kernel

+  ++µJ

Gernot Eichmann (IST Lisboa) Aug 30, 2017 18 / 30



Matrix elements

Current matrix element:

Use properties of (functional) derivative, obtain
general expression for current matrix elements and scattering amplitudes:

Relate G to elementary propagators, vertices and kernels:

=

= + + . . .

. . .

. . .

. . .

+ +

+ + + +

+ +

=

=

3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
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We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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(c) cat‘s ears diagrams(a) reproduces Born terms
and N* resonances

(b) reproduces handbag diagrams
and t-channel meson poles

=

=
pion loops

+ . . .

+ . . .

t-channel
mesons

s/u-channel
N* resonancesBorn terms

  

  

Figure 5.4: Hadronic vs. quark-level decomposition of the nucleon Compton scattering amplitude. The first row depicts the hadronic
contributions as the sum of Born terms and a 1PI structure part. The latter encodes the polarisabilities and contains s/u−channel
nucleon resonances, t−channel meson exchanges and pion loops. The second row shows the microscopic decomposition (in rainbow-
ladder) featuring Bethe-Salpeter amplitudes, quark propagators, quark-photon and quark Compton vertices, and the three-quark scat-
tering matrix [691].

Is it then possible to connect these two facets by a common, underlying description at the level of quarks and
gluons that is valid in all kinematic regions and reproduces all established features, from hadronic poles to the
handbag picture?

Microscopic expression for the scattering amplitude. In analogy to the form factor diagrams in Fig. 4.3
one can derive a closed nonperturbative expression for the CS amplitude and other scattering amplitudes at
the quark level [691, 692]. The onshell scattering amplitude Mµν is the residue of the quark six-point function
that is coupled to two external currents with qq̄ quantum numbers:

Gµν
P 2
f=−m2

f , P
2
i =−m2

i−−−−−−−−−−−→ Ψf Mµν Ψi

(P 2
f + m2

f )(P
2
i + m2

i )
, (5.12)

where Ψf and Ψi again denote the Bethe-Salpeter wave functions, and mi = mf if the incoming and outgoing
baryons are the same. Following similar steps as in Sec. 4.1 one arrives at the following expression for the
scattering amplitude:

Mµν = Ψf

[(
G−1

){µ
G

(
G−1

)ν} −
(
G−1

)µν]
Ψi . (5.13)

The curly brackets denote a symmetrization of the indices and the quantities
(
G−1

)µ and
(
G−1

)µν read (in a
slightly simplified notation):

(
G−1

)µ
=

(
G0

−1
)µ − Kµ =

[
Γµ ⊗ S−1 ⊗ S−1 − Γµ ⊗ K(2) − S−1 ⊗ Kµ

(2) + perm.
]

− Kµ
(3)

(
G−1

)µν
=

(
G0

−1
)µν − Kµν =

[
Γµν ⊗ S−1 ⊗ S−1 − Γµν ⊗ K(2) + Γ{µ ⊗ Γν} ⊗ S−1

− Γ{µ ⊗ K
ν}
(2) − S−1 ⊗ Kµν

(2) + perm.
]

− Kµν
(3) .

(5.14)

Depending on the types of hadrons and currents involved, the resulting scattering amplitudes describe a variety
of different reactions such as Compton scattering, pion electroproduction, Nπ scattering, or crossed-channel
processes such as pp̄ annihilation into two photons or meson production. The approach can be applied to
mesons as well to derive the expressions for pion Compton scattering, ππ scattering (from the residue of the
correlator of four pseudoscalar currents) or the hadronic light-by-light amplitude (as the correlator of four
vector currents). This is worked out in detail in Refs. [692, 693]. For example, for a scattering amplitude with
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3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)

’
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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(c) cat‘s ears diagrams(a) reproduces Born terms
and N* resonances

(b) reproduces handbag diagrams
and t-channel meson poles

=

=
pion loops
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t-channel
mesons

s/u-channel
N* resonancesBorn terms

  

  

Figure 5.4: Hadronic vs. quark-level decomposition of the nucleon Compton scattering amplitude. The first row depicts the hadronic
contributions as the sum of Born terms and a 1PI structure part. The latter encodes the polarisabilities and contains s/u−channel
nucleon resonances, t−channel meson exchanges and pion loops. The second row shows the microscopic decomposition (in rainbow-
ladder) featuring Bethe-Salpeter amplitudes, quark propagators, quark-photon and quark Compton vertices, and the three-quark scat-
tering matrix [691].

Is it then possible to connect these two facets by a common, underlying description at the level of quarks and
gluons that is valid in all kinematic regions and reproduces all established features, from hadronic poles to the
handbag picture?

Microscopic expression for the scattering amplitude. In analogy to the form factor diagrams in Fig. 4.3
one can derive a closed nonperturbative expression for the CS amplitude and other scattering amplitudes at
the quark level [691, 692]. The onshell scattering amplitude Mµν is the residue of the quark six-point function
that is coupled to two external currents with qq̄ quantum numbers:

Gµν
P 2
f=−m2

f , P
2
i =−m2

i−−−−−−−−−−−→ Ψf Mµν Ψi

(P 2
f + m2

f )(P
2
i + m2

i )
, (5.12)

where Ψf and Ψi again denote the Bethe-Salpeter wave functions, and mi = mf if the incoming and outgoing
baryons are the same. Following similar steps as in Sec. 4.1 one arrives at the following expression for the
scattering amplitude:

Mµν = Ψf

[(
G−1

){µ
G

(
G−1

)ν} −
(
G−1

)µν]
Ψi . (5.13)

The curly brackets denote a symmetrization of the indices and the quantities
(
G−1

)µ and
(
G−1

)µν read (in a
slightly simplified notation):

(
G−1

)µ
=

(
G0

−1
)µ − Kµ =

[
Γµ ⊗ S−1 ⊗ S−1 − Γµ ⊗ K(2) − S−1 ⊗ Kµ

(2) + perm.
]

− Kµ
(3)

(
G−1

)µν
=

(
G0

−1
)µν − Kµν =

[
Γµν ⊗ S−1 ⊗ S−1 − Γµν ⊗ K(2) + Γ{µ ⊗ Γν} ⊗ S−1

− Γ{µ ⊗ K
ν}
(2) − S−1 ⊗ Kµν

(2) + perm.
]

− Kµν
(3) .

(5.14)

Depending on the types of hadrons and currents involved, the resulting scattering amplitudes describe a variety
of different reactions such as Compton scattering, pion electroproduction, Nπ scattering, or crossed-channel
processes such as pp̄ annihilation into two photons or meson production. The approach can be applied to
mesons as well to derive the expressions for pion Compton scattering, ππ scattering (from the residue of the
correlator of four pseudoscalar currents) or the hadronic light-by-light amplitude (as the correlator of four
vector currents). This is worked out in detail in Refs. [692, 693]. For example, for a scattering amplitude with
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3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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(c) cat‘s ears diagrams(a) reproduces Born terms
and N* resonances

(b) reproduces handbag diagrams
and t-channel meson poles

=

=
pion loops
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Figure 5.4: Hadronic vs. quark-level decomposition of the nucleon Compton scattering amplitude. The first row depicts the hadronic
contributions as the sum of Born terms and a 1PI structure part. The latter encodes the polarisabilities and contains s/u−channel
nucleon resonances, t−channel meson exchanges and pion loops. The second row shows the microscopic decomposition (in rainbow-
ladder) featuring Bethe-Salpeter amplitudes, quark propagators, quark-photon and quark Compton vertices, and the three-quark scat-
tering matrix [691].

Is it then possible to connect these two facets by a common, underlying description at the level of quarks and
gluons that is valid in all kinematic regions and reproduces all established features, from hadronic poles to the
handbag picture?

Microscopic expression for the scattering amplitude. In analogy to the form factor diagrams in Fig. 4.3
one can derive a closed nonperturbative expression for the CS amplitude and other scattering amplitudes at
the quark level [691, 692]. The onshell scattering amplitude Mµν is the residue of the quark six-point function
that is coupled to two external currents with qq̄ quantum numbers:

Gµν
P 2
f=−m2

f , P
2
i =−m2

i−−−−−−−−−−−→ Ψf Mµν Ψi

(P 2
f + m2

f )(P
2
i + m2

i )
, (5.12)

where Ψf and Ψi again denote the Bethe-Salpeter wave functions, and mi = mf if the incoming and outgoing
baryons are the same. Following similar steps as in Sec. 4.1 one arrives at the following expression for the
scattering amplitude:

Mµν = Ψf

[(
G−1

){µ
G

(
G−1

)ν} −
(
G−1

)µν]
Ψi . (5.13)

The curly brackets denote a symmetrization of the indices and the quantities
(
G−1

)µ and
(
G−1

)µν read (in a
slightly simplified notation):

(
G−1

)µ
=

(
G0

−1
)µ − Kµ =

[
Γµ ⊗ S−1 ⊗ S−1 − Γµ ⊗ K(2) − S−1 ⊗ Kµ

(2) + perm.
]

− Kµ
(3)

(
G−1

)µν
=

(
G0

−1
)µν − Kµν =

[
Γµν ⊗ S−1 ⊗ S−1 − Γµν ⊗ K(2) + Γ{µ ⊗ Γν} ⊗ S−1

− Γ{µ ⊗ K
ν}
(2) − S−1 ⊗ Kµν

(2) + perm.
]

− Kµν
(3) .

(5.14)

Depending on the types of hadrons and currents involved, the resulting scattering amplitudes describe a variety
of different reactions such as Compton scattering, pion electroproduction, Nπ scattering, or crossed-channel
processes such as pp̄ annihilation into two photons or meson production. The approach can be applied to
mesons as well to derive the expressions for pion Compton scattering, ππ scattering (from the residue of the
correlator of four pseudoscalar currents) or the hadronic light-by-light amplitude (as the correlator of four
vector currents). This is worked out in detail in Refs. [692, 693]. For example, for a scattering amplitude with
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Figure 4.3: Elastic or transition current matrix element of a baryon.

The basic observation is that G[µ] is obtained from the six-point function G by insertion of an external
current j[µ](z). In the path-integral language this amounts to a functional derivative, which entails that the
current couples linearly to all diagrams that appear in G. In that way the operation G → G[µ] carries the
properties of a derivative, i.e., it is linear and satisfies the Leibniz rule, which is referred to as ‘gauging of
equations’ [430–433]. Hence we can formally write

G[µ] = −G
(
G−1

)[µ]
G

p2f=−m2
f , p

2
i=−m2

i−−−−−−−−−−−→ − ΨfΨf

p2f + m2
f

(
G−1

)[µ] ΨiΨi

p2i + m2
i

, (4.9)

where we have employed a compact notation: we omitted momentum arguments and integrals; pi and pf are
the baryon momenta and Ψi = Ψ(ki, qi, pi), Ψf = Ψ(kf , qf , pf ) the respective baryon wave functions with
different momentum dependencies. By comparison with (4.5) one obtains the current matrix element as the
gauged inverse Green function between the onshell hadron wave functions:

J [µ] = −Ψf

(
G−1

)[µ]
Ψi . (4.10)

The relation can be worked out explicitly by applying (3.36), which relates the Green function with the
kernel: G = G0 + G0KG or, equivalently, G−1 = G0

−1 − K. Therefore

(
G−1

)[µ]
=

(
G0

−1
)[µ] − K[µ] , (4.11)

where
(
G0

−1
)[µ] is obtained by gauging the product of three inverse quark propagators:

(
G0

−1
)[µ]

=
(
S−1 ⊗ S−1 ⊗ S−1

)[µ]
= Γ[µ] ⊗ S−1 ⊗ S−1 + perm. (4.12)

The quark-antiquark vertex Γ[µ] will be discussed in detail in Sec. 4.2. It is obtained by inserting a current
j[µ](z) into the quark propagator,

Sαβ(x, y) = 〈0|Tψα(x) ψβ(y) |0〉 → S
[µ]
αβ(x, y, z) = 〈0|Tψα(x) ψβ(y) j[µ](z) |0〉 , (4.13)

and removing two dressed propagators so that in momentum space S[µ] = −S Γ[µ]S ⇒ Γ[µ] = (S−1)[µ]. Hence
we arrive at the current matrix element that is visualized in Fig. 4.3. J [µ] is the sum of impulse-approximation
diagrams, where the current couples to the quarks only, plus terms where it couples to the kernel of the Bethe-
Salpeter equation, namely

K =
(
S−1 ⊗ K(2) + perm.

)
+ K(3) ⇒ K[µ] =

(
Γ[µ] ⊗ K(2) + S−1 ⊗ K

[µ]
(2) + perm.

)
+ K

[µ]
(3) . (4.14)

K(2) and K(3) are the irreducible two- and three-body kernels. The Bethe-Salpeter wave functions are the
bound-state amplitudes with dressed quark propagators attached, so the inverse propagators that appear in(
G0

−1
)[µ] and K[µ] cancel with the propagators in the spectator legs.

The resulting formula is complementary to the discussion above but completely equivalent. Instead of
extracting the pole residue of G[µ], we have derived the microscopic decomposition of the current matrix
element directly in terms of baryon Bethe-Salpeter amplitudes, quark propagators and two- and three-quark
kernels. Fig. 4.3 also provides an intuitive understanding of form factors. The incoming baryon splits into its
valence quarks which emit and reabsorb gluons in all possible ways, obtain a boost from the current (photons,
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Figure 4.3: Elastic or transition current matrix element of a baryon.
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[µ]
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and removing two dressed propagators so that in momentum space S[µ] = −S Γ[µ]S ⇒ Γ[µ] = (S−1)[µ]. Hence
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bound-state amplitudes with dressed quark propagators attached, so the inverse propagators that appear in(
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)[µ] and K[µ] cancel with the propagators in the spectator legs.
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extracting the pole residue of G[µ], we have derived the microscopic decomposition of the current matrix
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Fig. 1. Quark-photon vertex and the ρ−meson poles it contains.

conservation for electromagnetic form factors, the Goldberger-Treiman relation for
axial form factors and so on, so that no ’fine-tuning’ is necessary.

In order to calculate nucleon form factors and polarizabilities, we must couple
photons to nucleons in a symmetry-preserving way [17–19]. To this end, we should
first understand how a photon microscopically interacts with a quark. Two of the
relevant Green functions that encode this interaction are the quark-photon vertex
and the quark Compton vertex. Here I will discuss some of their properties, the
role of electromagnetic gauge invariance in determining their structure, and their
implications for hadron properties.

2. Quark-photon vertex

Several well-known characteristics of form factors are reflected in the nonper-
turbative structure of the dressed quark-photon vertex. The vertex is defined as the
γµ−contraction of the qq̄ four-point function, see Fig. 1. The four-point function
contains all intermediate hadronic states that can be formed by a valence quark and
antiquark. Therefore, its singularity structure in the vector channel will be inher-
ited by the quark-photon vertex, i.e., ’vector-meson dominance’ is implemented by
construction. On the other hand, the definition allows to derive an inhomogeneous
Bethe-Salpeter equation (BSE) for the vertex; it depends on the qq̄ kernel where
the truncation to rainbow-ladder is made. Its numerical solution has been first
achieved in Ref. [20] and nowadays become almost a routine task. However, even
before solving the vertex dynamically one can gain some insight based on general
properties alone.

Electromagnetic gauge invariance entails that the quark-photon vertex can be
separated into a ’gauge part’ and a purely transverse part:

Γµ(k, Q) =
[
iγµ ΣA + 2kµ(i/k ∆A + ∆B)

]
+
[
i

8∑

j=1

fj τµ
j (k, Q)

]
. (1)

Here, Q is the photon momentum and k = (k+ + k−)/2 the average momentum
of the quark legs, see Fig. 1. The gauge part in the first bracket is the Ball-Chiu
vertex [21] that satisfies the vector WTI. It is completely determined by the dressed
fermion propagator. At large Q2 it reproduces the tree-level structure, whereas the
nonperturbative dressing effects are contained in ΣA, ∆A and ΣB. These are sums
and difference quotients of the quark dressing functions A(p2) and B(p2):

ΣF (k, Q) =
F (k2

+) + F (k2
−)

2
, ∆F (k, Q) =

F (k2
+) − F (k2

−)

k2
+ − k2

−
, (2)

with F ∈ {A, B}. A(p2) approaches the quark wave-function renormalization con-
stant Z2 at large p2 and is nonperturbatively enhanced. The quark mass function

=µΓ

+

⇒

2Q

Pion form factor

12

A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k, Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k, Q) = iγµ ΣA + 2kµ(i/k ∆A + ∆B), (72)

where the functions

ΣA(k, Q) :=
A(k2

+) + A(k2
−)

2
,

∆A(k, Q) :=
A(k2

+) − A(k2
−)

k2
+ − k2

−
,

∆B(k, Q) :=
B(k2

+) − B(k2
−)

k2
+ − k2

−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k, Q) = Γµ
BC(k, Q) + Γµ

T(k, Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as
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To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k, Q) = C Γµ(−k, −Q)TCT = −Γµ(k, −Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition
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where
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T = Tµν

Q γν , kµ
T = Tµν

Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.
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truly kinematically independent is given by [53–55]
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It satisfies the requirements of Eq. (81) since
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f3 = g3 ,

f4 = g4 ,

f5 Q2 = g5 ,

f6 Q2 = g6 ,

−f7 = g7 ,

f8 = g8 .
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are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.
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totally antisymmetric combination
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FIGURE 1. (Color online). The scalar polarizabilities of the proton. Magenta blob represents the PDG summary [15]. Experi-
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proton Compton scattering, where these polarizabilities prominently appear, the calculations show that upon inclusion
of O(p4) contributions the HBChPT achieves roughly the same results as O(p3 + p4/∆) BChPT [13], albeit with a
loss of some predictive power due to the appearance of two new LECs.

The present status of the BChPT, HBChPT, as well as “more empirical" extractions of proton polarizabilities, as
summarised in [14], is shown in Fig. 1. Note the significant discrepancy of the BChPT prediction with the current
Particle Data Group values, which thes far has been attributed to a sizeable underestimate of uncertainty in the TAPS
and subsequently PDG values.

3. RELEVANCE: HYDROGEN LAMB SHIFT

The electric polarizability of the proton is responsible for a zero-range force in atoms, which lead to a shift in the
S-levels:

∆E(pol.)
nS = −4αem φ 2

n (0)

∞∫

0

dQ

[√
1+

Q2

4m2
�

− Q
2m�

]
αE1(Q2), (1)

where αem is the fine-structure constant, φ 2
n (0) = α3

emm3
r /(πn3) is the square of the hydrogen wave-function at the

origin, m� is the lepton mass and mr is the reduced mass: mr = Mpm�/(Mp +m�). The effect of magnetic polarizability
is suppressed.

The effect in Eq. (1) is of order α5
em; there is one αem implicit in the polarizability. It is therefore of the same order as

the effects of 3rd Zemach radius and can make an impact on "charge radius puzzle" [22, 23], i.e., the 7σ discrepancy
between the proton charge radius extraction based on either the electronic (eH) or muonic (µH) hydrogen Lamb shift.
The factor in the square brackets of Eq. (1) acts a soft cutoff at the scale of order of the lepton mass m�, and hence the
proton polarizability contribution in µH is expected to be bigger than in eH. How much bigger?

The transfer-momentum dependence of αE1 is inferred from the forward doubly-virtual Compton scattering, and
hence is not accessible in a direct experiment. Only the sum, αE1(Q2)+βM1(Q2), is accessible through a generalized
Baldin sum rule. The Baldin sum rule has been evaluated in several works leading to the so-called ‘inelastic’

Griesshammer, McGovern, Phillips, Feldman,
Prog. Part. Nucl. Phys. 67 (2012)
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B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables
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=
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=
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}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2
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+
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.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
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We work with Euclidean conventions but all relations be-
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).
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− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
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A cross section through the planes of fixed t leads to the
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plot:
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Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):
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4.2.4 Leading-order structure contributions and polarisabilities

It is gratifying that the basic low-energy theorems of Eq. (2.3) are reproduced in this EFT, but our
interest is in the predictions made by the theory for the structure-dependent amplitudes, including the
static polarisabilities αE1, βM1 and the γ’s. As just described, the leading-order HBχPT Compton-
scattering amplitude is simply the Thomson term. At NLO—O(P 3)—there are the spin-dependent
Born contributions described above, but there are also contributions from pion loops [182], specifically
the diagrams depicted in Fig. 4.3. Individually these diagrams are divergent and violate the LETs, but

t

Figure 4.3: (Colour online) O(P 3) loop diagrams in HBχPT; all orderings of vertices and crossed as
well as direct photons are implied. Vertices (shown without dots) are all from the LO Lagrangian, that

is, L(1)
πN for the nucleonic coupling and L(2)

π for the γπ couplings. These also count as ε3 and e2δ2.

the sum is finite and leaves the Born contributions intact. Thus the sum of the loop diagrams contributes
only to the structure parts of the six amplitudes and hence vanishes quadratically for A1 and A2 as
ω → 0 and as the third power of ω for A3−6. The coefficients of these terms are the polarisabilities,
and at this order they are the same for both the proton and neutron. The results, first calculated by
Bernard et al. [98, 182], are

αE1 = 10βM1 =
10αEMg

2
A

192πmπf 2
π

= 12.5 , γE1E1 = 5γM1M1 = −5γM1E2 = −5γE1M2 = − 5αEMg
2
A

96π2m2
πf

2
π

= −5.6.

(4.13)
It should be stressed that up to third order the full amplitudes, as well as the polarisabilities, are

entirely predicted in terms of the well-known quantities mπ, fπ and gA; there are no free parameters. Of
course, the best method to analyse experiments for extracting even αE1 and βM1 is the subject of this
review, but nonetheless, the many attempts made in the past to measure these quantities all come out
close to these values for both the proton and neutron; in particular, the order-of-magnitude difference
between αE1 and βM1 and their nearly isoscalar nature is not easily understood in most models. This
has long been lauded as a stunning early success of HBχPT. (As the spin polarisabilities are less well
known, it is harder to judge these predictions; see Section 4.3.)

There are a number of caveats, however. Even strictly within HBχPT, one would expect higher-
order corrections to be of order P/Λχ—around 20% if the scale of the expansion were Λχ ∼ mρ. There
is also good reason to expect that for βM1 (as well as γM1M1), the scale is actually set by the much
smaller ∆-nucleon mass difference M∆ −MN. Furthermore, in a relativistic framework, the predictions
from the diagrams in Fig. 4.3 are substantially smaller: α

(p)
E1 = 6.8, β

(p)
M1 = −1.8 [183, 184]. But, before

dismissing the success of third-order HBχPT as a fluke, we should step back and remember that the
calculation gives us full amplitudes as a function of ω, not merely the static polarisabilities. As will
be shown in more detail subsequently, the full third-order cross section extends the region in which
data can be well described substantially beyond that where the Petrun’kin cross section (Born plus
static scalar polarisabilities) is valid. In particular, it reproduces the pronounced cusp at the photopion
threshold which is seen at forward scattering angles (see Fig. 3.1). Beyond that point, the data show a
huge rise in the cross section which is obviously due to the ∆(1232) (see Fig. 3.2), and one could not
expect a theory without the ∆(1232) to work in that region.

For completeness, we should mention that a handful of calculations of polarisabilities have been
done in the framework of SU(3)×SU(3) chiral perturbation theory, involving kaons as well as pions and
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all the octet baryons. Bernard et al. calculated the spin-independent static polarisabilities in HBχPT
[185] and showed that for nucleons the effect of kaon loops was small (see also Butler and Savage [186]);
Vijaya Kumar et al. found a similar result for γ0 [187]. Dynamical polarisabilities αE1(ω) and βM1(ω)
have also been calculated at NLO in a covariant framework by Aleksejevs and Barkanova [188].

4.2.5 Structure beyond leading order

Although the ability of third-order HBχPT to qualitatively describe low-energy data is encouraging,
the lack of any free parameters limits its use as a tool to extract more information from those data.
This situation changes at fourth order, because at that order we can construct Lagrangian terms like
ψ†F µνFµνψ which are multiplied by new, undetermined LECs. Such terms give rise to photon-nucleon
seagull diagrams which contribute terms proportional to ω2 to the amplitudes A1 and A2 [189]. In the
enumeration of Ref. [181], there are actually six such terms (numbers 89-94) but in the photon-nucleon

sector only four independent combinations of LECs enter, which we can call δα
(p)
E1, δα

(n)
E1, δβ

(p)
M1 and δβ

(n)
M1

(see L(4)
πN, Eq. (4.11), and Fig. 4.4). These are contributions to the spin-independent polarisabilities

of the proton and neutron which come from non-chiral physics—for example, quark substructure, or
resonances, according to perspective, and they obviously encode the leading effects of a ∆(1232) pole.
In addition, at fourth order a new set of πN diagrams has to be included. Finally, all the N2LO terms
in the expansion of the relativistic Born contributions to A1 and A2 are also generated via fourth-order
seagulls and diagrams like those of Fig. 4.4 with either one vertex taken from L(2)

πN or with an NLO
nucleon propagator.

Figure 4.4: (Colour online) O(P 4) diagrams in HBχPT; vertices labelled as in Figs 4.2 and 4.3 with

the addition of a (magenta) diced dot for the fourth-order counterterms δα
(p)
E1 etc. of L(4)

πN. All orderings
of vertices and crossed as well as direct photons are implied. Omitted are all diagrams obtained from
those in Fig. 4.3 by substituting an NLO vertex or propagator for an LO one. These also count as ε4

and e2δ4, though the final diagram is included at one order lower if polarisabilities are fit.

Of the loop diagrams, many are 1/MN corrections to the diagrams of Fig. 4.3 (no new LECs enter
in these). However, there are also two new types of diagrams—those with magnetic-moment couplings
as well as a pion loop, and those with a pion-nucleon seagull, as shown in Fig. 4.4. In the former, the
only new LECs are the well-known proton and neutron anomalous magnetic moments. In the latter,
however, the three πN LECs c1, c2 and c3 enter.

This time, the sum of all loop diagrams does make a O(ω) contribution to the Born terms. The
contributions are exactly those which are needed to replace the chiral-limit κ(0) with the correction that
shifts κ to its experimental value at this order. In the expansion of the γN vertex, this shift comes
from a diagram in which the photon couples to a pion loop, as in the third diagram of Fig. 4.4, but in
Compton scattering this is not the only diagram which gives δκ corrections to the Born term, nor is such
a correction the only contribution from this diagram [190–192]. The O(ω2) piece of the sum of all fourth-
order loop diagrams produces a logarithmically divergent result for the spin-independent polarisabilities.
These divergences are cancelled by the divergent parts of δα

(p)
E1 etc. to leave a finite but undetermined

total fourth-order contribution to the spin-independent polarisabilities [189]. By contrast, the O(ω3)
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Figure 2.6: Left: Scattering equations for Nπ scattering and pion electroproduction amplitudes. The filled circles denote the T-matrices
and the squares are the potentials. Right: Decomposition of the potentials (here for the Nπ case) into non-resonant and resonant parts,
which leads to the same separation for the T-matrix. The N → N∗ transition vertices and dressed propagators are determined from
the equations at the bottom. Note that the loop diagram in the vertex equation can be equally written in terms of the background Nπ
scattering matrix and a bare vertex (instead of the background Nπ potential and a dressed vertex).

Being Lorentz invariant, they are again identical in Euclidean and Minkowski conventions. As illustrated in
Fig. 2.5 for the N(1535) transition, if the form factors are free of kinematic constraints the helicity amplitudes
must have kinematic zeros: a naive parametrization of the experimental form factors F1 and F2 by a vector-
meson bump produces kinematic zeros for A1/2 and S1/2 at λ± = 0 ⇔ τ = −δ2± and beyond those points
they become imaginary. The analogous relations for the JP = 3/2± transition currents defined later in (4.60),
expressed in terms of the Jones-Scadron form factors GM (Q2), GE(Q2) and GC(Q2), read [53, 54]

[
GM

GE

]
= −

A1/2 +
√

3 A3/2

2δ±R∓
,

[
GE

GM

]
=

A1/2 − 1√
3
A3/2

2δ±R∓
, GC =

mR

γm

S1/2

2δ±R∓
. (2.19)

Analysis of experimental results. While the bump landscape in the experimentally measured structure func-
tions in (2.12) provides a basic indication of the underlying baryon spectrum, the detailed extraction of baryon
properties requires a more sophisticated toolbox. Several analysis tools have been developed and are still under
development to achieve this task. They can be roughly categorised as reaction models, which assume a certain
reaction mechanism and determine resonance observables by fitting a large set of parameters to the experimen-
tal multipole amplitudes, and dynamical coupled-channel models which aim at a self-consistent description of
the reaction dynamics. In the following we will sketch the basic ideas behind these approaches and refer to
Refs. [4, 11, 13, 55, 56] for details and a comprehensive list of references.

The common goal is to calculate the T-matrix or, equivalently, its multipole expansion in terms of interaction
potentials Vij , which are split into a non-resonant background and resonant contributions. The background
potentials are typically derived from the tree-level diagrams of chiral effective Lagrangians and contain the nu-
cleon Born terms together with the u-channel resonances and t-channel meson exchanges in Fig. 2.2; the res-
onant s-channel diagrams encode the N∗ exchanges together with their couplings to the photons and mesons.
Upon selecting the channel space (Nγ, Nπ, Nη, ∆π, Nρ, Nσ etc.), one can establish a system of coupled-
channel equations for the T-matrix. For example, keeping only the Nγ and Nπ channels in the low-energy
region leads to the scattering equation

T = V + VGT , T =

(
Tππ Tπγ

Tγπ Tγγ

)
, V =

(
Vππ Vπγ

Vγπ Vγγ

)
, G =

(
Gπ 0
0 Gγ

)
, (2.20)

where Gπ and Gγ are the two-body nucleon-pion and nucleon-photon propagators and the scattering matrices
correspond to Nπ scattering (ππ), pion electroabsorption/electroproduction (πγ, γπ) and nucleon Compton
scattering (γγ). Neglecting also electromagnetic effects leaves two equations for Tππ and Tγπ which are shown
in the left of Fig. 2.6: here only the integral equation for the Nπ scattering amplitude has to be solved and
everything else is in principle determined by a one-loop calculation.

There are two standard ways to rewrite (2.20). One is to split the propagator into two parts, which leads
to the distinction between ‘T-matrix’ and ‘K-matrix’:

T = V + V (G1 + G2)T , K = V + VG1K ⇒ T = K + KG2T . (2.21)
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Figure 2.6: Left: Scattering equations for Nπ scattering and pion electroproduction amplitudes. The filled circles denote the T-matrices
and the squares are the potentials. Right: Decomposition of the potentials (here for the Nπ case) into non-resonant and resonant parts,
which leads to the same separation for the T-matrix. The N → N∗ transition vertices and dressed propagators are determined from
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GE
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GE
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A3/2

2δ±R∓
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mR
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FIG. 1: (above) Trajectories of the evolution of P11 resonance
poles A (1357,76), B (1364,105), and C (1820,248) from a bare
N∗ with 1763 MeV, as the couplings of the bare N∗ with the
meson-baryon reaction channels are varied from zero to the
full strengths of the JLMS model. See text for detailed expla-
nations. Brunch cuts for all channels are denoted as dashed
lines. The branch points, Eb.p., for unstable channels are
determined by Eb.p. − EM (k) − EB(k) − ΣMB(k,Eb.p.) =
0 of the their propagators (described in the text) evalu-
ated at the spectator momentum k=0. With the param-
eters [16] used in JLMS model, we find that Eb.p. (MeV)
= (1365.40,−32.46), (1704.08,−74.98), (1907.57,−323.62) for
π∆, ρN , and σN , respectively. (below) 3-Dimensional depic-
tion of the behavior of |det[D(E)]|2 of the P11 N∗ propagator
(in arbitrary units) as a function of complex-E.

This finding is consistent with the results from the anal-
ysis by Cutkosky and Wang [12] (CMB), GWU/VPI [13]
and Jülich [14] groups, as seen in Tab. I. In our analysis,
we find that they are on different sheets: (1357,76) and
(1364,105) are on the un-physical and physical sheet of
the π∆ channel, respectively.

We also find one higher mass pole at (1820, 248) in
P11 partial wave, which is close to the N∗(1710) state
listed by PDG. Within the JLMS model, we find that
this pole and the two poles listed in table II are related
to one of the two bare states needed to obtain a good
fit to the P11 amplitude up to W = 2 GeV, see [15].

TABLE II: The resonance pole positions MR [listed as
(Re MR,−Im MR)] extracted from the JLMS model in the
different unphysical sheets are compared with the values of
3- and 4-stars nucleon resonances listed in the PDG [1].
The notation indicating their locations on the Riemann sur-
face are explained in the text. “—” for P33(1600), P13 and
P31 indicates that no resonance pole has been found in the
considered complex energy region, Re(E) ≤ 2000 MeV and
−Im(E) ≤ 250 MeV. All masses are in MeV.

M0
N∗ MR Location PDG

S11 1800 (1540, 191) (uuuupp) (1490 - 1530, 45 - 125)
1880 (1642, 41) (uuuupp) (1640 - 1670, 75 - 90)

P11 1763 (1357, 76) (upuupp) (1350 - 1380, 80 - 110)
1763 (1364, 105) (upuppp)
1763 (1820, 248) (uuuuup) (1670 - 1770, 40 - 190)

P13 1711 — (1660 - 1690, 57 - 138)
D13 1899 (1521, 58) (uuuupp) (1505 - 1515, 52 - 60)
D15 1898 (1654, 77) (uuuupp) (1655 - 1665, 62 - 75)
F15 2187 (1674, 53) (uuuupp) (1665 - 1680, 55 - 68)
S31 1850 (1563, 95) (u–uup–) (1590 - 1610, 57 - 60)
P31 1900 — (1830 - 1880, 100 - 250)
P33 1391 (1211, 50) (u–ppp–) (1209 - 1211, 49 - 51)

1600 — (1500 - 1700, 200 - 400)
D33 1976 (1604, 106) (u–uup–) (1620 - 1680, 80 - 120)
F35 2162 (1738, 110) (u–uuu–) (1825 - 1835, 132 - 150)

2162 (1928, 165) (u–uuu–)
F37 2138 (1858, 100) (u–uuu–) (1870 - 1890, 110 - 130)

To see how these poles evolve dynamically through their
coupling with reaction channels, we trace the zeros of
det[D̂−1(E)] = det[E − M0

N∗ − ∑
MB yMBMMB(E)] in

the region 0 ≤ yMB ≤ 1, where MMB(E) is the con-
tribution of channel MB to the self energy defined by
Eq. (5). Each yMB is varied independently to find contin-
uous evolution paths through the various Riemann sheets
on which our analytic continuation method is valid.

We find that the three poles listed in Table I are asso-
ciated to the bare state at 1736 MeV as shown in Fig. 1.
The solid blue curve shows the evolution of this bare
state to the position at C(1820, 248) on the unphysical
sheet of the π∆ and ηN channels. The poles A(1357, 76)
and B(1364,105) evolve from the same bare state on the
physical sheet of the ηN channel. The dashed red curve
indicates how the bare state evolves through varying all
coupling strengths except keeping yπ∆ = 0, to about
Re(MR) ∼ 1400 MeV. By further varying yπ∆ to 1 of the
full JLMS model, it then splits into two trajectories; one
moves to pole A(1357,76) on the unphysical sheet and
the other to B(1364, 105) on the physical sheet of π∆
channel. Fig. 1 clearly shows how the coupled-channels
effects induces multi-poles from a single bare state. The
evolution of the second bare state at 2037 MeV [15] into
a resonance at W > 2 GeV can be similarly investigated,
but will not be discussed here.

To explore this interesting result further and to ex-
amine the stability of the determined three P11 poles,
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B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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(c) cat‘s ears diagrams(a) reproduces Born terms
and N* resonances

(b) reproduces handbag diagrams
and t-channel meson poles

=

=
pion loops

+ . . .

+ . . .

t-channel
mesons

s/u-channel
N* resonancesBorn terms

  

  

Figure 5.4: Hadronic vs. quark-level decomposition of the nucleon Compton scattering amplitude. The first row depicts the hadronic
contributions as the sum of Born terms and a 1PI structure part. The latter encodes the polarisabilities and contains s/u−channel
nucleon resonances, t−channel meson exchanges and pion loops. The second row shows the microscopic decomposition (in rainbow-
ladder) featuring Bethe-Salpeter amplitudes, quark propagators, quark-photon and quark Compton vertices, and the three-quark scat-
tering matrix [691].

Is it then possible to connect these two facets by a common, underlying description at the level of quarks and
gluons that is valid in all kinematic regions and reproduces all established features, from hadronic poles to the
handbag picture?

Microscopic expression for the scattering amplitude. In analogy to the form factor diagrams in Fig. 4.3
one can derive a closed nonperturbative expression for the CS amplitude and other scattering amplitudes at
the quark level [691, 692]. The onshell scattering amplitude Mµν is the residue of the quark six-point function
that is coupled to two external currents with qq̄ quantum numbers:

Gµν
P 2
f=−m2

f , P
2
i =−m2

i−−−−−−−−−−−→ Ψf Mµν Ψi

(P 2
f + m2

f )(P
2
i + m2

i )
, (5.12)

where Ψf and Ψi again denote the Bethe-Salpeter wave functions, and mi = mf if the incoming and outgoing
baryons are the same. Following similar steps as in Sec. 4.1 one arrives at the following expression for the
scattering amplitude:

Mµν = Ψf

[(
G−1

){µ
G

(
G−1

)ν} −
(
G−1

)µν]
Ψi . (5.13)

The curly brackets denote a symmetrization of the indices and the quantities
(
G−1

)µ and
(
G−1

)µν read (in a
slightly simplified notation):

(
G−1

)µ
=

(
G0

−1
)µ − Kµ =

[
Γµ ⊗ S−1 ⊗ S−1 − Γµ ⊗ K(2) − S−1 ⊗ Kµ

(2) + perm.
]

− Kµ
(3)

(
G−1

)µν
=

(
G0

−1
)µν − Kµν =

[
Γµν ⊗ S−1 ⊗ S−1 − Γµν ⊗ K(2) + Γ{µ ⊗ Γν} ⊗ S−1

− Γ{µ ⊗ K
ν}
(2) − S−1 ⊗ Kµν

(2) + perm.
]

− Kµν
(3) .

(5.14)

Depending on the types of hadrons and currents involved, the resulting scattering amplitudes describe a variety
of different reactions such as Compton scattering, pion electroproduction, Nπ scattering, or crossed-channel
processes such as pp̄ annihilation into two photons or meson production. The approach can be applied to
mesons as well to derive the expressions for pion Compton scattering, ππ scattering (from the residue of the
correlator of four pseudoscalar currents) or the hadronic light-by-light amplitude (as the correlator of four
vector currents). This is worked out in detail in Refs. [692, 693]. For example, for a scattering amplitude with
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3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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(c) cat‘s ears diagrams(a) reproduces Born terms
and N* resonances

(b) reproduces handbag diagrams
and t-channel meson poles

=

=
pion loops

+ . . .

+ . . .

t-channel
mesons

s/u-channel
N* resonancesBorn terms

  

  

Figure 5.4: Hadronic vs. quark-level decomposition of the nucleon Compton scattering amplitude. The first row depicts the hadronic
contributions as the sum of Born terms and a 1PI structure part. The latter encodes the polarisabilities and contains s/u−channel
nucleon resonances, t−channel meson exchanges and pion loops. The second row shows the microscopic decomposition (in rainbow-
ladder) featuring Bethe-Salpeter amplitudes, quark propagators, quark-photon and quark Compton vertices, and the three-quark scat-
tering matrix [691].

Is it then possible to connect these two facets by a common, underlying description at the level of quarks and
gluons that is valid in all kinematic regions and reproduces all established features, from hadronic poles to the
handbag picture?

Microscopic expression for the scattering amplitude. In analogy to the form factor diagrams in Fig. 4.3
one can derive a closed nonperturbative expression for the CS amplitude and other scattering amplitudes at
the quark level [691, 692]. The onshell scattering amplitude Mµν is the residue of the quark six-point function
that is coupled to two external currents with qq̄ quantum numbers:

Gµν
P 2
f=−m2

f , P
2
i =−m2

i−−−−−−−−−−−→ Ψf Mµν Ψi

(P 2
f + m2

f )(P
2
i + m2

i )
, (5.12)

where Ψf and Ψi again denote the Bethe-Salpeter wave functions, and mi = mf if the incoming and outgoing
baryons are the same. Following similar steps as in Sec. 4.1 one arrives at the following expression for the
scattering amplitude:

Mµν = Ψf

[(
G−1

){µ
G

(
G−1

)ν} −
(
G−1

)µν]
Ψi . (5.13)

The curly brackets denote a symmetrization of the indices and the quantities
(
G−1

)µ and
(
G−1

)µν read (in a
slightly simplified notation):

(
G−1

)µ
=

(
G0

−1
)µ − Kµ =

[
Γµ ⊗ S−1 ⊗ S−1 − Γµ ⊗ K(2) − S−1 ⊗ Kµ

(2) + perm.
]

− Kµ
(3)

(
G−1

)µν
=

(
G0

−1
)µν − Kµν =

[
Γµν ⊗ S−1 ⊗ S−1 − Γµν ⊗ K(2) + Γ{µ ⊗ Γν} ⊗ S−1

− Γ{µ ⊗ K
ν}
(2) − S−1 ⊗ Kµν

(2) + perm.
]

− Kµν
(3) .

(5.14)

Depending on the types of hadrons and currents involved, the resulting scattering amplitudes describe a variety
of different reactions such as Compton scattering, pion electroproduction, Nπ scattering, or crossed-channel
processes such as pp̄ annihilation into two photons or meson production. The approach can be applied to
mesons as well to derive the expressions for pion Compton scattering, ππ scattering (from the residue of the
correlator of four pseudoscalar currents) or the hadronic light-by-light amplitude (as the correlator of four
vector currents). This is worked out in detail in Refs. [692, 693]. For example, for a scattering amplitude with
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3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q
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=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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(c) cat‘s ears diagrams(a) reproduces Born terms
and N* resonances

(b) reproduces handbag diagrams
and t-channel meson poles

=

=
pion loops

+ . . .

+ . . .

t-channel
mesons

s/u-channel
N* resonancesBorn terms

  

  

Figure 5.4: Hadronic vs. quark-level decomposition of the nucleon Compton scattering amplitude. The first row depicts the hadronic
contributions as the sum of Born terms and a 1PI structure part. The latter encodes the polarisabilities and contains s/u−channel
nucleon resonances, t−channel meson exchanges and pion loops. The second row shows the microscopic decomposition (in rainbow-
ladder) featuring Bethe-Salpeter amplitudes, quark propagators, quark-photon and quark Compton vertices, and the three-quark scat-
tering matrix [691].

Is it then possible to connect these two facets by a common, underlying description at the level of quarks and
gluons that is valid in all kinematic regions and reproduces all established features, from hadronic poles to the
handbag picture?

Microscopic expression for the scattering amplitude. In analogy to the form factor diagrams in Fig. 4.3
one can derive a closed nonperturbative expression for the CS amplitude and other scattering amplitudes at
the quark level [691, 692]. The onshell scattering amplitude Mµν is the residue of the quark six-point function
that is coupled to two external currents with qq̄ quantum numbers:

Gµν
P 2
f=−m2

f , P
2
i =−m2

i−−−−−−−−−−−→ Ψf Mµν Ψi

(P 2
f + m2

f )(P
2
i + m2

i )
, (5.12)

where Ψf and Ψi again denote the Bethe-Salpeter wave functions, and mi = mf if the incoming and outgoing
baryons are the same. Following similar steps as in Sec. 4.1 one arrives at the following expression for the
scattering amplitude:

Mµν = Ψf

[(
G−1

){µ
G

(
G−1

)ν} −
(
G−1

)µν]
Ψi . (5.13)

The curly brackets denote a symmetrization of the indices and the quantities
(
G−1

)µ and
(
G−1

)µν read (in a
slightly simplified notation):

(
G−1

)µ
=

(
G0

−1
)µ − Kµ =

[
Γµ ⊗ S−1 ⊗ S−1 − Γµ ⊗ K(2) − S−1 ⊗ Kµ

(2) + perm.
]

− Kµ
(3)

(
G−1

)µν
=

(
G0

−1
)µν − Kµν =

[
Γµν ⊗ S−1 ⊗ S−1 − Γµν ⊗ K(2) + Γ{µ ⊗ Γν} ⊗ S−1

− Γ{µ ⊗ K
ν}
(2) − S−1 ⊗ Kµν

(2) + perm.
]

− Kµν
(3) .

(5.14)

Depending on the types of hadrons and currents involved, the resulting scattering amplitudes describe a variety
of different reactions such as Compton scattering, pion electroproduction, Nπ scattering, or crossed-channel
processes such as pp̄ annihilation into two photons or meson production. The approach can be applied to
mesons as well to derive the expressions for pion Compton scattering, ππ scattering (from the residue of the
correlator of four pseudoscalar currents) or the hadronic light-by-light amplitude (as the correlator of four
vector currents). This is worked out in detail in Refs. [692, 693]. For example, for a scattering amplitude with
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Figure 4.3: Elastic or transition current matrix element of a baryon.

The basic observation is that G[µ] is obtained from the six-point function G by insertion of an external
current j[µ](z). In the path-integral language this amounts to a functional derivative, which entails that the
current couples linearly to all diagrams that appear in G. In that way the operation G → G[µ] carries the
properties of a derivative, i.e., it is linear and satisfies the Leibniz rule, which is referred to as ‘gauging of
equations’ [430–433]. Hence we can formally write

G[µ] = −G
(
G−1

)[µ]
G

p2f=−m2
f , p

2
i=−m2

i−−−−−−−−−−−→ − ΨfΨf

p2f + m2
f

(
G−1

)[µ] ΨiΨi

p2i + m2
i

, (4.9)

where we have employed a compact notation: we omitted momentum arguments and integrals; pi and pf are
the baryon momenta and Ψi = Ψ(ki, qi, pi), Ψf = Ψ(kf , qf , pf ) the respective baryon wave functions with
different momentum dependencies. By comparison with (4.5) one obtains the current matrix element as the
gauged inverse Green function between the onshell hadron wave functions:

J [µ] = −Ψf

(
G−1

)[µ]
Ψi . (4.10)

The relation can be worked out explicitly by applying (3.36), which relates the Green function with the
kernel: G = G0 + G0KG or, equivalently, G−1 = G0

−1 − K. Therefore

(
G−1

)[µ]
=

(
G0

−1
)[µ] − K[µ] , (4.11)

where
(
G0

−1
)[µ] is obtained by gauging the product of three inverse quark propagators:

(
G0

−1
)[µ]

=
(
S−1 ⊗ S−1 ⊗ S−1

)[µ]
= Γ[µ] ⊗ S−1 ⊗ S−1 + perm. (4.12)

The quark-antiquark vertex Γ[µ] will be discussed in detail in Sec. 4.2. It is obtained by inserting a current
j[µ](z) into the quark propagator,

Sαβ(x, y) = 〈0|Tψα(x) ψβ(y) |0〉 → S
[µ]
αβ(x, y, z) = 〈0|Tψα(x) ψβ(y) j[µ](z) |0〉 , (4.13)

and removing two dressed propagators so that in momentum space S[µ] = −S Γ[µ]S ⇒ Γ[µ] = (S−1)[µ]. Hence
we arrive at the current matrix element that is visualized in Fig. 4.3. J [µ] is the sum of impulse-approximation
diagrams, where the current couples to the quarks only, plus terms where it couples to the kernel of the Bethe-
Salpeter equation, namely

K =
(
S−1 ⊗ K(2) + perm.

)
+ K(3) ⇒ K[µ] =

(
Γ[µ] ⊗ K(2) + S−1 ⊗ K

[µ]
(2) + perm.

)
+ K

[µ]
(3) . (4.14)

K(2) and K(3) are the irreducible two- and three-body kernels. The Bethe-Salpeter wave functions are the
bound-state amplitudes with dressed quark propagators attached, so the inverse propagators that appear in(
G0

−1
)[µ] and K[µ] cancel with the propagators in the spectator legs.

The resulting formula is complementary to the discussion above but completely equivalent. Instead of
extracting the pole residue of G[µ], we have derived the microscopic decomposition of the current matrix
element directly in terms of baryon Bethe-Salpeter amplitudes, quark propagators and two- and three-quark
kernels. Fig. 4.3 also provides an intuitive understanding of form factors. The incoming baryon splits into its
valence quarks which emit and reabsorb gluons in all possible ways, obtain a boost from the current (photons,
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B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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(c) cat‘s ears diagrams(a) reproduces Born terms
and N* resonances

(b) reproduces handbag diagrams
and t-channel meson poles

=

=
pion loops

+ . . .
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t-channel
mesons

s/u-channel
N* resonancesBorn terms

  

  

Figure 5.4: Hadronic vs. quark-level decomposition of the nucleon Compton scattering amplitude. The first row depicts the hadronic
contributions as the sum of Born terms and a 1PI structure part. The latter encodes the polarisabilities and contains s/u−channel
nucleon resonances, t−channel meson exchanges and pion loops. The second row shows the microscopic decomposition (in rainbow-
ladder) featuring Bethe-Salpeter amplitudes, quark propagators, quark-photon and quark Compton vertices, and the three-quark scat-
tering matrix [691].

Is it then possible to connect these two facets by a common, underlying description at the level of quarks and
gluons that is valid in all kinematic regions and reproduces all established features, from hadronic poles to the
handbag picture?

Microscopic expression for the scattering amplitude. In analogy to the form factor diagrams in Fig. 4.3
one can derive a closed nonperturbative expression for the CS amplitude and other scattering amplitudes at
the quark level [691, 692]. The onshell scattering amplitude Mµν is the residue of the quark six-point function
that is coupled to two external currents with qq̄ quantum numbers:

Gµν
P 2
f=−m2

f , P
2
i =−m2

i−−−−−−−−−−−→ Ψf Mµν Ψi

(P 2
f + m2

f )(P
2
i + m2

i )
, (5.12)

where Ψf and Ψi again denote the Bethe-Salpeter wave functions, and mi = mf if the incoming and outgoing
baryons are the same. Following similar steps as in Sec. 4.1 one arrives at the following expression for the
scattering amplitude:

Mµν = Ψf

[(
G−1

){µ
G

(
G−1

)ν} −
(
G−1

)µν]
Ψi . (5.13)

The curly brackets denote a symmetrization of the indices and the quantities
(
G−1

)µ and
(
G−1

)µν read (in a
slightly simplified notation):

(
G−1

)µ
=

(
G0

−1
)µ − Kµ =

[
Γµ ⊗ S−1 ⊗ S−1 − Γµ ⊗ K(2) − S−1 ⊗ Kµ

(2) + perm.
]

− Kµ
(3)

(
G−1

)µν
=

(
G0

−1
)µν − Kµν =

[
Γµν ⊗ S−1 ⊗ S−1 − Γµν ⊗ K(2) + Γ{µ ⊗ Γν} ⊗ S−1

− Γ{µ ⊗ K
ν}
(2) − S−1 ⊗ Kµν

(2) + perm.
]

− Kµν
(3) .

(5.14)

Depending on the types of hadrons and currents involved, the resulting scattering amplitudes describe a variety
of different reactions such as Compton scattering, pion electroproduction, Nπ scattering, or crossed-channel
processes such as pp̄ annihilation into two photons or meson production. The approach can be applied to
mesons as well to derive the expressions for pion Compton scattering, ππ scattering (from the residue of the
correlator of four pseudoscalar currents) or the hadronic light-by-light amplitude (as the correlator of four
vector currents). This is worked out in detail in Refs. [692, 693]. For example, for a scattering amplitude with
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3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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(c) cat‘s ears diagrams(a) reproduces Born terms
and N* resonances

(b) reproduces handbag diagrams
and t-channel meson poles

=

=
pion loops

+ . . .

+ . . .

t-channel
mesons

s/u-channel
N* resonancesBorn terms

  

  

Figure 5.4: Hadronic vs. quark-level decomposition of the nucleon Compton scattering amplitude. The first row depicts the hadronic
contributions as the sum of Born terms and a 1PI structure part. The latter encodes the polarisabilities and contains s/u−channel
nucleon resonances, t−channel meson exchanges and pion loops. The second row shows the microscopic decomposition (in rainbow-
ladder) featuring Bethe-Salpeter amplitudes, quark propagators, quark-photon and quark Compton vertices, and the three-quark scat-
tering matrix [691].

Is it then possible to connect these two facets by a common, underlying description at the level of quarks and
gluons that is valid in all kinematic regions and reproduces all established features, from hadronic poles to the
handbag picture?

Microscopic expression for the scattering amplitude. In analogy to the form factor diagrams in Fig. 4.3
one can derive a closed nonperturbative expression for the CS amplitude and other scattering amplitudes at
the quark level [691, 692]. The onshell scattering amplitude Mµν is the residue of the quark six-point function
that is coupled to two external currents with qq̄ quantum numbers:

Gµν
P 2
f=−m2

f , P
2
i =−m2

i−−−−−−−−−−−→ Ψf Mµν Ψi

(P 2
f + m2

f )(P
2
i + m2

i )
, (5.12)

where Ψf and Ψi again denote the Bethe-Salpeter wave functions, and mi = mf if the incoming and outgoing
baryons are the same. Following similar steps as in Sec. 4.1 one arrives at the following expression for the
scattering amplitude:

Mµν = Ψf

[(
G−1

){µ
G

(
G−1

)ν} −
(
G−1

)µν]
Ψi . (5.13)

The curly brackets denote a symmetrization of the indices and the quantities
(
G−1

)µ and
(
G−1

)µν read (in a
slightly simplified notation):

(
G−1

)µ
=

(
G0

−1
)µ − Kµ =

[
Γµ ⊗ S−1 ⊗ S−1 − Γµ ⊗ K(2) − S−1 ⊗ Kµ

(2) + perm.
]

− Kµ
(3)

(
G−1

)µν
=

(
G0

−1
)µν − Kµν =

[
Γµν ⊗ S−1 ⊗ S−1 − Γµν ⊗ K(2) + Γ{µ ⊗ Γν} ⊗ S−1

− Γ{µ ⊗ K
ν}
(2) − S−1 ⊗ Kµν

(2) + perm.
]

− Kµν
(3) .

(5.14)

Depending on the types of hadrons and currents involved, the resulting scattering amplitudes describe a variety
of different reactions such as Compton scattering, pion electroproduction, Nπ scattering, or crossed-channel
processes such as pp̄ annihilation into two photons or meson production. The approach can be applied to
mesons as well to derive the expressions for pion Compton scattering, ππ scattering (from the residue of the
correlator of four pseudoscalar currents) or the hadronic light-by-light amplitude (as the correlator of four
vector currents). This is worked out in detail in Refs. [692, 693]. For example, for a scattering amplitude with
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3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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(c) cat‘s ears diagrams(a) reproduces Born terms
and N* resonances

(b) reproduces handbag diagrams
and t-channel meson poles

=

=
pion loops

+ . . .

+ . . .

t-channel
mesons

s/u-channel
N* resonancesBorn terms

  

  

Figure 5.4: Hadronic vs. quark-level decomposition of the nucleon Compton scattering amplitude. The first row depicts the hadronic
contributions as the sum of Born terms and a 1PI structure part. The latter encodes the polarisabilities and contains s/u−channel
nucleon resonances, t−channel meson exchanges and pion loops. The second row shows the microscopic decomposition (in rainbow-
ladder) featuring Bethe-Salpeter amplitudes, quark propagators, quark-photon and quark Compton vertices, and the three-quark scat-
tering matrix [691].

Is it then possible to connect these two facets by a common, underlying description at the level of quarks and
gluons that is valid in all kinematic regions and reproduces all established features, from hadronic poles to the
handbag picture?

Microscopic expression for the scattering amplitude. In analogy to the form factor diagrams in Fig. 4.3
one can derive a closed nonperturbative expression for the CS amplitude and other scattering amplitudes at
the quark level [691, 692]. The onshell scattering amplitude Mµν is the residue of the quark six-point function
that is coupled to two external currents with qq̄ quantum numbers:

Gµν
P 2
f=−m2

f , P
2
i =−m2

i−−−−−−−−−−−→ Ψf Mµν Ψi

(P 2
f + m2

f )(P
2
i + m2

i )
, (5.12)

where Ψf and Ψi again denote the Bethe-Salpeter wave functions, and mi = mf if the incoming and outgoing
baryons are the same. Following similar steps as in Sec. 4.1 one arrives at the following expression for the
scattering amplitude:

Mµν = Ψf

[(
G−1

){µ
G

(
G−1

)ν} −
(
G−1

)µν]
Ψi . (5.13)

The curly brackets denote a symmetrization of the indices and the quantities
(
G−1

)µ and
(
G−1

)µν read (in a
slightly simplified notation):

(
G−1

)µ
=

(
G0

−1
)µ − Kµ =

[
Γµ ⊗ S−1 ⊗ S−1 − Γµ ⊗ K(2) − S−1 ⊗ Kµ

(2) + perm.
]

− Kµ
(3)

(
G−1

)µν
=

(
G0

−1
)µν − Kµν =

[
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− Γ{µ ⊗ K
ν}
(2) − S−1 ⊗ Kµν

(2) + perm.
]

− Kµν
(3) .

(5.14)

Depending on the types of hadrons and currents involved, the resulting scattering amplitudes describe a variety
of different reactions such as Compton scattering, pion electroproduction, Nπ scattering, or crossed-channel
processes such as pp̄ annihilation into two photons or meson production. The approach can be applied to
mesons as well to derive the expressions for pion Compton scattering, ππ scattering (from the residue of the
correlator of four pseudoscalar currents) or the hadronic light-by-light amplitude (as the correlator of four
vector currents). This is worked out in detail in Refs. [692, 693]. For example, for a scattering amplitude with
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Figure 4.3: Elastic or transition current matrix element of a baryon.

The basic observation is that G[µ] is obtained from the six-point function G by insertion of an external
current j[µ](z). In the path-integral language this amounts to a functional derivative, which entails that the
current couples linearly to all diagrams that appear in G. In that way the operation G → G[µ] carries the
properties of a derivative, i.e., it is linear and satisfies the Leibniz rule, which is referred to as ‘gauging of
equations’ [430–433]. Hence we can formally write

G[µ] = −G
(
G−1

)[µ]
G

p2f=−m2
f , p

2
i=−m2

i−−−−−−−−−−−→ − ΨfΨf

p2f + m2
f

(
G−1

)[µ] ΨiΨi

p2i + m2
i

, (4.9)

where we have employed a compact notation: we omitted momentum arguments and integrals; pi and pf are
the baryon momenta and Ψi = Ψ(ki, qi, pi), Ψf = Ψ(kf , qf , pf ) the respective baryon wave functions with
different momentum dependencies. By comparison with (4.5) one obtains the current matrix element as the
gauged inverse Green function between the onshell hadron wave functions:

J [µ] = −Ψf

(
G−1

)[µ]
Ψi . (4.10)

The relation can be worked out explicitly by applying (3.36), which relates the Green function with the
kernel: G = G0 + G0KG or, equivalently, G−1 = G0

−1 − K. Therefore

(
G−1

)[µ]
=

(
G0

−1
)[µ] − K[µ] , (4.11)

where
(
G0

−1
)[µ] is obtained by gauging the product of three inverse quark propagators:

(
G0

−1
)[µ]

=
(
S−1 ⊗ S−1 ⊗ S−1

)[µ]
= Γ[µ] ⊗ S−1 ⊗ S−1 + perm. (4.12)

The quark-antiquark vertex Γ[µ] will be discussed in detail in Sec. 4.2. It is obtained by inserting a current
j[µ](z) into the quark propagator,

Sαβ(x, y) = 〈0|Tψα(x) ψβ(y) |0〉 → S
[µ]
αβ(x, y, z) = 〈0|Tψα(x) ψβ(y) j[µ](z) |0〉 , (4.13)

and removing two dressed propagators so that in momentum space S[µ] = −S Γ[µ]S ⇒ Γ[µ] = (S−1)[µ]. Hence
we arrive at the current matrix element that is visualized in Fig. 4.3. J [µ] is the sum of impulse-approximation
diagrams, where the current couples to the quarks only, plus terms where it couples to the kernel of the Bethe-
Salpeter equation, namely

K =
(
S−1 ⊗ K(2) + perm.

)
+ K(3) ⇒ K[µ] =

(
Γ[µ] ⊗ K(2) + S−1 ⊗ K

[µ]
(2) + perm.

)
+ K

[µ]
(3) . (4.14)

K(2) and K(3) are the irreducible two- and three-body kernels. The Bethe-Salpeter wave functions are the
bound-state amplitudes with dressed quark propagators attached, so the inverse propagators that appear in(
G0

−1
)[µ] and K[µ] cancel with the propagators in the spectator legs.

The resulting formula is complementary to the discussion above but completely equivalent. Instead of
extracting the pole residue of G[µ], we have derived the microscopic decomposition of the current matrix
element directly in terms of baryon Bethe-Salpeter amplitudes, quark propagators and two- and three-quark
kernels. Fig. 4.3 also provides an intuitive understanding of form factors. The incoming baryon splits into its
valence quarks which emit and reabsorb gluons in all possible ways, obtain a boost from the current (photons,
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Use properties of (functional) derivative, obtain
general expression for current matrix elements and scattering amplitudes:
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B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
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A cross section through the planes of fixed t leads to the
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We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
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• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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(c) cat‘s ears diagrams(a) reproduces Born terms
and N* resonances

(b) reproduces handbag diagrams
and t-channel meson poles

=

=
pion loops

+ . . .

+ . . .

t-channel
mesons

s/u-channel
N* resonancesBorn terms

  

  

Figure 5.4: Hadronic vs. quark-level decomposition of the nucleon Compton scattering amplitude. The first row depicts the hadronic
contributions as the sum of Born terms and a 1PI structure part. The latter encodes the polarisabilities and contains s/u−channel
nucleon resonances, t−channel meson exchanges and pion loops. The second row shows the microscopic decomposition (in rainbow-
ladder) featuring Bethe-Salpeter amplitudes, quark propagators, quark-photon and quark Compton vertices, and the three-quark scat-
tering matrix [691].

Is it then possible to connect these two facets by a common, underlying description at the level of quarks and
gluons that is valid in all kinematic regions and reproduces all established features, from hadronic poles to the
handbag picture?

Microscopic expression for the scattering amplitude. In analogy to the form factor diagrams in Fig. 4.3
one can derive a closed nonperturbative expression for the CS amplitude and other scattering amplitudes at
the quark level [691, 692]. The onshell scattering amplitude Mµν is the residue of the quark six-point function
that is coupled to two external currents with qq̄ quantum numbers:

Gµν
P 2
f=−m2

f , P
2
i =−m2

i−−−−−−−−−−−→ Ψf Mµν Ψi

(P 2
f + m2

f )(P
2
i + m2

i )
, (5.12)

where Ψf and Ψi again denote the Bethe-Salpeter wave functions, and mi = mf if the incoming and outgoing
baryons are the same. Following similar steps as in Sec. 4.1 one arrives at the following expression for the
scattering amplitude:

Mµν = Ψf

[(
G−1

){µ
G

(
G−1

)ν} −
(
G−1

)µν]
Ψi . (5.13)

The curly brackets denote a symmetrization of the indices and the quantities
(
G−1

)µ and
(
G−1

)µν read (in a
slightly simplified notation):

(
G−1

)µ
=

(
G0

−1
)µ − Kµ =

[
Γµ ⊗ S−1 ⊗ S−1 − Γµ ⊗ K(2) − S−1 ⊗ Kµ

(2) + perm.
]

− Kµ
(3)

(
G−1

)µν
=

(
G0

−1
)µν − Kµν =

[
Γµν ⊗ S−1 ⊗ S−1 − Γµν ⊗ K(2) + Γ{µ ⊗ Γν} ⊗ S−1

− Γ{µ ⊗ K
ν}
(2) − S−1 ⊗ Kµν

(2) + perm.
]

− Kµν
(3) .

(5.14)

Depending on the types of hadrons and currents involved, the resulting scattering amplitudes describe a variety
of different reactions such as Compton scattering, pion electroproduction, Nπ scattering, or crossed-channel
processes such as pp̄ annihilation into two photons or meson production. The approach can be applied to
mesons as well to derive the expressions for pion Compton scattering, ππ scattering (from the residue of the
correlator of four pseudoscalar currents) or the hadronic light-by-light amplitude (as the correlator of four
vector currents). This is worked out in detail in Refs. [692, 693]. For example, for a scattering amplitude with
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3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)

’
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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(c) cat‘s ears diagrams(a) reproduces Born terms
and N* resonances

(b) reproduces handbag diagrams
and t-channel meson poles

=

=
pion loops

+ . . .

+ . . .

t-channel
mesons

s/u-channel
N* resonancesBorn terms

  

  

Figure 5.4: Hadronic vs. quark-level decomposition of the nucleon Compton scattering amplitude. The first row depicts the hadronic
contributions as the sum of Born terms and a 1PI structure part. The latter encodes the polarisabilities and contains s/u−channel
nucleon resonances, t−channel meson exchanges and pion loops. The second row shows the microscopic decomposition (in rainbow-
ladder) featuring Bethe-Salpeter amplitudes, quark propagators, quark-photon and quark Compton vertices, and the three-quark scat-
tering matrix [691].

Is it then possible to connect these two facets by a common, underlying description at the level of quarks and
gluons that is valid in all kinematic regions and reproduces all established features, from hadronic poles to the
handbag picture?

Microscopic expression for the scattering amplitude. In analogy to the form factor diagrams in Fig. 4.3
one can derive a closed nonperturbative expression for the CS amplitude and other scattering amplitudes at
the quark level [691, 692]. The onshell scattering amplitude Mµν is the residue of the quark six-point function
that is coupled to two external currents with qq̄ quantum numbers:

Gµν
P 2
f=−m2

f , P
2
i =−m2

i−−−−−−−−−−−→ Ψf Mµν Ψi

(P 2
f + m2

f )(P
2
i + m2

i )
, (5.12)

where Ψf and Ψi again denote the Bethe-Salpeter wave functions, and mi = mf if the incoming and outgoing
baryons are the same. Following similar steps as in Sec. 4.1 one arrives at the following expression for the
scattering amplitude:

Mµν = Ψf

[(
G−1

){µ
G

(
G−1

)ν} −
(
G−1

)µν]
Ψi . (5.13)

The curly brackets denote a symmetrization of the indices and the quantities
(
G−1

)µ and
(
G−1

)µν read (in a
slightly simplified notation):

(
G−1

)µ
=

(
G0

−1
)µ − Kµ =

[
Γµ ⊗ S−1 ⊗ S−1 − Γµ ⊗ K(2) − S−1 ⊗ Kµ

(2) + perm.
]

− Kµ
(3)

(
G−1

)µν
=

(
G0

−1
)µν − Kµν =

[
Γµν ⊗ S−1 ⊗ S−1 − Γµν ⊗ K(2) + Γ{µ ⊗ Γν} ⊗ S−1

− Γ{µ ⊗ K
ν}
(2) − S−1 ⊗ Kµν

(2) + perm.
]

− Kµν
(3) .

(5.14)

Depending on the types of hadrons and currents involved, the resulting scattering amplitudes describe a variety
of different reactions such as Compton scattering, pion electroproduction, Nπ scattering, or crossed-channel
processes such as pp̄ annihilation into two photons or meson production. The approach can be applied to
mesons as well to derive the expressions for pion Compton scattering, ππ scattering (from the residue of the
correlator of four pseudoscalar currents) or the hadronic light-by-light amplitude (as the correlator of four
vector currents). This is worked out in detail in Refs. [692, 693]. For example, for a scattering amplitude with
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3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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(c) cat‘s ears diagrams(a) reproduces Born terms
and N* resonances

(b) reproduces handbag diagrams
and t-channel meson poles

=

=
pion loops

+ . . .
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t-channel
mesons

s/u-channel
N* resonancesBorn terms

  

  

Figure 5.4: Hadronic vs. quark-level decomposition of the nucleon Compton scattering amplitude. The first row depicts the hadronic
contributions as the sum of Born terms and a 1PI structure part. The latter encodes the polarisabilities and contains s/u−channel
nucleon resonances, t−channel meson exchanges and pion loops. The second row shows the microscopic decomposition (in rainbow-
ladder) featuring Bethe-Salpeter amplitudes, quark propagators, quark-photon and quark Compton vertices, and the three-quark scat-
tering matrix [691].

Is it then possible to connect these two facets by a common, underlying description at the level of quarks and
gluons that is valid in all kinematic regions and reproduces all established features, from hadronic poles to the
handbag picture?

Microscopic expression for the scattering amplitude. In analogy to the form factor diagrams in Fig. 4.3
one can derive a closed nonperturbative expression for the CS amplitude and other scattering amplitudes at
the quark level [691, 692]. The onshell scattering amplitude Mµν is the residue of the quark six-point function
that is coupled to two external currents with qq̄ quantum numbers:

Gµν
P 2
f=−m2

f , P
2
i =−m2

i−−−−−−−−−−−→ Ψf Mµν Ψi

(P 2
f + m2

f )(P
2
i + m2

i )
, (5.12)

where Ψf and Ψi again denote the Bethe-Salpeter wave functions, and mi = mf if the incoming and outgoing
baryons are the same. Following similar steps as in Sec. 4.1 one arrives at the following expression for the
scattering amplitude:

Mµν = Ψf

[(
G−1

){µ
G

(
G−1

)ν} −
(
G−1

)µν]
Ψi . (5.13)

The curly brackets denote a symmetrization of the indices and the quantities
(
G−1

)µ and
(
G−1

)µν read (in a
slightly simplified notation):

(
G−1

)µ
=

(
G0

−1
)µ − Kµ =

[
Γµ ⊗ S−1 ⊗ S−1 − Γµ ⊗ K(2) − S−1 ⊗ Kµ

(2) + perm.
]

− Kµ
(3)

(
G−1

)µν
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(
G0

−1
)µν − Kµν =

[
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− Γ{µ ⊗ K
ν}
(2) − S−1 ⊗ Kµν

(2) + perm.
]

− Kµν
(3) .

(5.14)

Depending on the types of hadrons and currents involved, the resulting scattering amplitudes describe a variety
of different reactions such as Compton scattering, pion electroproduction, Nπ scattering, or crossed-channel
processes such as pp̄ annihilation into two photons or meson production. The approach can be applied to
mesons as well to derive the expressions for pion Compton scattering, ππ scattering (from the residue of the
correlator of four pseudoscalar currents) or the hadronic light-by-light amplitude (as the correlator of four
vector currents). This is worked out in detail in Refs. [692, 693]. For example, for a scattering amplitude with
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Figure 4.3: Elastic or transition current matrix element of a baryon.

The basic observation is that G[µ] is obtained from the six-point function G by insertion of an external
current j[µ](z). In the path-integral language this amounts to a functional derivative, which entails that the
current couples linearly to all diagrams that appear in G. In that way the operation G → G[µ] carries the
properties of a derivative, i.e., it is linear and satisfies the Leibniz rule, which is referred to as ‘gauging of
equations’ [430–433]. Hence we can formally write

G[µ] = −G
(
G−1

)[µ]
G

p2f=−m2
f , p

2
i=−m2

i−−−−−−−−−−−→ − ΨfΨf

p2f + m2
f

(
G−1

)[µ] ΨiΨi

p2i + m2
i

, (4.9)

where we have employed a compact notation: we omitted momentum arguments and integrals; pi and pf are
the baryon momenta and Ψi = Ψ(ki, qi, pi), Ψf = Ψ(kf , qf , pf ) the respective baryon wave functions with
different momentum dependencies. By comparison with (4.5) one obtains the current matrix element as the
gauged inverse Green function between the onshell hadron wave functions:

J [µ] = −Ψf

(
G−1

)[µ]
Ψi . (4.10)

The relation can be worked out explicitly by applying (3.36), which relates the Green function with the
kernel: G = G0 + G0KG or, equivalently, G−1 = G0

−1 − K. Therefore

(
G−1

)[µ]
=

(
G0

−1
)[µ] − K[µ] , (4.11)

where
(
G0

−1
)[µ] is obtained by gauging the product of three inverse quark propagators:

(
G0

−1
)[µ]

=
(
S−1 ⊗ S−1 ⊗ S−1

)[µ]
= Γ[µ] ⊗ S−1 ⊗ S−1 + perm. (4.12)

The quark-antiquark vertex Γ[µ] will be discussed in detail in Sec. 4.2. It is obtained by inserting a current
j[µ](z) into the quark propagator,

Sαβ(x, y) = 〈0|Tψα(x) ψβ(y) |0〉 → S
[µ]
αβ(x, y, z) = 〈0|Tψα(x) ψβ(y) j[µ](z) |0〉 , (4.13)

and removing two dressed propagators so that in momentum space S[µ] = −S Γ[µ]S ⇒ Γ[µ] = (S−1)[µ]. Hence
we arrive at the current matrix element that is visualized in Fig. 4.3. J [µ] is the sum of impulse-approximation
diagrams, where the current couples to the quarks only, plus terms where it couples to the kernel of the Bethe-
Salpeter equation, namely

K =
(
S−1 ⊗ K(2) + perm.

)
+ K(3) ⇒ K[µ] =

(
Γ[µ] ⊗ K(2) + S−1 ⊗ K

[µ]
(2) + perm.

)
+ K

[µ]
(3) . (4.14)

K(2) and K(3) are the irreducible two- and three-body kernels. The Bethe-Salpeter wave functions are the
bound-state amplitudes with dressed quark propagators attached, so the inverse propagators that appear in(
G0

−1
)[µ] and K[µ] cancel with the propagators in the spectator legs.

The resulting formula is complementary to the discussion above but completely equivalent. Instead of
extracting the pole residue of G[µ], we have derived the microscopic decomposition of the current matrix
element directly in terms of baryon Bethe-Salpeter amplitudes, quark propagators and two- and three-quark
kernels. Fig. 4.3 also provides an intuitive understanding of form factors. The incoming baryon splits into its
valence quarks which emit and reabsorb gluons in all possible ways, obtain a boost from the current (photons,
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Use properties of (functional) derivative, obtain
general expression for current matrix elements and scattering amplitudes:
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B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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(c) cat‘s ears diagrams(a) reproduces Born terms
and N* resonances

(b) reproduces handbag diagrams
and t-channel meson poles

=

=
pion loops

+ . . .

+ . . .

t-channel
mesons

s/u-channel
N* resonancesBorn terms

  

  

Figure 5.4: Hadronic vs. quark-level decomposition of the nucleon Compton scattering amplitude. The first row depicts the hadronic
contributions as the sum of Born terms and a 1PI structure part. The latter encodes the polarisabilities and contains s/u−channel
nucleon resonances, t−channel meson exchanges and pion loops. The second row shows the microscopic decomposition (in rainbow-
ladder) featuring Bethe-Salpeter amplitudes, quark propagators, quark-photon and quark Compton vertices, and the three-quark scat-
tering matrix [691].

Is it then possible to connect these two facets by a common, underlying description at the level of quarks and
gluons that is valid in all kinematic regions and reproduces all established features, from hadronic poles to the
handbag picture?

Microscopic expression for the scattering amplitude. In analogy to the form factor diagrams in Fig. 4.3
one can derive a closed nonperturbative expression for the CS amplitude and other scattering amplitudes at
the quark level [691, 692]. The onshell scattering amplitude Mµν is the residue of the quark six-point function
that is coupled to two external currents with qq̄ quantum numbers:

Gµν
P 2
f=−m2

f , P
2
i =−m2

i−−−−−−−−−−−→ Ψf Mµν Ψi

(P 2
f + m2

f )(P
2
i + m2

i )
, (5.12)

where Ψf and Ψi again denote the Bethe-Salpeter wave functions, and mi = mf if the incoming and outgoing
baryons are the same. Following similar steps as in Sec. 4.1 one arrives at the following expression for the
scattering amplitude:

Mµν = Ψf

[(
G−1

){µ
G

(
G−1

)ν} −
(
G−1

)µν]
Ψi . (5.13)

The curly brackets denote a symmetrization of the indices and the quantities
(
G−1

)µ and
(
G−1

)µν read (in a
slightly simplified notation):

(
G−1

)µ
=

(
G0

−1
)µ − Kµ =

[
Γµ ⊗ S−1 ⊗ S−1 − Γµ ⊗ K(2) − S−1 ⊗ Kµ

(2) + perm.
]

− Kµ
(3)

(
G−1

)µν
=

(
G0

−1
)µν − Kµν =

[
Γµν ⊗ S−1 ⊗ S−1 − Γµν ⊗ K(2) + Γ{µ ⊗ Γν} ⊗ S−1

− Γ{µ ⊗ K
ν}
(2) − S−1 ⊗ Kµν

(2) + perm.
]

− Kµν
(3) .

(5.14)

Depending on the types of hadrons and currents involved, the resulting scattering amplitudes describe a variety
of different reactions such as Compton scattering, pion electroproduction, Nπ scattering, or crossed-channel
processes such as pp̄ annihilation into two photons or meson production. The approach can be applied to
mesons as well to derive the expressions for pion Compton scattering, ππ scattering (from the residue of the
correlator of four pseudoscalar currents) or the hadronic light-by-light amplitude (as the correlator of four
vector currents). This is worked out in detail in Refs. [692, 693]. For example, for a scattering amplitude with
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3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
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We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
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• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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(c) cat‘s ears diagrams(a) reproduces Born terms
and N* resonances

(b) reproduces handbag diagrams
and t-channel meson poles

=

=
pion loops

+ . . .

+ . . .

t-channel
mesons

s/u-channel
N* resonancesBorn terms

  

  

Figure 5.4: Hadronic vs. quark-level decomposition of the nucleon Compton scattering amplitude. The first row depicts the hadronic
contributions as the sum of Born terms and a 1PI structure part. The latter encodes the polarisabilities and contains s/u−channel
nucleon resonances, t−channel meson exchanges and pion loops. The second row shows the microscopic decomposition (in rainbow-
ladder) featuring Bethe-Salpeter amplitudes, quark propagators, quark-photon and quark Compton vertices, and the three-quark scat-
tering matrix [691].

Is it then possible to connect these two facets by a common, underlying description at the level of quarks and
gluons that is valid in all kinematic regions and reproduces all established features, from hadronic poles to the
handbag picture?

Microscopic expression for the scattering amplitude. In analogy to the form factor diagrams in Fig. 4.3
one can derive a closed nonperturbative expression for the CS amplitude and other scattering amplitudes at
the quark level [691, 692]. The onshell scattering amplitude Mµν is the residue of the quark six-point function
that is coupled to two external currents with qq̄ quantum numbers:

Gµν
P 2
f=−m2

f , P
2
i =−m2

i−−−−−−−−−−−→ Ψf Mµν Ψi

(P 2
f + m2

f )(P
2
i + m2

i )
, (5.12)

where Ψf and Ψi again denote the Bethe-Salpeter wave functions, and mi = mf if the incoming and outgoing
baryons are the same. Following similar steps as in Sec. 4.1 one arrives at the following expression for the
scattering amplitude:

Mµν = Ψf

[(
G−1

){µ
G

(
G−1

)ν} −
(
G−1

)µν]
Ψi . (5.13)

The curly brackets denote a symmetrization of the indices and the quantities
(
G−1

)µ and
(
G−1

)µν read (in a
slightly simplified notation):

(
G−1

)µ
=

(
G0

−1
)µ − Kµ =

[
Γµ ⊗ S−1 ⊗ S−1 − Γµ ⊗ K(2) − S−1 ⊗ Kµ

(2) + perm.
]

− Kµ
(3)

(
G−1

)µν
=

(
G0

−1
)µν − Kµν =

[
Γµν ⊗ S−1 ⊗ S−1 − Γµν ⊗ K(2) + Γ{µ ⊗ Γν} ⊗ S−1

− Γ{µ ⊗ K
ν}
(2) − S−1 ⊗ Kµν

(2) + perm.
]

− Kµν
(3) .

(5.14)

Depending on the types of hadrons and currents involved, the resulting scattering amplitudes describe a variety
of different reactions such as Compton scattering, pion electroproduction, Nπ scattering, or crossed-channel
processes such as pp̄ annihilation into two photons or meson production. The approach can be applied to
mesons as well to derive the expressions for pion Compton scattering, ππ scattering (from the residue of the
correlator of four pseudoscalar currents) or the hadronic light-by-light amplitude (as the correlator of four
vector currents). This is worked out in detail in Refs. [692, 693]. For example, for a scattering amplitude with
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3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)

’
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.

3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)

’

RCS

VCS

FW
D

GP

FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
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We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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(c) cat‘s ears diagrams(a) reproduces Born terms
and N* resonances

(b) reproduces handbag diagrams
and t-channel meson poles

=

=
pion loops

+ . . .

+ . . .

t-channel
mesons

s/u-channel
N* resonancesBorn terms

  

  

Figure 5.4: Hadronic vs. quark-level decomposition of the nucleon Compton scattering amplitude. The first row depicts the hadronic
contributions as the sum of Born terms and a 1PI structure part. The latter encodes the polarisabilities and contains s/u−channel
nucleon resonances, t−channel meson exchanges and pion loops. The second row shows the microscopic decomposition (in rainbow-
ladder) featuring Bethe-Salpeter amplitudes, quark propagators, quark-photon and quark Compton vertices, and the three-quark scat-
tering matrix [691].

Is it then possible to connect these two facets by a common, underlying description at the level of quarks and
gluons that is valid in all kinematic regions and reproduces all established features, from hadronic poles to the
handbag picture?

Microscopic expression for the scattering amplitude. In analogy to the form factor diagrams in Fig. 4.3
one can derive a closed nonperturbative expression for the CS amplitude and other scattering amplitudes at
the quark level [691, 692]. The onshell scattering amplitude Mµν is the residue of the quark six-point function
that is coupled to two external currents with qq̄ quantum numbers:

Gµν
P 2
f=−m2

f , P
2
i =−m2

i−−−−−−−−−−−→ Ψf Mµν Ψi

(P 2
f + m2

f )(P
2
i + m2

i )
, (5.12)

where Ψf and Ψi again denote the Bethe-Salpeter wave functions, and mi = mf if the incoming and outgoing
baryons are the same. Following similar steps as in Sec. 4.1 one arrives at the following expression for the
scattering amplitude:

Mµν = Ψf

[(
G−1

){µ
G

(
G−1

)ν} −
(
G−1

)µν]
Ψi . (5.13)

The curly brackets denote a symmetrization of the indices and the quantities
(
G−1

)µ and
(
G−1

)µν read (in a
slightly simplified notation):

(
G−1

)µ
=

(
G0

−1
)µ − Kµ =

[
Γµ ⊗ S−1 ⊗ S−1 − Γµ ⊗ K(2) − S−1 ⊗ Kµ

(2) + perm.
]

− Kµ
(3)

(
G−1

)µν
=

(
G0

−1
)µν − Kµν =

[
Γµν ⊗ S−1 ⊗ S−1 − Γµν ⊗ K(2) + Γ{µ ⊗ Γν} ⊗ S−1

− Γ{µ ⊗ K
ν}
(2) − S−1 ⊗ Kµν

(2) + perm.
]

− Kµν
(3) .

(5.14)

Depending on the types of hadrons and currents involved, the resulting scattering amplitudes describe a variety
of different reactions such as Compton scattering, pion electroproduction, Nπ scattering, or crossed-channel
processes such as pp̄ annihilation into two photons or meson production. The approach can be applied to
mesons as well to derive the expressions for pion Compton scattering, ππ scattering (from the residue of the
correlator of four pseudoscalar currents) or the hadronic light-by-light amplitude (as the correlator of four
vector currents). This is worked out in detail in Refs. [692, 693]. For example, for a scattering amplitude with
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Figure 4.3: Elastic or transition current matrix element of a baryon.

The basic observation is that G[µ] is obtained from the six-point function G by insertion of an external
current j[µ](z). In the path-integral language this amounts to a functional derivative, which entails that the
current couples linearly to all diagrams that appear in G. In that way the operation G → G[µ] carries the
properties of a derivative, i.e., it is linear and satisfies the Leibniz rule, which is referred to as ‘gauging of
equations’ [430–433]. Hence we can formally write

G[µ] = −G
(
G−1

)[µ]
G

p2f=−m2
f , p

2
i=−m2

i−−−−−−−−−−−→ − ΨfΨf

p2f + m2
f

(
G−1

)[µ] ΨiΨi

p2i + m2
i

, (4.9)

where we have employed a compact notation: we omitted momentum arguments and integrals; pi and pf are
the baryon momenta and Ψi = Ψ(ki, qi, pi), Ψf = Ψ(kf , qf , pf ) the respective baryon wave functions with
different momentum dependencies. By comparison with (4.5) one obtains the current matrix element as the
gauged inverse Green function between the onshell hadron wave functions:

J [µ] = −Ψf

(
G−1

)[µ]
Ψi . (4.10)

The relation can be worked out explicitly by applying (3.36), which relates the Green function with the
kernel: G = G0 + G0KG or, equivalently, G−1 = G0

−1 − K. Therefore

(
G−1

)[µ]
=

(
G0

−1
)[µ] − K[µ] , (4.11)

where
(
G0

−1
)[µ] is obtained by gauging the product of three inverse quark propagators:

(
G0

−1
)[µ]

=
(
S−1 ⊗ S−1 ⊗ S−1

)[µ]
= Γ[µ] ⊗ S−1 ⊗ S−1 + perm. (4.12)

The quark-antiquark vertex Γ[µ] will be discussed in detail in Sec. 4.2. It is obtained by inserting a current
j[µ](z) into the quark propagator,

Sαβ(x, y) = 〈0|Tψα(x) ψβ(y) |0〉 → S
[µ]
αβ(x, y, z) = 〈0|Tψα(x) ψβ(y) j[µ](z) |0〉 , (4.13)

and removing two dressed propagators so that in momentum space S[µ] = −S Γ[µ]S ⇒ Γ[µ] = (S−1)[µ]. Hence
we arrive at the current matrix element that is visualized in Fig. 4.3. J [µ] is the sum of impulse-approximation
diagrams, where the current couples to the quarks only, plus terms where it couples to the kernel of the Bethe-
Salpeter equation, namely

K =
(
S−1 ⊗ K(2) + perm.

)
+ K(3) ⇒ K[µ] =

(
Γ[µ] ⊗ K(2) + S−1 ⊗ K

[µ]
(2) + perm.

)
+ K

[µ]
(3) . (4.14)

K(2) and K(3) are the irreducible two- and three-body kernels. The Bethe-Salpeter wave functions are the
bound-state amplitudes with dressed quark propagators attached, so the inverse propagators that appear in(
G0

−1
)[µ] and K[µ] cancel with the propagators in the spectator legs.

The resulting formula is complementary to the discussion above but completely equivalent. Instead of
extracting the pole residue of G[µ], we have derived the microscopic decomposition of the current matrix
element directly in terms of baryon Bethe-Salpeter amplitudes, quark propagators and two- and three-quark
kernels. Fig. 4.3 also provides an intuitive understanding of form factors. The incoming baryon splits into its
valence quarks which emit and reabsorb gluons in all possible ways, obtain a boost from the current (photons,
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Matrix elements

Scattering amplitude:

Use properties of (functional) derivative, obtain
general expression for current matrix elements and scattering amplitudes:

Relate G to elementary propagators, vertices and kernels:
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B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)

’

RCS

VCS

FW
D

GP

FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
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We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.
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the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
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ary of the cone contains the forward limit at t = 0 (FWD)
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The first three constraints in Eq. (12) entail
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+ . (15)
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=
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4
, τ ′ =
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We can also localize the various kinematic limits in this
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Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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(c) cat‘s ears diagrams(a) reproduces Born terms
and N* resonances

(b) reproduces handbag diagrams
and t-channel meson poles

=

=
pion loops

+ . . .

+ . . .

t-channel
mesons

s/u-channel
N* resonancesBorn terms

  

  

Figure 5.4: Hadronic vs. quark-level decomposition of the nucleon Compton scattering amplitude. The first row depicts the hadronic
contributions as the sum of Born terms and a 1PI structure part. The latter encodes the polarisabilities and contains s/u−channel
nucleon resonances, t−channel meson exchanges and pion loops. The second row shows the microscopic decomposition (in rainbow-
ladder) featuring Bethe-Salpeter amplitudes, quark propagators, quark-photon and quark Compton vertices, and the three-quark scat-
tering matrix [691].

Is it then possible to connect these two facets by a common, underlying description at the level of quarks and
gluons that is valid in all kinematic regions and reproduces all established features, from hadronic poles to the
handbag picture?

Microscopic expression for the scattering amplitude. In analogy to the form factor diagrams in Fig. 4.3
one can derive a closed nonperturbative expression for the CS amplitude and other scattering amplitudes at
the quark level [691, 692]. The onshell scattering amplitude Mµν is the residue of the quark six-point function
that is coupled to two external currents with qq̄ quantum numbers:

Gµν
P 2
f=−m2

f , P
2
i =−m2

i−−−−−−−−−−−→ Ψf Mµν Ψi

(P 2
f + m2

f )(P
2
i + m2

i )
, (5.12)

where Ψf and Ψi again denote the Bethe-Salpeter wave functions, and mi = mf if the incoming and outgoing
baryons are the same. Following similar steps as in Sec. 4.1 one arrives at the following expression for the
scattering amplitude:

Mµν = Ψf

[(
G−1

){µ
G

(
G−1

)ν} −
(
G−1

)µν]
Ψi . (5.13)

The curly brackets denote a symmetrization of the indices and the quantities
(
G−1

)µ and
(
G−1

)µν read (in a
slightly simplified notation):

(
G−1

)µ
=

(
G0

−1
)µ − Kµ =

[
Γµ ⊗ S−1 ⊗ S−1 − Γµ ⊗ K(2) − S−1 ⊗ Kµ

(2) + perm.
]

− Kµ
(3)

(
G−1

)µν
=

(
G0

−1
)µν − Kµν =

[
Γµν ⊗ S−1 ⊗ S−1 − Γµν ⊗ K(2) + Γ{µ ⊗ Γν} ⊗ S−1

− Γ{µ ⊗ K
ν}
(2) − S−1 ⊗ Kµν

(2) + perm.
]

− Kµν
(3) .

(5.14)

Depending on the types of hadrons and currents involved, the resulting scattering amplitudes describe a variety
of different reactions such as Compton scattering, pion electroproduction, Nπ scattering, or crossed-channel
processes such as pp̄ annihilation into two photons or meson production. The approach can be applied to
mesons as well to derive the expressions for pion Compton scattering, ππ scattering (from the residue of the
correlator of four pseudoscalar currents) or the hadronic light-by-light amplitude (as the correlator of four
vector currents). This is worked out in detail in Refs. [692, 693]. For example, for a scattering amplitude with
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3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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form factors that we derive in Tables I, II and V, are the
same in Minkowski space.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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(c) cat‘s ears diagrams(a) reproduces Born terms
and N* resonances

(b) reproduces handbag diagrams
and t-channel meson poles

=

=
pion loops

+ . . .

+ . . .

t-channel
mesons

s/u-channel
N* resonancesBorn terms

  

  

Figure 5.4: Hadronic vs. quark-level decomposition of the nucleon Compton scattering amplitude. The first row depicts the hadronic
contributions as the sum of Born terms and a 1PI structure part. The latter encodes the polarisabilities and contains s/u−channel
nucleon resonances, t−channel meson exchanges and pion loops. The second row shows the microscopic decomposition (in rainbow-
ladder) featuring Bethe-Salpeter amplitudes, quark propagators, quark-photon and quark Compton vertices, and the three-quark scat-
tering matrix [691].

Is it then possible to connect these two facets by a common, underlying description at the level of quarks and
gluons that is valid in all kinematic regions and reproduces all established features, from hadronic poles to the
handbag picture?

Microscopic expression for the scattering amplitude. In analogy to the form factor diagrams in Fig. 4.3
one can derive a closed nonperturbative expression for the CS amplitude and other scattering amplitudes at
the quark level [691, 692]. The onshell scattering amplitude Mµν is the residue of the quark six-point function
that is coupled to two external currents with qq̄ quantum numbers:

Gµν
P 2
f=−m2

f , P
2
i =−m2

i−−−−−−−−−−−→ Ψf Mµν Ψi

(P 2
f + m2

f )(P
2
i + m2

i )
, (5.12)

where Ψf and Ψi again denote the Bethe-Salpeter wave functions, and mi = mf if the incoming and outgoing
baryons are the same. Following similar steps as in Sec. 4.1 one arrives at the following expression for the
scattering amplitude:

Mµν = Ψf

[(
G−1

){µ
G

(
G−1

)ν} −
(
G−1

)µν]
Ψi . (5.13)

The curly brackets denote a symmetrization of the indices and the quantities
(
G−1

)µ and
(
G−1

)µν read (in a
slightly simplified notation):

(
G−1

)µ
=

(
G0

−1
)µ − Kµ =

[
Γµ ⊗ S−1 ⊗ S−1 − Γµ ⊗ K(2) − S−1 ⊗ Kµ

(2) + perm.
]

− Kµ
(3)

(
G−1

)µν
=

(
G0

−1
)µν − Kµν =

[
Γµν ⊗ S−1 ⊗ S−1 − Γµν ⊗ K(2) + Γ{µ ⊗ Γν} ⊗ S−1

− Γ{µ ⊗ K
ν}
(2) − S−1 ⊗ Kµν

(2) + perm.
]

− Kµν
(3) .

(5.14)

Depending on the types of hadrons and currents involved, the resulting scattering amplitudes describe a variety
of different reactions such as Compton scattering, pion electroproduction, Nπ scattering, or crossed-channel
processes such as pp̄ annihilation into two photons or meson production. The approach can be applied to
mesons as well to derive the expressions for pion Compton scattering, ππ scattering (from the residue of the
correlator of four pseudoscalar currents) or the hadronic light-by-light amplitude (as the correlator of four
vector currents). This is worked out in detail in Refs. [692, 693]. For example, for a scattering amplitude with
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3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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(c) cat‘s ears diagrams(a) reproduces Born terms
and N* resonances

(b) reproduces handbag diagrams
and t-channel meson poles

=

=
pion loops

+ . . .

+ . . .

t-channel
mesons

s/u-channel
N* resonancesBorn terms

  

  

Figure 5.4: Hadronic vs. quark-level decomposition of the nucleon Compton scattering amplitude. The first row depicts the hadronic
contributions as the sum of Born terms and a 1PI structure part. The latter encodes the polarisabilities and contains s/u−channel
nucleon resonances, t−channel meson exchanges and pion loops. The second row shows the microscopic decomposition (in rainbow-
ladder) featuring Bethe-Salpeter amplitudes, quark propagators, quark-photon and quark Compton vertices, and the three-quark scat-
tering matrix [691].

Is it then possible to connect these two facets by a common, underlying description at the level of quarks and
gluons that is valid in all kinematic regions and reproduces all established features, from hadronic poles to the
handbag picture?

Microscopic expression for the scattering amplitude. In analogy to the form factor diagrams in Fig. 4.3
one can derive a closed nonperturbative expression for the CS amplitude and other scattering amplitudes at
the quark level [691, 692]. The onshell scattering amplitude Mµν is the residue of the quark six-point function
that is coupled to two external currents with qq̄ quantum numbers:

Gµν
P 2
f=−m2

f , P
2
i =−m2

i−−−−−−−−−−−→ Ψf Mµν Ψi

(P 2
f + m2

f )(P
2
i + m2

i )
, (5.12)

where Ψf and Ψi again denote the Bethe-Salpeter wave functions, and mi = mf if the incoming and outgoing
baryons are the same. Following similar steps as in Sec. 4.1 one arrives at the following expression for the
scattering amplitude:

Mµν = Ψf

[(
G−1

){µ
G

(
G−1

)ν} −
(
G−1

)µν]
Ψi . (5.13)

The curly brackets denote a symmetrization of the indices and the quantities
(
G−1

)µ and
(
G−1

)µν read (in a
slightly simplified notation):

(
G−1

)µ
=

(
G0

−1
)µ − Kµ =

[
Γµ ⊗ S−1 ⊗ S−1 − Γµ ⊗ K(2) − S−1 ⊗ Kµ

(2) + perm.
]

− Kµ
(3)

(
G−1

)µν
=

(
G0

−1
)µν − Kµν =

[
Γµν ⊗ S−1 ⊗ S−1 − Γµν ⊗ K(2) + Γ{µ ⊗ Γν} ⊗ S−1

− Γ{µ ⊗ K
ν}
(2) − S−1 ⊗ Kµν

(2) + perm.
]

− Kµν
(3) .

(5.14)

Depending on the types of hadrons and currents involved, the resulting scattering amplitudes describe a variety
of different reactions such as Compton scattering, pion electroproduction, Nπ scattering, or crossed-channel
processes such as pp̄ annihilation into two photons or meson production. The approach can be applied to
mesons as well to derive the expressions for pion Compton scattering, ππ scattering (from the residue of the
correlator of four pseudoscalar currents) or the hadronic light-by-light amplitude (as the correlator of four
vector currents). This is worked out in detail in Refs. [692, 693]. For example, for a scattering amplitude with
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Figure 4.3: Elastic or transition current matrix element of a baryon.

The basic observation is that G[µ] is obtained from the six-point function G by insertion of an external
current j[µ](z). In the path-integral language this amounts to a functional derivative, which entails that the
current couples linearly to all diagrams that appear in G. In that way the operation G → G[µ] carries the
properties of a derivative, i.e., it is linear and satisfies the Leibniz rule, which is referred to as ‘gauging of
equations’ [430–433]. Hence we can formally write

G[µ] = −G
(
G−1

)[µ]
G

p2f=−m2
f , p

2
i=−m2

i−−−−−−−−−−−→ − ΨfΨf

p2f + m2
f

(
G−1

)[µ] ΨiΨi

p2i + m2
i

, (4.9)

where we have employed a compact notation: we omitted momentum arguments and integrals; pi and pf are
the baryon momenta and Ψi = Ψ(ki, qi, pi), Ψf = Ψ(kf , qf , pf ) the respective baryon wave functions with
different momentum dependencies. By comparison with (4.5) one obtains the current matrix element as the
gauged inverse Green function between the onshell hadron wave functions:

J [µ] = −Ψf

(
G−1

)[µ]
Ψi . (4.10)

The relation can be worked out explicitly by applying (3.36), which relates the Green function with the
kernel: G = G0 + G0KG or, equivalently, G−1 = G0

−1 − K. Therefore

(
G−1

)[µ]
=

(
G0

−1
)[µ] − K[µ] , (4.11)

where
(
G0

−1
)[µ] is obtained by gauging the product of three inverse quark propagators:

(
G0

−1
)[µ]

=
(
S−1 ⊗ S−1 ⊗ S−1

)[µ]
= Γ[µ] ⊗ S−1 ⊗ S−1 + perm. (4.12)

The quark-antiquark vertex Γ[µ] will be discussed in detail in Sec. 4.2. It is obtained by inserting a current
j[µ](z) into the quark propagator,

Sαβ(x, y) = 〈0|Tψα(x) ψβ(y) |0〉 → S
[µ]
αβ(x, y, z) = 〈0|Tψα(x) ψβ(y) j[µ](z) |0〉 , (4.13)

and removing two dressed propagators so that in momentum space S[µ] = −S Γ[µ]S ⇒ Γ[µ] = (S−1)[µ]. Hence
we arrive at the current matrix element that is visualized in Fig. 4.3. J [µ] is the sum of impulse-approximation
diagrams, where the current couples to the quarks only, plus terms where it couples to the kernel of the Bethe-
Salpeter equation, namely

K =
(
S−1 ⊗ K(2) + perm.

)
+ K(3) ⇒ K[µ] =

(
Γ[µ] ⊗ K(2) + S−1 ⊗ K

[µ]
(2) + perm.

)
+ K

[µ]
(3) . (4.14)

K(2) and K(3) are the irreducible two- and three-body kernels. The Bethe-Salpeter wave functions are the
bound-state amplitudes with dressed quark propagators attached, so the inverse propagators that appear in(
G0

−1
)[µ] and K[µ] cancel with the propagators in the spectator legs.

The resulting formula is complementary to the discussion above but completely equivalent. Instead of
extracting the pole residue of G[µ], we have derived the microscopic decomposition of the current matrix
element directly in terms of baryon Bethe-Salpeter amplitudes, quark propagators and two- and three-quark
kernels. Fig. 4.3 also provides an intuitive understanding of form factors. The incoming baryon splits into its
valence quarks which emit and reabsorb gluons in all possible ways, obtain a boost from the current (photons,
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s, t, u channel poles are generated dynamically, no need for “offshell hadrons”

hadronic rescattering is implicit 
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Kinematics

3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)

’

RCS

VCS

FW
D

GP

FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
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4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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2e) =′p, Q,Q(M

]Q/,µγ[m4
i)2Q(2F+µγ)2Q(1F

)ip(u)p, Q(µ) Γfp(ūe) =p, Q(µJ𝑄
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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ary of the cone contains the forward limit at t = 0 (FWD)
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Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables
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4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)
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t =
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
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.
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We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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so that the Compton form factors in Eq. (3) are dimen-
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η− are even under photon crossing and charge conjuga-
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tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
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A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2
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=
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4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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FIGURE 1. (Color online). The scalar polarizabilities of the proton. Magenta blob represents the PDG summary [15]. Experi-
mental results are from Federspiel et al. [16], Zieger et al. [17], MacGibbon et al. [18], and TAPS [19]. ‘Sum Rule’ indicates the
Baldin sum rule evaluations of αE1 + βM1 [19] (broader band) and [20]. ChPT calculations are from [10] (BChPT—red blob) and
the ‘unconstrained fit’ of [21] (HBChPT—blue ellipse).

proton Compton scattering, where these polarizabilities prominently appear, the calculations show that upon inclusion
of O(p4) contributions the HBChPT achieves roughly the same results as O(p3 + p4/∆) BChPT [13], albeit with a
loss of some predictive power due to the appearance of two new LECs.

The present status of the BChPT, HBChPT, as well as “more empirical" extractions of proton polarizabilities, as
summarised in [14], is shown in Fig. 1. Note the significant discrepancy of the BChPT prediction with the current
Particle Data Group values, which thes far has been attributed to a sizeable underestimate of uncertainty in the TAPS
and subsequently PDG values.

3. RELEVANCE: HYDROGEN LAMB SHIFT

The electric polarizability of the proton is responsible for a zero-range force in atoms, which lead to a shift in the
S-levels:

∆E(pol.)
nS = −4αem φ 2

n (0)

∞∫

0

dQ

[√
1+

Q2

4m2
�

− Q
2m�

]
αE1(Q2), (1)

where αem is the fine-structure constant, φ 2
n (0) = α3

emm3
r /(πn3) is the square of the hydrogen wave-function at the

origin, m� is the lepton mass and mr is the reduced mass: mr = Mpm�/(Mp +m�). The effect of magnetic polarizability
is suppressed.

The effect in Eq. (1) is of order α5
em; there is one αem implicit in the polarizability. It is therefore of the same order as

the effects of 3rd Zemach radius and can make an impact on "charge radius puzzle" [22, 23], i.e., the 7σ discrepancy
between the proton charge radius extraction based on either the electronic (eH) or muonic (µH) hydrogen Lamb shift.
The factor in the square brackets of Eq. (1) acts a soft cutoff at the scale of order of the lepton mass m�, and hence the
proton polarizability contribution in µH is expected to be bigger than in eH. How much bigger?

The transfer-momentum dependence of αE1 is inferred from the forward doubly-virtual Compton scattering, and
hence is not accessible in a direct experiment. Only the sum, αE1(Q2)+βM1(Q2), is accessible through a generalized
Baldin sum rule. The Baldin sum rule has been evaluated in several works leading to the so-called ‘inelastic’
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.

7

F
igu

re
2:

R
atio

of
p
roton

electric
to

m
agn

etic
form

factors
as

ex
tracted

u
sin

g
R
osen

b
lu
th

(L
T
)
sep

aration
[11]

(sq
u
ares)

an
d

p
olarization

tran
sfer

m
easu

rem
en
ts

[16,
18]

(circles).
F
igu

re
ad

ap
ted

from
R
ef.

[12].

In
a
series

of
recen

t
ex
p
erim

en
ts

at
J
eff

erson
L
ab

[16,17,
18,19,20,21,22,23,24,25],

th
e
p
olarization

tran
sfer

(P
T
)
tech

n
iq
u
e
h
as

b
een

u
sed

to
accu

rately
d
eterm

in
e
th
e
ratio

G
E
/G

M
u
p
to

Q
2
=

8.5
G
eV

2.
In

ad
d
ition

,
th
ere

h
ave

b
een

com
p
lem

en
tary

m
easu

rem
en
ts

u
sin

g
p
olarized

targets
at

M
IT

-B
ates

[26]
an

d
J
eff

erson
L
ab

[27].
T
h
e
resu

lts,
illu

strated
in

F
ig.

2,
are

in
strik

in
g
con

trast
to

th
e
ratio

ob
tain

ed
v
ia

L
T

or
R
osen

b
lu
th

sep
aration

s,
sh
ow

in
g
an

ap
p
rox

im
ately

lin
ear

d
ecrease

of
R

w
ith

Q
2
w
h
ich

is
in

stron
g
v
iolation

of
th
e
Q

2
scalin

g
b
eh
av
ior

(see
also

R
efs.

[1,
2,

28,
29]).

T
h
e
d
iscrep

an
cy

b
etw

een
th
e
L
T

an
d
P
T

m
easu

rem
en
ts

of
G

E
/G

M
h
as

stim
u
lated

con
sid

erab
le

activ
ity,

b
oth

th
eoretically

an
d
ex
p
erim

en
tally,

over
th
e
p
ast

d
ecad

e.
A
ttem

p
ts

to
recon

cile
th
e
m
ea-

su
rem

en
ts

h
ave

m
ostly

fo
cu
sed

on
im

p
roved

treatm
en
ts

of
rad

iative
correction

s,
p
articu

larly
th
ose

asso
ciated

w
ith

tw
o-p

h
oton

ex
ch
an

ge,
w
h
ich

can
lead

to
ad

d
ition

al
an

gu
lar

(an
d
th
u
s
ε)

d
ep

en
d
en
ce

of
th
e
cross

section
.
In

th
e
follow

in
g
section

s
w
e
d
iscu

ss
ex
p
erim

en
tal

eff
orts

to
b
etter

u
n
d
erstan

d
th
e

d
iscrep

an
cy,

an
d
th
en

d
escrib

e
th
eoretical

eff
orts

to
com

p
u
te

T
P
E

correction
s
an

d
assess

th
eir

im
p
act

on
variou

s
ob

servab
les.

3
E
x
p
e
rim

e
n
ta
l
o
b
se
rv
a
b
le
s
a
n
d
m
e
a
su

re
m
e
n
ts

3
.1

V
erifi

ca
tio

n
o
f
th
e
d
iscrepa

n
cy

T
h
e
strik

in
g
d
iff
eren

ce
b
etw

een
R
osen

b
lu
th

[30]
an

d
th
e
early

p
olarization

tran
sfer

[16,
18]

m
easu

re-
m
en
ts

of
th
e
p
roton

electrom
agn

etic
form

factors
sh
ow

n
in

F
ig.

2
led

to
sign

ifi
can

t
activ

ity
aim

ed
at

u
n
d
erstan

d
in
g
an

d
resolv

in
g
th
is
d
iscrep

an
cy.

It
w
as

n
oted

early
[16]

th
at

th
ere

w
as

sign
ifi
can

t
scatter

b
etw

een
th
e
resu

lts
of

d
iff
eren

t
R
osen

b
lu
th

ex
traction

s
[11,

31,
32,

33,
34],

as
illu

strated
in

F
ig.

3,
su
ggestin

g
th
at

th
e
p
rob

lem
w
as

related
to

th
e
cross

section
m
easu

rem
en
ts.

A
t
h
igh

Q
2,
G

E
y
ield

s
on

ly
a
sm

all,
an

gle-d
ep

en
d
en
t
correction

to
th
e
cross

section
,
lead

in
g
to

th
e
p
ossib

ility
th
at

a
sy
stem

atic
d
iff
eren

ce
b
etw

een
sm

all-
an

d
large-an

gle
m
easu

rem
en
ts

cou
ld

y
ield

large
correction

s
to

G
E
/G

M
,
w
h
ich

w
ou

ld
in
crease

in
im

p
ortan

ce
w
ith

in
creasin

g
Q

2.
It

w
as

th
erefore

argu
ed

th
at

th
e
ob

served
d
iff
eren

ce
m
ay

h
ave

b
een

d
u
e
to

som
e
ex
p
erim

en
tal

error
in

on
e
or

m
ore

of
th
e
cross

section
m
easu

rem
en
ts

th
at

sign
ifi
can

tly
ch
an

ge
th
e
h
igh

Q
2
ex
traction

s
of

G
E
.
T
h
u
s,
th
e
fi
rst

step
w
as

a
carefu

l
ex
am

in
ation

of
th
e

cross
section

d
ata

to
d
eterm

in
e
if
th
e
ob

served
d
iscrep

an
cy

cou
ld

b
e
ex
p
lain

ed
b
y
p
rob

lem
s
w
ith

on
e

or
tw

o
ex
p
erim

en
ts,

or
resolved

b
y
ad

ju
stin

g
th
e
n
orm

alization
of

som
e
d
ata

sets
w
ith

in
th
e
assu

m
ed

u
n
certain

ties.

7

= 0µ∆ ⇒  2 variables:

⇒  4 CFFs:

)2λ(O) ++η(β) ++η(α) +, λ+η(1
Bornc) =, λ+η(1c

)2λ(O) ++η(β) +, λ+η(2
Bornc) =, λ+η(2c

where m is the nucleon mass. Occasionally we will make use of the alternative variables

t =
∆2

4m2
=

η+ − η−
2

, σ =
Σ2

m2
=

η+ + η−
2

, τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
(5.2)

and refer to the Mandelstam variables
{

s
u

}
= −(p ± Σ)2 = m2 (1 − η− ± 2λ). (5.3)

The kinematic phase space in the variables {η+, η−, ω} is illustrated in Fig. 5.1. The spacelike region that is
integrated over in nucleon-lepton scattering (see Fig. 5.3 below) forms a cone around the η+ axis. In that case
t remains an external variable, so the relevant phase space is the intersection of the plane t = const. with the
interior of the cone. The apex of the cone is where the static polarizabilities are defined, with momentum-
dependent extensions to real CS (η+ = ω = 0), virtual CS (τ ′ = 0 ⇒ η+ = ω) including the generalized
polarizabilities at η− = 0 and λ = 0, the doubly-virtual forward limit (t = 0, τ = τ ′ ⇒ η+ = η−, ω = 0), the
timelike process pp̄ → γγ for t < −1, and so on.

Fig. 5.1 shows the decomposition of the CS amplitude into an ‘elastic’ part, namely the Born terms which
depend on the nucleon electromagnetic form factors, and an inelastic one-particle-irreducible (1PI) part that
carries the structure and dynamics. Such a separation is formally always possible but in general not gauge
invariant. This point is important because defining polarizabilities as the coefficients of the structure part is
only sensible if the structure part satisfies electromagnetic gauge invariance. The intermediate nucleons in the
Born terms are offshell and thus it is the half-offshell nucleon-photon vertex that appears in these diagrams,
which has a richer structure than the onshell current. Individual gauge invariance of both Born and structure
parts is only guaranteed by implementing an onshell Dirac current with Q2-dependent Pauli and Dirac form
factors [? ], and in the following such a choice is implicitly understood. We will return to this issue in Sec. 5.2
below.

5.1 Overview of two-photon physics

Polarizabilities. There has been much recent interest in a precision determination of the nucleon’s polariz-
abilities, which is reflected in a number of reviews on the topic [165, 267–272]. The electric polarizability
α and magnetic polarizability β tell us how the nucleon responds to an external electromagnetic field, with
current PDG values α = 11.2(4)×10−4 fm3 and β = 2.5(4)×10−4 fm3 for the proton [273]. The polarizabilities
are proportional to the volume and their smallness indicates that the proton is a rigid object due to the strong
binding of its constituents. Whereas α + β is constrained by a sum rule (see Eq. (5.8) below), the small value
for β is commonly believed to be due to a cancellation between the paramagnetic nucleon ‘quark core’ and the
interaction with its diamagnetic pion cloud.

While lattice calculations for polarizabilities are underway [? ], the main theoretical tools to address CS
are ‘hadronic’ descriptions such as chiral perturbation theory, which provides a systematic expansion of the
CS amplitude at low energies and low momenta, and dispersion relations which establish a direct link to
experimental data. The main ideas behind these approaches are best understood by considering the forward
CS amplitude as an example, which is related to the inelastic photoabsorption cross section via unitarity. In the
following we will sketch the basic principles and refer to the aforementioned reviews for detailed discussions
and a comprehensive list of references.

In the forward limit the photons are still virtual but the momentum transfer vanishes, ∆µ = 0, and thus
Q = Q′ and pi = pf . In that case only two independent variables remain, η+ = Q2/m2 and λ = −p · Q/m2

(whereas η− = η+ and ω = 0), or equivalently the Mandelstam variables s and u. The CS amplitude reduces
to four independent tensor structures and it is given by

Mµν(p, Q) =
1

m
u(p)

(
c1
m4

tµαQp tανpQ +
c2
m2

tµνQQ +
c3
m

iεµνQγ +
c4
m2

λ
[
tµαQγ , t

αν
γQ

])
u(p) . (5.4)

Here u(p), u(p) are nucleon spinors and we defined

tµνab = a · b δµν − bµaν , εµνab = γ5 εµναβaαbβ . (5.5)
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Figure 5.2: Phase space of the forward CS amplitude in the variables η+ = Q2/m2 and λ = −p · Q/m2. The s− and u−channel
nucleon Born poles are shown by the thick (red) lines together with the nucleon resonance regions. The domain x ∈ [0, 1] in the
upper right quadrant is the physical region in nucleon photoabsorption Nγ∗ → X. The diagram on the right illustrates the right- and
left-hand cuts stemming from particle production as well as the integration region for two-photon exchange (TPE) corrections to the
nucleon-lepton scattering amplitude.

The Compton form factors (CFFs) ci(η+, λ) are Lorentz-invariant dimensionless functions which are even in
λ due to crossing symmetry.15 The four tensor basis elements have the lowest possible powers in the photon
momenta without introducing kinematic singularities, and thus the only singularities contained in the CFFs are
physical poles and cuts.

The forward phase space in the variables η+ and λ is sketched in Fig. 5.2. Nucleon resonances appear at
fixed s and u, starting with the Born poles at s = m2 and u = m2 (or λ = ±η+/2). The resonance regions are
indicated by the shaded (red) areas in the plot, where at larger s and u the resonances are eventually washed
out. In addition, at fixed η+ one has branch cuts from multiparticle production: the right-hand cut starts at
the first threshold s = (m + mπ)2 and extends to infinity and the left-hand cut begins at u = (m + m2

π). The
cut structure is visualized in the figure on the right. The cuts overlap in the timelike region η+ < 0, where in
principle one has additional vertical cuts due to particle production off the photons. In any case, for spacelike
photon momenta the CFFs are analytic functions in the physical sheet, apart from the Born poles and branch
cuts which are confined to the real λ axis. The right figure also shows the ‘Euclidean’ domain |Im λ| <

√
η+

along the imaginary axis where the CFFs are purely real. This is the analogue of the spacelike cone in Fig. 5.1
and it contributes to the two-photon exchange (TPE) integral in the nucleon-lepton cross section.

The forward CS amplitude is of special interest because the optical theorem, which follows from unitarity,
relates its imaginary part to the total photoabsorption cross section γ∗N → X and thus to the nucleon’s
structure functions f1,2(x, Q2) and g1,2(x, Q2). In the physical region the Bjorken variable x = η+/(2λ) goes
from x ∈ [0, 1] which corresponds to λ ∈ [η+/2, ∞). Since at fixed η+ the imaginary parts of the CFFs along the
cuts are known from the cross section data, one can exploit Cauchy’s formula to determine them everywhere
in the complex λ plane. This leads to dispersion relations of the form

ci(η+, λ) =
1

π

ˆ ∞

λ2
el

dλ′2 Im ci(η+, λ′)

λ′2 − λ2 − iε
, (5.6)

where the dispersion integrals extend from the elastic threshold λel = η+/2 to infinity. Depending on whether
the integrals converge or not for |λ′| → ∞, it may be necessary to use subtracted dispersion relations for

15Their relation to the standard forward amplitudes, as defined for example in Ref. [272], is given by {T1, T2, S1, S2} = 4παQED/m×
{λ2c1 + η+c2, η+c1, c3, −2λ c4}.
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FIGURE 1. (Color online). The scalar polarizabilities of the proton. Magenta blob represents the PDG summary [15]. Experi-
mental results are from Federspiel et al. [16], Zieger et al. [17], MacGibbon et al. [18], and TAPS [19]. ‘Sum Rule’ indicates the
Baldin sum rule evaluations of αE1 + βM1 [19] (broader band) and [20]. ChPT calculations are from [10] (BChPT—red blob) and
the ‘unconstrained fit’ of [21] (HBChPT—blue ellipse).

proton Compton scattering, where these polarizabilities prominently appear, the calculations show that upon inclusion
of O(p4) contributions the HBChPT achieves roughly the same results as O(p3 + p4/∆) BChPT [13], albeit with a
loss of some predictive power due to the appearance of two new LECs.

The present status of the BChPT, HBChPT, as well as “more empirical" extractions of proton polarizabilities, as
summarised in [14], is shown in Fig. 1. Note the significant discrepancy of the BChPT prediction with the current
Particle Data Group values, which thes far has been attributed to a sizeable underestimate of uncertainty in the TAPS
and subsequently PDG values.

3. RELEVANCE: HYDROGEN LAMB SHIFT

The electric polarizability of the proton is responsible for a zero-range force in atoms, which lead to a shift in the
S-levels:

∆E(pol.)
nS = −4αem φ 2

n (0)

∞∫

0

dQ

[√
1+

Q2

4m2
�

− Q
2m�

]
αE1(Q2), (1)

where αem is the fine-structure constant, φ 2
n (0) = α3

emm3
r /(πn3) is the square of the hydrogen wave-function at the

origin, m� is the lepton mass and mr is the reduced mass: mr = Mpm�/(Mp +m�). The effect of magnetic polarizability
is suppressed.

The effect in Eq. (1) is of order α5
em; there is one αem implicit in the polarizability. It is therefore of the same order as

the effects of 3rd Zemach radius and can make an impact on "charge radius puzzle" [22, 23], i.e., the 7σ discrepancy
between the proton charge radius extraction based on either the electronic (eH) or muonic (µH) hydrogen Lamb shift.
The factor in the square brackets of Eq. (1) acts a soft cutoff at the scale of order of the lepton mass m�, and hence the
proton polarizability contribution in µH is expected to be bigger than in eH. How much bigger?

The transfer-momentum dependence of αE1 is inferred from the forward doubly-virtual Compton scattering, and
hence is not accessible in a direct experiment. Only the sum, αE1(Q2)+βM1(Q2), is accessible through a generalized
Baldin sum rule. The Baldin sum rule has been evaluated in several works leading to the so-called ‘inelastic’
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B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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= 0µ∆ = 0, ω2m

Q·p−=, λ2m

2Q
=−η=+η=η⇒  2 variables:

⇒  4 CFFs:

)2λ(O) +η(β) +η(α) +, λη(1
Bornc) =, λη(1c

)2λ(O) +η(β) +, λη(2
Bornc) =, λη(2c

where m is the nucleon mass. Occasionally we will make use of the alternative variables

t =
∆2

4m2
=

η+ − η−
2

, σ =
Σ2

m2
=

η+ + η−
2

, τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
(5.2)

and refer to the Mandelstam variables
{

s
u

}
= −(p ± Σ)2 = m2 (1 − η− ± 2λ). (5.3)

The kinematic phase space in the variables {η+, η−, ω} is illustrated in Fig. 5.1. The spacelike region that is
integrated over in nucleon-lepton scattering (see Fig. 5.3 below) forms a cone around the η+ axis. In that case
t remains an external variable, so the relevant phase space is the intersection of the plane t = const. with the
interior of the cone. The apex of the cone is where the static polarizabilities are defined, with momentum-
dependent extensions to real CS (η+ = ω = 0), virtual CS (τ ′ = 0 ⇒ η+ = ω) including the generalized
polarizabilities at η− = 0 and λ = 0, the doubly-virtual forward limit (t = 0, τ = τ ′ ⇒ η+ = η−, ω = 0), the
timelike process pp̄ → γγ for t < −1, and so on.

Fig. 5.1 shows the decomposition of the CS amplitude into an ‘elastic’ part, namely the Born terms which
depend on the nucleon electromagnetic form factors, and an inelastic one-particle-irreducible (1PI) part that
carries the structure and dynamics. Such a separation is formally always possible but in general not gauge
invariant. This point is important because defining polarizabilities as the coefficients of the structure part is
only sensible if the structure part satisfies electromagnetic gauge invariance. The intermediate nucleons in the
Born terms are offshell and thus it is the half-offshell nucleon-photon vertex that appears in these diagrams,
which has a richer structure than the onshell current. Individual gauge invariance of both Born and structure
parts is only guaranteed by implementing an onshell Dirac current with Q2-dependent Pauli and Dirac form
factors [? ], and in the following such a choice is implicitly understood. We will return to this issue in Sec. 5.2
below.

5.1 Overview of two-photon physics

Polarizabilities. There has been much recent interest in a precision determination of the nucleon’s polariz-
abilities, which is reflected in a number of reviews on the topic [165, 267–272]. The electric polarizability
α and magnetic polarizability β tell us how the nucleon responds to an external electromagnetic field, with
current PDG values α = 11.2(4)×10−4 fm3 and β = 2.5(4)×10−4 fm3 for the proton [273]. The polarizabilities
are proportional to the volume and their smallness indicates that the proton is a rigid object due to the strong
binding of its constituents. Whereas α + β is constrained by a sum rule (see Eq. (5.8) below), the small value
for β is commonly believed to be due to a cancellation between the paramagnetic nucleon ‘quark core’ and the
interaction with its diamagnetic pion cloud.

While lattice calculations for polarizabilities are underway [? ], the main theoretical tools to address CS
are ‘hadronic’ descriptions such as chiral perturbation theory, which provides a systematic expansion of the
CS amplitude at low energies and low momenta, and dispersion relations which establish a direct link to
experimental data. The main ideas behind these approaches are best understood by considering the forward
CS amplitude as an example, which is related to the inelastic photoabsorption cross section via unitarity. In the
following we will sketch the basic principles and refer to the aforementioned reviews for detailed discussions
and a comprehensive list of references.

In the forward limit the photons are still virtual but the momentum transfer vanishes, ∆µ = 0, and thus
Q = Q′ and pi = pf . In that case only two independent variables remain, η+ = Q2/m2 and λ = −p · Q/m2

(whereas η− = η+ and ω = 0), or equivalently the Mandelstam variables s and u. The CS amplitude reduces
to four independent tensor structures and it is given by

Mµν(p, Q) =
1

m
u(p)

(
c1
m4

tµαQp tανpQ +
c2
m2

tµνQQ +
c3
m

iεµνQγ +
c4
m2

λ
[
tµαQγ , t

αν
γQ

])
u(p) . (5.4)

Here u(p), u(p) are nucleon spinors and we defined

tµνab = a · b δµν − bµaν , εµνab = γ5 εµναβaαbβ . (5.5)
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Figure 5.2: Phase space of the forward CS amplitude in the variables η+ = Q2/m2 and λ = −p · Q/m2. The s− and u−channel
nucleon Born poles are shown by the thick (red) lines together with the nucleon resonance regions. The domain x ∈ [0, 1] in the
upper right quadrant is the physical region in nucleon photoabsorption Nγ∗ → X. The diagram on the right illustrates the right- and
left-hand cuts stemming from particle production as well as the integration region for two-photon exchange (TPE) corrections to the
nucleon-lepton scattering amplitude.

The Compton form factors (CFFs) ci(η+, λ) are Lorentz-invariant dimensionless functions which are even in
λ due to crossing symmetry.15 The four tensor basis elements have the lowest possible powers in the photon
momenta without introducing kinematic singularities, and thus the only singularities contained in the CFFs are
physical poles and cuts.

The forward phase space in the variables η+ and λ is sketched in Fig. 5.2. Nucleon resonances appear at
fixed s and u, starting with the Born poles at s = m2 and u = m2 (or λ = ±η+/2). The resonance regions are
indicated by the shaded (red) areas in the plot, where at larger s and u the resonances are eventually washed
out. In addition, at fixed η+ one has branch cuts from multiparticle production: the right-hand cut starts at
the first threshold s = (m + mπ)2 and extends to infinity and the left-hand cut begins at u = (m + m2

π). The
cut structure is visualized in the figure on the right. The cuts overlap in the timelike region η+ < 0, where in
principle one has additional vertical cuts due to particle production off the photons. In any case, for spacelike
photon momenta the CFFs are analytic functions in the physical sheet, apart from the Born poles and branch
cuts which are confined to the real λ axis. The right figure also shows the ‘Euclidean’ domain |Im λ| <

√
η+

along the imaginary axis where the CFFs are purely real. This is the analogue of the spacelike cone in Fig. 5.1
and it contributes to the two-photon exchange (TPE) integral in the nucleon-lepton cross section.

The forward CS amplitude is of special interest because the optical theorem, which follows from unitarity,
relates its imaginary part to the total photoabsorption cross section γ∗N → X and thus to the nucleon’s
structure functions f1,2(x, Q2) and g1,2(x, Q2). In the physical region the Bjorken variable x = η+/(2λ) goes
from x ∈ [0, 1] which corresponds to λ ∈ [η+/2, ∞). Since at fixed η+ the imaginary parts of the CFFs along the
cuts are known from the cross section data, one can exploit Cauchy’s formula to determine them everywhere
in the complex λ plane. This leads to dispersion relations of the form

ci(η+, λ) =
1

π

ˆ ∞

λ2
el

dλ′2 Im ci(η+, λ′)

λ′2 − λ2 − iε
, (5.6)

where the dispersion integrals extend from the elastic threshold λel = η+/2 to infinity. Depending on whether
the integrals converge or not for |λ′| → ∞, it may be necessary to use subtracted dispersion relations for

15Their relation to the standard forward amplitudes, as defined for example in Ref. [272], is given by {T1, T2, S1, S2} = 4παQED/m×
{λ2c1 + η+c2, η+c1, c3, −2λ c4}.
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FIGURE 1. (Color online). The scalar polarizabilities of the proton. Magenta blob represents the PDG summary [15]. Experi-
mental results are from Federspiel et al. [16], Zieger et al. [17], MacGibbon et al. [18], and TAPS [19]. ‘Sum Rule’ indicates the
Baldin sum rule evaluations of αE1 + βM1 [19] (broader band) and [20]. ChPT calculations are from [10] (BChPT—red blob) and
the ‘unconstrained fit’ of [21] (HBChPT—blue ellipse).

proton Compton scattering, where these polarizabilities prominently appear, the calculations show that upon inclusion
of O(p4) contributions the HBChPT achieves roughly the same results as O(p3 + p4/∆) BChPT [13], albeit with a
loss of some predictive power due to the appearance of two new LECs.

The present status of the BChPT, HBChPT, as well as “more empirical" extractions of proton polarizabilities, as
summarised in [14], is shown in Fig. 1. Note the significant discrepancy of the BChPT prediction with the current
Particle Data Group values, which thes far has been attributed to a sizeable underestimate of uncertainty in the TAPS
and subsequently PDG values.

3. RELEVANCE: HYDROGEN LAMB SHIFT

The electric polarizability of the proton is responsible for a zero-range force in atoms, which lead to a shift in the
S-levels:

∆E(pol.)
nS = −4αem φ 2

n (0)

∞∫

0

dQ

[√
1+

Q2

4m2
�

− Q
2m�

]
αE1(Q2), (1)

where αem is the fine-structure constant, φ 2
n (0) = α3

emm3
r /(πn3) is the square of the hydrogen wave-function at the

origin, m� is the lepton mass and mr is the reduced mass: mr = Mpm�/(Mp +m�). The effect of magnetic polarizability
is suppressed.

The effect in Eq. (1) is of order α5
em; there is one αem implicit in the polarizability. It is therefore of the same order as

the effects of 3rd Zemach radius and can make an impact on "charge radius puzzle" [22, 23], i.e., the 7σ discrepancy
between the proton charge radius extraction based on either the electronic (eH) or muonic (µH) hydrogen Lamb shift.
The factor in the square brackets of Eq. (1) acts a soft cutoff at the scale of order of the lepton mass m�, and hence the
proton polarizability contribution in µH is expected to be bigger than in eH. How much bigger?

The transfer-momentum dependence of αE1 is inferred from the forward doubly-virtual Compton scattering, and
hence is not accessible in a direct experiment. Only the sum, αE1(Q2)+βM1(Q2), is accessible through a generalized
Baldin sum rule. The Baldin sum rule has been evaluated in several works leading to the so-called ‘inelastic’

3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)

’

RCS

VCS
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.

3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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= 0µ∆ ⇒  2 variables:

⇒  4 CFFs:

)2λ(O) ++η(β) ++η(α) +, λ+η(1
Bornc) =, λ+η(1c

)2λ(O) ++η(β) +, λ+η(2
Bornc) =, λ+η(2c

where m is the nucleon mass. Occasionally we will make use of the alternative variables

t =
∆2

4m2
=

η+ − η−
2

, σ =
Σ2

m2
=

η+ + η−
2

, τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
(5.2)

and refer to the Mandelstam variables
{

s
u

}
= −(p ± Σ)2 = m2 (1 − η− ± 2λ). (5.3)

The kinematic phase space in the variables {η+, η−, ω} is illustrated in Fig. 5.1. The spacelike region that is
integrated over in nucleon-lepton scattering (see Fig. 5.3 below) forms a cone around the η+ axis. In that case
t remains an external variable, so the relevant phase space is the intersection of the plane t = const. with the
interior of the cone. The apex of the cone is where the static polarizabilities are defined, with momentum-
dependent extensions to real CS (η+ = ω = 0), virtual CS (τ ′ = 0 ⇒ η+ = ω) including the generalized
polarizabilities at η− = 0 and λ = 0, the doubly-virtual forward limit (t = 0, τ = τ ′ ⇒ η+ = η−, ω = 0), the
timelike process pp̄ → γγ for t < −1, and so on.

Fig. 5.1 shows the decomposition of the CS amplitude into an ‘elastic’ part, namely the Born terms which
depend on the nucleon electromagnetic form factors, and an inelastic one-particle-irreducible (1PI) part that
carries the structure and dynamics. Such a separation is formally always possible but in general not gauge
invariant. This point is important because defining polarizabilities as the coefficients of the structure part is
only sensible if the structure part satisfies electromagnetic gauge invariance. The intermediate nucleons in the
Born terms are offshell and thus it is the half-offshell nucleon-photon vertex that appears in these diagrams,
which has a richer structure than the onshell current. Individual gauge invariance of both Born and structure
parts is only guaranteed by implementing an onshell Dirac current with Q2-dependent Pauli and Dirac form
factors [? ], and in the following such a choice is implicitly understood. We will return to this issue in Sec. 5.2
below.

5.1 Overview of two-photon physics

Polarizabilities. There has been much recent interest in a precision determination of the nucleon’s polariz-
abilities, which is reflected in a number of reviews on the topic [165, 267–272]. The electric polarizability
α and magnetic polarizability β tell us how the nucleon responds to an external electromagnetic field, with
current PDG values α = 11.2(4)×10−4 fm3 and β = 2.5(4)×10−4 fm3 for the proton [273]. The polarizabilities
are proportional to the volume and their smallness indicates that the proton is a rigid object due to the strong
binding of its constituents. Whereas α + β is constrained by a sum rule (see Eq. (5.8) below), the small value
for β is commonly believed to be due to a cancellation between the paramagnetic nucleon ‘quark core’ and the
interaction with its diamagnetic pion cloud.

While lattice calculations for polarizabilities are underway [? ], the main theoretical tools to address CS
are ‘hadronic’ descriptions such as chiral perturbation theory, which provides a systematic expansion of the
CS amplitude at low energies and low momenta, and dispersion relations which establish a direct link to
experimental data. The main ideas behind these approaches are best understood by considering the forward
CS amplitude as an example, which is related to the inelastic photoabsorption cross section via unitarity. In the
following we will sketch the basic principles and refer to the aforementioned reviews for detailed discussions
and a comprehensive list of references.

In the forward limit the photons are still virtual but the momentum transfer vanishes, ∆µ = 0, and thus
Q = Q′ and pi = pf . In that case only two independent variables remain, η+ = Q2/m2 and λ = −p · Q/m2

(whereas η− = η+ and ω = 0), or equivalently the Mandelstam variables s and u. The CS amplitude reduces
to four independent tensor structures and it is given by

Mµν(p, Q) =
1

m
u(p)

(
c1
m4

tµαQp tανpQ +
c2
m2

tµνQQ +
c3
m

iεµνQγ +
c4
m2

λ
[
tµαQγ , t

αν
γQ

])
u(p) . (5.4)

Here u(p), u(p) are nucleon spinors and we defined

tµνab = a · b δµν − bµaν , εµνab = γ5 εµναβaαbβ . (5.5)

70Nucleon resonances at 𝑠, 𝑢 � 𝑚�, 
𝑁𝜋 branch cuts for 𝑠, 𝑢 � (𝑚�𝑚�)� 

TPE region → proton radius puzzle

Use dispersion relations for rest:

⇒ Baldin sum rule for 𝛼�𝛽, but 𝛽 unconstrained (need subtracted DR) 
⇒ ChPT + pQCD, but result much to small to explain discrepancy

Low-energy expansion: 

          for 
known from 𝑁𝛾*→𝑋 cross section

 

1],[0∈)λ(2/+η=xicIm

Re 

Im 

TPE

  0

Scaling
regime

LEX 
 

 
 1

,  
 

 
 

R
es

on
an

ce
s 

in
 s

R
esonances in u

Dispersion integrals

  ½

Re 

Im 

TPE

  0

Scaling
regime

LEX 
 
 

 1
,  

 
 

 
R

es
on

an
ce

s 
in

 s
R

esonances in u

Dispersion integrals

  ½

Re 

Im 

TPE

  0

Scaling
regime

LEX 
 

 
 1

,  
 

 
 

R
es

on
an

ce
s 

in
 s

R
esonances in u

Dispersion integrals

  ½

Figure 5.2: Phase space of the forward CS amplitude in the variables η+ = Q2/m2 and λ = −p · Q/m2. The s− and u−channel
nucleon Born poles are shown by the thick (red) lines together with the nucleon resonance regions. The domain x ∈ [0, 1] in the
upper right quadrant is the physical region in nucleon photoabsorption Nγ∗ → X. The diagram on the right illustrates the right- and
left-hand cuts stemming from particle production as well as the integration region for two-photon exchange (TPE) corrections to the
nucleon-lepton scattering amplitude.

The Compton form factors (CFFs) ci(η+, λ) are Lorentz-invariant dimensionless functions which are even in
λ due to crossing symmetry.15 The four tensor basis elements have the lowest possible powers in the photon
momenta without introducing kinematic singularities, and thus the only singularities contained in the CFFs are
physical poles and cuts.

The forward phase space in the variables η+ and λ is sketched in Fig. 5.2. Nucleon resonances appear at
fixed s and u, starting with the Born poles at s = m2 and u = m2 (or λ = ±η+/2). The resonance regions are
indicated by the shaded (red) areas in the plot, where at larger s and u the resonances are eventually washed
out. In addition, at fixed η+ one has branch cuts from multiparticle production: the right-hand cut starts at
the first threshold s = (m + mπ)2 and extends to infinity and the left-hand cut begins at u = (m + m2

π). The
cut structure is visualized in the figure on the right. The cuts overlap in the timelike region η+ < 0, where in
principle one has additional vertical cuts due to particle production off the photons. In any case, for spacelike
photon momenta the CFFs are analytic functions in the physical sheet, apart from the Born poles and branch
cuts which are confined to the real λ axis. The right figure also shows the ‘Euclidean’ domain |Im λ| <

√
η+

along the imaginary axis where the CFFs are purely real. This is the analogue of the spacelike cone in Fig. 5.1
and it contributes to the two-photon exchange (TPE) integral in the nucleon-lepton cross section.

The forward CS amplitude is of special interest because the optical theorem, which follows from unitarity,
relates its imaginary part to the total photoabsorption cross section γ∗N → X and thus to the nucleon’s
structure functions f1,2(x, Q2) and g1,2(x, Q2). In the physical region the Bjorken variable x = η+/(2λ) goes
from x ∈ [0, 1] which corresponds to λ ∈ [η+/2, ∞). Since at fixed η+ the imaginary parts of the CFFs along the
cuts are known from the cross section data, one can exploit Cauchy’s formula to determine them everywhere
in the complex λ plane. This leads to dispersion relations of the form

ci(η+, λ) =
1

π

ˆ ∞

λ2
el

dλ′2 Im ci(η+, λ′)

λ′2 − λ2 − iε
, (5.6)

where the dispersion integrals extend from the elastic threshold λel = η+/2 to infinity. Depending on whether
the integrals converge or not for |λ′| → ∞, it may be necessary to use subtracted dispersion relations for

15Their relation to the standard forward amplitudes, as defined for example in Ref. [272], is given by {T1, T2, S1, S2} = 4παQED/m×
{λ2c1 + η+c2, η+c1, c3, −2λ c4}.
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Pion transition form factor

Idea: calculate FF inside cone
interpolate to physical plane
using VM pole as constraint
can be done for arbitrary 𝑄� 
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Rare pion decay 𝜋⁰ → 𝑒⁺𝑒⁻ 

After reanalysis of radiative corrections 
still 2𝜎 discrepancy in branching ratio
between exp and theory:

Depends on pion transition FF as input:  GE, Fischer, Weil, Williams, 1704.05774

cannot be calculated directly in Euclidean kinematics
because of photon and lepton poles

workaround with dispersion relations:

∆

2
∆= Σ +Q

p + Σ

2
∆−p

2
∆+p

2
∆−= Σ′Q

8

TABLE II. Result for the two dilepton decays: preliminary
results

Collaboration Γπ→2e+2e− · 10−13GeV
PDG [20] (2.58 ± 0.12)

Terschlusen(2013)[21] 2.68
Escribano(2015) [22] 2.62

our result 2.59

more the quantity α is an abbreviation of

α = 1
2|p1||p2||p3| sin θ2 sin θ3

{(Mπ − E1 − E2 − E3)2−

m2
e − |p2

1| − |p2|2 − |p3|2 − 2|q1||q2| cos θ2

− 2|q1||q3| cos θ3 − 2|q2||q3| cos θ2 cos θ3} (21)

and the combination of heavy-side functions indicated by
Θm is given as

Θm(q, k) = Θ(−q2 − 4m2
e)Θ(−k2 − 4m2

e)

× Θ(Mπ −
√

−q2 −
√

−k2). (22)

These impose constraints on the photon momenta. The
border of integration are from [−1, 1] for the angular in-
tegration and [0,

√
Mπ − m2

e] for |pi| using the equality
E2

i = |pi| + m2
e for i ∈ {1, 2, 3}.

For the direct and indirect contributions Eqs. (19),(20)
to the decay rate of the π0 we obtain

Γ(left)
π→2e+2e− = 2.59 × 10−13GeV. (23)

Γ(right)
π→2e+2e− = 0 × 10−13GeV ??. (24)

We give our results in Tab. II together with the value
from PDG and two other approaches. In Ref. [21] the
same effective theory has been used as for the Dalitz de-
cay, whereas in Ref. [22] a data driven approach is pre-
sented based on the use of rational approximates applied
to the π0, η and η′ transition form factor experimental
data in the space-like region. All results are in agree-
ment within 2% with each other and the experimental
value. Again, the impact of the details of the TFF on
the decay rates is rather small. The phase space inte-
gration restricts the momenta of the virtual photons to
[−2m2

e, −M2
π ]; in this area the TFF is determined by the

anomaly and mainly a constant value close to 1.

IV. RARE DECAY: π0 → e+e−

Finally we consider the two-body decay of the neu-
tral pion into one electron-positron pair. For the π0 this
is certainly the most interesting decay due to a discrep-
ancy between the KTeV experimental result and theoret-
ical calculations [9, 10, 23–26] of the order of 2σ. Using
the elaborate reanalysis of radiative corrections [24, 25]
to the experimental result of the KTeV collaboration [9]
(close to the value given in PDG [20]) one arrives at an

extracted experimental value for the branching ratio of
BR (π0 → e+e−) = (6.87 ± 0.36) × 10−8, which is con-
siderably smaller than the decays considered above.
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γ(k − q)

π0(q) π0

γ(k4)

γ(k5)

e−(p1)

e+(p2)

π0(P ) p1 − k

γ(Q)

γ(Q′)

π0(∆)

e+(pf )

e−(pi)

FIG. 11. Feynman diagram for π → e+e−

To lowest order in QED the process is described by
the one-loop graph in Fig. 11, which again includes the
transition form factor F (Q2, Q′2) as the only nonpertur-
bative input. The corresponding normalized branching
ratio is given by

R = B(π → e+e−)
B(π → γγ) = 2

(
m αem
πmπ

)2
β(t0) |A(t0)|2 , (25)

where β(t) =
√

1 + m2/t stems from the two body phase
space integration, t0 = −m2

π/4, and B(π → γγ) = 0.988.
The scalar amplitude A(t) can be viewed as the pseu-
doscalar form factor of the electron stemming from the
two-photon coupling, which must be evaluated at the on-
shell pion point t = t0.

A. A(t) with dispersive input

For arbitrary t the amplitude A(t) can be defined from
the matrix element for the π0 → e+e− decay:

∫
d4Σ

(2π)4 Λ(pf ) γµ S(p + Σ) γν Λ(pi)
Λµν(Q, Q′)

Q2 Q′2

= A(t)
(4π)2

2im αem
πfπ

Λ(pf ) γ5 Λ(pi) ,

(26)

where Λµν(Q, Q′) is the π → γγ transition current from
Eq. (1). The kinematics are as discussed in Sec. II A; in
particular, the averaged photon momentum Σ becomes
the loop momentum whereas the photon virtualities Q2

and Q′2 are tested at complex values close to the sym-
metric limit as shown in Fig. 3. The pion, the electron
and the positron are onshell with momenta ∆2 = −M2

π

and p2
i = p2

f = −m2.
Taking traces yields the following expression for A(t):

A(t) = 1
2π2t

∫
d4Σ (Σ · ∆)2 − Σ2∆2

(p + Σ)2 + m2
F (Q2, Q′2)

Q2 Q′2 . (27)

This integral has poles in the integration domain (which
we discuss in more detail in Sec. IV B) and thus cannot

8−10×87(36).6

8−10×23(09).6

KTeV Collab.: Abouzaid et al., PRD 75 (2007);
Husek, Kampf, Novotny, EPJ C74 (2014)

Dorokhov, JETP Lett. 91 (2010), 
Masjuan, Sanchez-Puertas,  1504.07001
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be naively integrated except for t = 0. A standard way
to circumvent the problem uses dispersive methods. In
that case the imaginary part of the amplitude along its
cut at t < 0 is given by

Im ALO(t) = π ln γ(t)
2β(t) F (0, 0) , (28)

with γ(t) = (1 − β(t))/(1 + β(t)), which follows from
cutting the two photon lines. The imaginary part gives
the well-known unitary bound for the branching ratio
through the inequality |A(t0)|2 ≥ |ImA(t0)|2:

R ≥
(

mαem
mπ

)2 ln2 γ(t0)
2β(t0) = 4.75 × 10−8.

Using a once-subtracted dispersion relation one then ob-
tains the real part of the amplitude via

Re A(t) = A(0) +
ln2 γ(t) + 1

3 π2 + 4 Li2(−γ(t))
4β(t) , (29)

where Li2(z) is the dilogarithm or Spence function. In
particular, this implies Re A(t0) = A(0)+31.9204 so that
the only unknown left is the constant A(0).

In fact, t = 0 is the only point where Eq. (27) can be
integrated directly to yield

A(0) = 4
3

∞∫

0

dx

[
(x − 2)

√
1 + 1

x
− x + 3

2

]
F (Q2, Q2) ,

with x = Q2/(4m2). A similar formula can be derived
using a Mellin-Barnes representation [? ],

A(0) ≈ −5
4 + 3

2

∫ ∞

0
dx ln(4x) d

dx
F (Q2, Q2), (30)

which is however only valid to leading order in an expan-
sion in the electron mass. With t = 0 the transition form
factor in both cases is evaluated in the symmetric limit
of equal photon momenta, and due to Q2 = 4m2x it is
mainly probed at very low Q2 of the order of the elec-
tron mass. Thus it is important to determine the TFF
at small arguments precisely. We have taken great care
that the numerical error of our calculation in this region
is below the one percent level and obtain the following
value for the constant A(0):

A(0) = −21.94(17) . (31)

It corresponds to a branching ratio of

B(π → e+e−) = 6.21531 × 10−8 (32)

and a decay rate of Γ(π → e+e−) = 4.90721×10−16 GeV.
Our result is compared to other approaches in Ta-

ble III. Whereas our calculation represents a top-down
approach using a well-tested model for the underly-
ing quark-gluon interaction, Refs. [10, 23] uses a phe-
nomenological parametrization of the transition form fac-
tor (TFF) that is adapted to reproduce experimental

TABLE III. Result for the rare decay
Collaboration B(π → e+e−) × 10−8

experiment [9, 24, 25] 6.87 ± 0.36
Dorokhov(2008) [10, 23] 6.23 ± 0.09

Masjuan(2015)[26] 6.23 ± 0.05
our result 6.22 ± 0.53
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FIG. 12. Overlapping branch cuts in the integrand of A(t),
i.e., the complex σ plane, for t = (−1 + i) m2

π/4 and m = 40
MeV. The cut σl (solid, red) is generated by the lepton pole
and the cut σγ (dashed, blue) by the photon poles; the latter
opens at σ = t but the former does not. The dotted line
shows a possible integration path avoiding all singularities.
The units are in GeV2.

data from CLEO together with additional high-energy
QCD constraints. The more recent Ref. [26] uses data-
driven approach via Pade Theory and Canterbury ap-
proximants. All three theoretical results are in agree-
ment with each other thus showing consistency over dif-
ferent approaches. Again, it appears that the decay rate
is not overly sensitive to different representations of the
form factor as long as the QCD constraints are satisfied
(as guaranteed in all three approaches). However, we
also like to point out that all three calculations use dis-
persion relations and the Mellin-Barnes representation.
Thus the only number that influences the final result is
the constant A0. Although a priori one would deem the
dispersive approach reliable it still remains to be checked
vis a more direct approach.

B. Direct calculation of A(t)

The integrand in Eq. (27) has poles for vanishing de-
nominators, i.e., if either of the photons or the interme-
diate lepton go onshell. Depending on the value of t,
this may prohibit a straightforward Euclidean integra-
tion. Specifically, for t ∈ C one can draw a kinematically
safe region in the complex t plane where such an integra-
tion is possible, and a forbidden region where the poles
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Im ALO(t) = π ln γ(t)
2β(t) F (0, 0) , (28)

with γ(t) = (1 − β(t))/(1 + β(t)), which follows from
cutting the two photon lines. The imaginary part gives
the well-known unitary bound for the branching ratio
through the inequality |A(t0)|2 ≥ |ImA(t0)|2:

R ≥
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where Li2(z) is the dilogarithm or Spence function. In
particular, this implies Re A(t0) = A(0)+31.9204 so that
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∫ ∞
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dx ln(4x) d
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which is however only valid to leading order in an expan-
sion in the electron mass. With t = 0 the transition form
factor in both cases is evaluated in the symmetric limit
of equal photon momenta, and due to Q2 = 4m2x it is
mainly probed at very low Q2 of the order of the elec-
tron mass. Thus it is important to determine the TFF
at small arguments precisely. We have taken great care
that the numerical error of our calculation in this region
is below the one percent level and obtain the following
value for the constant A(0):

A(0) = −21.94(17) . (31)

It corresponds to a branching ratio of

B(π → e+e−) = 6.21531 × 10−8 (32)

and a decay rate of Γ(π → e+e−) = 4.90721×10−16 GeV.
Our result is compared to other approaches in Ta-

ble III. Whereas our calculation represents a top-down
approach using a well-tested model for the underly-
ing quark-gluon interaction, Refs. [10, 23] uses a phe-
nomenological parametrization of the transition form fac-
tor (TFF) that is adapted to reproduce experimental
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shows a possible integration path avoiding all singularities.
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data from CLEO together with additional high-energy
QCD constraints. The more recent Ref. [26] uses data-
driven approach via Pade Theory and Canterbury ap-
proximants. All three theoretical results are in agree-
ment with each other thus showing consistency over dif-
ferent approaches. Again, it appears that the decay rate
is not overly sensitive to different representations of the
form factor as long as the QCD constraints are satisfied
(as guaranteed in all three approaches). However, we
also like to point out that all three calculations use dis-
persion relations and the Mellin-Barnes representation.
Thus the only number that influences the final result is
the constant A0. Although a priori one would deem the
dispersive approach reliable it still remains to be checked
vis a more direct approach.

B. Direct calculation of A(t)

The integrand in Eq. (27) has poles for vanishing de-
nominators, i.e., if either of the photons or the interme-
diate lepton go onshell. Depending on the value of t,
this may prohibit a straightforward Euclidean integra-
tion. Specifically, for t ∈ C one can draw a kinematically
safe region in the complex t plane where such an integra-
tion is possible, and a forbidden region where the poles

4/2= ∆t

4/π
2m−=0t
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After reanalysis of radiative corrections 
still 2𝜎 discrepancy in branching ratio
between exp and theory:

Depends on pion transition FF as input:  GE, Fischer, Weil, Williams, 1704.05774

cannot be calculated directly in Euclidean kinematics
because of photon and lepton poles

workaround with dispersion relations:

∆

2
∆= Σ +Q

p + Σ

2
∆−p

2
∆+p

2
∆−= Σ′Q

8

TABLE II. Result for the two dilepton decays: preliminary
results

Collaboration Γπ→2e+2e− · 10−13GeV
PDG [20] (2.58 ± 0.12)

Terschlusen(2013)[21] 2.68
Escribano(2015) [22] 2.62

our result 2.59

more the quantity α is an abbreviation of

α = 1
2|p1||p2||p3| sin θ2 sin θ3

{(Mπ − E1 − E2 − E3)2−

m2
e − |p2

1| − |p2|2 − |p3|2 − 2|q1||q2| cos θ2

− 2|q1||q3| cos θ3 − 2|q2||q3| cos θ2 cos θ3} (21)

and the combination of heavy-side functions indicated by
Θm is given as

Θm(q, k) = Θ(−q2 − 4m2
e)Θ(−k2 − 4m2

e)

× Θ(Mπ −
√

−q2 −
√

−k2). (22)

These impose constraints on the photon momenta. The
border of integration are from [−1, 1] for the angular in-
tegration and [0,

√
Mπ − m2

e] for |pi| using the equality
E2

i = |pi| + m2
e for i ∈ {1, 2, 3}.

For the direct and indirect contributions Eqs. (19),(20)
to the decay rate of the π0 we obtain

Γ(left)
π→2e+2e− = 2.59 × 10−13GeV. (23)

Γ(right)
π→2e+2e− = 0 × 10−13GeV ??. (24)

We give our results in Tab. II together with the value
from PDG and two other approaches. In Ref. [21] the
same effective theory has been used as for the Dalitz de-
cay, whereas in Ref. [22] a data driven approach is pre-
sented based on the use of rational approximates applied
to the π0, η and η′ transition form factor experimental
data in the space-like region. All results are in agree-
ment within 2% with each other and the experimental
value. Again, the impact of the details of the TFF on
the decay rates is rather small. The phase space inte-
gration restricts the momenta of the virtual photons to
[−2m2

e, −M2
π ]; in this area the TFF is determined by the

anomaly and mainly a constant value close to 1.

IV. RARE DECAY: π0 → e+e−

Finally we consider the two-body decay of the neu-
tral pion into one electron-positron pair. For the π0 this
is certainly the most interesting decay due to a discrep-
ancy between the KTeV experimental result and theoret-
ical calculations [9, 10, 23–26] of the order of 2σ. Using
the elaborate reanalysis of radiative corrections [24, 25]
to the experimental result of the KTeV collaboration [9]
(close to the value given in PDG [20]) one arrives at an

extracted experimental value for the branching ratio of
BR (π0 → e+e−) = (6.87 ± 0.36) × 10−8, which is con-
siderably smaller than the decays considered above.
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FIG. 11. Feynman diagram for π → e+e−

To lowest order in QED the process is described by
the one-loop graph in Fig. 11, which again includes the
transition form factor F (Q2, Q′2) as the only nonpertur-
bative input. The corresponding normalized branching
ratio is given by

R = B(π → e+e−)
B(π → γγ) = 2

(
m αem
πmπ

)2
β(t0) |A(t0)|2 , (25)

where β(t) =
√

1 + m2/t stems from the two body phase
space integration, t0 = −m2

π/4, and B(π → γγ) = 0.988.
The scalar amplitude A(t) can be viewed as the pseu-
doscalar form factor of the electron stemming from the
two-photon coupling, which must be evaluated at the on-
shell pion point t = t0.

A. A(t) with dispersive input

For arbitrary t the amplitude A(t) can be defined from
the matrix element for the π0 → e+e− decay:

∫
d4Σ

(2π)4 Λ(pf ) γµ S(p + Σ) γν Λ(pi)
Λµν(Q, Q′)

Q2 Q′2

= A(t)
(4π)2

2im αem
πfπ

Λ(pf ) γ5 Λ(pi) ,

(26)

where Λµν(Q, Q′) is the π → γγ transition current from
Eq. (1). The kinematics are as discussed in Sec. II A; in
particular, the averaged photon momentum Σ becomes
the loop momentum whereas the photon virtualities Q2

and Q′2 are tested at complex values close to the sym-
metric limit as shown in Fig. 3. The pion, the electron
and the positron are onshell with momenta ∆2 = −M2

π

and p2
i = p2

f = −m2.
Taking traces yields the following expression for A(t):

A(t) = 1
2π2t

∫
d4Σ (Σ · ∆)2 − Σ2∆2

(p + Σ)2 + m2
F (Q2, Q′2)

Q2 Q′2 . (27)

This integral has poles in the integration domain (which
we discuss in more detail in Sec. IV B) and thus cannot

8−10×87(36).6

8−10×23(09).6

KTeV Collab.: Abouzaid et al., PRD 75 (2007);
Husek, Kampf, Novotny, EPJ C74 (2014)

Dorokhov, JETP Lett. 91 (2010), 
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be naively integrated except for t = 0. A standard way
to circumvent the problem uses dispersive methods. In
that case the imaginary part of the amplitude along its
cut at t < 0 is given by

Im ALO(t) = π ln γ(t)
2β(t) F (0, 0) , (28)

with γ(t) = (1 − β(t))/(1 + β(t)), which follows from
cutting the two photon lines. The imaginary part gives
the well-known unitary bound for the branching ratio
through the inequality |A(t0)|2 ≥ |ImA(t0)|2:

R ≥
(

mαem
mπ

)2 ln2 γ(t0)
2β(t0) = 4.75 × 10−8.

Using a once-subtracted dispersion relation one then ob-
tains the real part of the amplitude via

Re A(t) = A(0) +
ln2 γ(t) + 1

3 π2 + 4 Li2(−γ(t))
4β(t) , (29)

where Li2(z) is the dilogarithm or Spence function. In
particular, this implies Re A(t0) = A(0)+31.9204 so that
the only unknown left is the constant A(0).

In fact, t = 0 is the only point where Eq. (27) can be
integrated directly to yield

A(0) = 4
3

∞∫

0

dx

[
(x − 2)

√
1 + 1

x
− x + 3

2

]
F (Q2, Q2) ,

with x = Q2/(4m2). A similar formula can be derived
using a Mellin-Barnes representation [? ],

A(0) ≈ −5
4 + 3

2

∫ ∞

0
dx ln(4x) d

dx
F (Q2, Q2), (30)

which is however only valid to leading order in an expan-
sion in the electron mass. With t = 0 the transition form
factor in both cases is evaluated in the symmetric limit
of equal photon momenta, and due to Q2 = 4m2x it is
mainly probed at very low Q2 of the order of the elec-
tron mass. Thus it is important to determine the TFF
at small arguments precisely. We have taken great care
that the numerical error of our calculation in this region
is below the one percent level and obtain the following
value for the constant A(0):

A(0) = −21.94(17) . (31)

It corresponds to a branching ratio of

B(π → e+e−) = 6.21531 × 10−8 (32)

and a decay rate of Γ(π → e+e−) = 4.90721×10−16 GeV.
Our result is compared to other approaches in Ta-

ble III. Whereas our calculation represents a top-down
approach using a well-tested model for the underly-
ing quark-gluon interaction, Refs. [10, 23] uses a phe-
nomenological parametrization of the transition form fac-
tor (TFF) that is adapted to reproduce experimental

TABLE III. Result for the rare decay
Collaboration B(π → e+e−) × 10−8

experiment [9, 24, 25] 6.87 ± 0.36
Dorokhov(2008) [10, 23] 6.23 ± 0.09

Masjuan(2015)[26] 6.23 ± 0.05
our result 6.22 ± 0.53
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FIG. 12. Overlapping branch cuts in the integrand of A(t),
i.e., the complex σ plane, for t = (−1 + i) m2

π/4 and m = 40
MeV. The cut σl (solid, red) is generated by the lepton pole
and the cut σγ (dashed, blue) by the photon poles; the latter
opens at σ = t but the former does not. The dotted line
shows a possible integration path avoiding all singularities.
The units are in GeV2.

data from CLEO together with additional high-energy
QCD constraints. The more recent Ref. [26] uses data-
driven approach via Pade Theory and Canterbury ap-
proximants. All three theoretical results are in agree-
ment with each other thus showing consistency over dif-
ferent approaches. Again, it appears that the decay rate
is not overly sensitive to different representations of the
form factor as long as the QCD constraints are satisfied
(as guaranteed in all three approaches). However, we
also like to point out that all three calculations use dis-
persion relations and the Mellin-Barnes representation.
Thus the only number that influences the final result is
the constant A0. Although a priori one would deem the
dispersive approach reliable it still remains to be checked
vis a more direct approach.

B. Direct calculation of A(t)

The integrand in Eq. (27) has poles for vanishing de-
nominators, i.e., if either of the photons or the interme-
diate lepton go onshell. Depending on the value of t,
this may prohibit a straightforward Euclidean integra-
tion. Specifically, for t ∈ C one can draw a kinematically
safe region in the complex t plane where such an integra-
tion is possible, and a forbidden region where the poles
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be naively integrated except for t = 0. A standard way
to circumvent the problem uses dispersive methods. In
that case the imaginary part of the amplitude along its
cut at t < 0 is given by

Im ALO(t) = π ln γ(t)
2β(t) F (0, 0) , (28)

with γ(t) = (1 − β(t))/(1 + β(t)), which follows from
cutting the two photon lines. The imaginary part gives
the well-known unitary bound for the branching ratio
through the inequality |A(t0)|2 ≥ |ImA(t0)|2:

R ≥
(

mαem
mπ

)2 ln2 γ(t0)
2β(t0) = 4.75 × 10−8.

Using a once-subtracted dispersion relation one then ob-
tains the real part of the amplitude via

Re A(t) = A(0) +
ln2 γ(t) + 1

3 π2 + 4 Li2(−γ(t))
4β(t) , (29)

where Li2(z) is the dilogarithm or Spence function. In
particular, this implies Re A(t0) = A(0)+31.9204 so that
the only unknown left is the constant A(0).

In fact, t = 0 is the only point where Eq. (27) can be
integrated directly to yield

A(0) = 4
3

∞∫

0

dx

[
(x − 2)

√
1 + 1

x
− x + 3

2

]
F (Q2, Q2) ,

with x = Q2/(4m2). A similar formula can be derived
using a Mellin-Barnes representation [? ],

A(0) ≈ −5
4 + 3

2

∫ ∞

0
dx ln(4x) d

dx
F (Q2, Q2), (30)

which is however only valid to leading order in an expan-
sion in the electron mass. With t = 0 the transition form
factor in both cases is evaluated in the symmetric limit
of equal photon momenta, and due to Q2 = 4m2x it is
mainly probed at very low Q2 of the order of the elec-
tron mass. Thus it is important to determine the TFF
at small arguments precisely. We have taken great care
that the numerical error of our calculation in this region
is below the one percent level and obtain the following
value for the constant A(0):

A(0) = −21.94(17) . (31)

It corresponds to a branching ratio of

B(π → e+e−) = 6.21531 × 10−8 (32)

and a decay rate of Γ(π → e+e−) = 4.90721×10−16 GeV.
Our result is compared to other approaches in Ta-

ble III. Whereas our calculation represents a top-down
approach using a well-tested model for the underly-
ing quark-gluon interaction, Refs. [10, 23] uses a phe-
nomenological parametrization of the transition form fac-
tor (TFF) that is adapted to reproduce experimental

TABLE III. Result for the rare decay
Collaboration B(π → e+e−) × 10−8

experiment [9, 24, 25] 6.87 ± 0.36
Dorokhov(2008) [10, 23] 6.23 ± 0.09

Masjuan(2015)[26] 6.23 ± 0.05
our result 6.22 ± 0.53
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FIG. 12. Overlapping branch cuts in the integrand of A(t),
i.e., the complex σ plane, for t = (−1 + i) m2

π/4 and m = 40
MeV. The cut σl (solid, red) is generated by the lepton pole
and the cut σγ (dashed, blue) by the photon poles; the latter
opens at σ = t but the former does not. The dotted line
shows a possible integration path avoiding all singularities.
The units are in GeV2.

data from CLEO together with additional high-energy
QCD constraints. The more recent Ref. [26] uses data-
driven approach via Pade Theory and Canterbury ap-
proximants. All three theoretical results are in agree-
ment with each other thus showing consistency over dif-
ferent approaches. Again, it appears that the decay rate
is not overly sensitive to different representations of the
form factor as long as the QCD constraints are satisfied
(as guaranteed in all three approaches). However, we
also like to point out that all three calculations use dis-
persion relations and the Mellin-Barnes representation.
Thus the only number that influences the final result is
the constant A0. Although a priori one would deem the
dispersive approach reliable it still remains to be checked
vis a more direct approach.

B. Direct calculation of A(t)

The integrand in Eq. (27) has poles for vanishing de-
nominators, i.e., if either of the photons or the interme-
diate lepton go onshell. Depending on the value of t,
this may prohibit a straightforward Euclidean integra-
tion. Specifically, for t ∈ C one can draw a kinematically
safe region in the complex t plane where such an integra-
tion is possible, and a forbidden region where the poles

4/2= ∆t

4/π
2m−=0t

i10 + 17 22−
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TABLE II. Result for the two dilepton decays: preliminary
results

Collaboration Γπ→2e+2e− · 10−13GeV
PDG [20] (2.58 ± 0.12)

Terschlusen(2013)[21] 2.68
Escribano(2015) [22] 2.62

our result 2.59

more the quantity α is an abbreviation of

α = 1
2|p1||p2||p3| sin θ2 sin θ3

{(Mπ − E1 − E2 − E3)2−

m2
e − |p2

1| − |p2|2 − |p3|2 − 2|q1||q2| cos θ2

− 2|q1||q3| cos θ3 − 2|q2||q3| cos θ2 cos θ3} (21)

and the combination of heavy-side functions indicated by
Θm is given as

Θm(q, k) = Θ(−q2 − 4m2
e)Θ(−k2 − 4m2

e)

× Θ(Mπ −
√

−q2 −
√

−k2). (22)

These impose constraints on the photon momenta. The
border of integration are from [−1, 1] for the angular in-
tegration and [0,

√
Mπ − m2

e] for |pi| using the equality
E2

i = |pi| + m2
e for i ∈ {1, 2, 3}.

For the direct and indirect contributions Eqs. (19),(20)
to the decay rate of the π0 we obtain

Γ(left)
π→2e+2e− = 2.59 × 10−13GeV. (23)

Γ(right)
π→2e+2e− = 0 × 10−13GeV ??. (24)

We give our results in Tab. II together with the value
from PDG and two other approaches. In Ref. [21] the
same effective theory has been used as for the Dalitz de-
cay, whereas in Ref. [22] a data driven approach is pre-
sented based on the use of rational approximates applied
to the π0, η and η′ transition form factor experimental
data in the space-like region. All results are in agree-
ment within 2% with each other and the experimental
value. Again, the impact of the details of the TFF on
the decay rates is rather small. The phase space inte-
gration restricts the momenta of the virtual photons to
[−2m2

e, −M2
π ]; in this area the TFF is determined by the

anomaly and mainly a constant value close to 1.

IV. RARE DECAY: π0 → e+e−

Finally we consider the two-body decay of the neu-
tral pion into one electron-positron pair. For the π0 this
is certainly the most interesting decay due to a discrep-
ancy between the KTeV experimental result and theoret-
ical calculations [9, 10, 23–26] of the order of 2σ. Using
the elaborate reanalysis of radiative corrections [24, 25]
to the experimental result of the KTeV collaboration [9]
(close to the value given in PDG [20]) one arrives at an

extracted experimental value for the branching ratio of
BR (π0 → e+e−) = (6.87 ± 0.36) × 10−8, which is con-
siderably smaller than the decays considered above.
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γ(k − P )
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γ

Fπ0γγFπ0γγ
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e−(p)
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γ(Q′)

π0(∆)

e+(pf )

e−(pi)

FIG. 11. Feynman diagram for π → e+e−

To lowest order in QED the process is described by
the one-loop graph in Fig. 11, which again includes the
transition form factor F (Q2, Q′2) as the only nonpertur-
bative input. The corresponding normalized branching
ratio is given by

R = B(π → e+e−)
B(π → γγ) = 2

(
m αem
πmπ

)2
β(t0) |A(t0)|2 , (25)

where β(t) =
√

1 + m2/t stems from the two body phase
space integration, t0 = −m2

π/4, and B(π → γγ) = 0.988.
The scalar amplitude A(t) can be viewed as the pseu-
doscalar form factor of the electron stemming from the
two-photon coupling, which must be evaluated at the on-
shell pion point t = t0.

A. A(t) with dispersive input

For arbitrary t the amplitude A(t) can be defined from
the matrix element for the π0 → e+e− decay:

∫
d4Σ

(2π)4 Λ(pf ) γµ S(p + Σ) γν Λ(pi)
Λµν(Q, Q′)

Q2 Q′2

= A(t)
(4π)2

2im αem
πfπ

Λ(pf ) γ5 Λ(pi) ,

(26)

where Λµν(Q, Q′) is the π → γγ transition current from
Eq. (1). The kinematics are as discussed in Sec. II A; in
particular, the averaged photon momentum Σ becomes
the loop momentum whereas the photon virtualities Q2

and Q′2 are tested at complex values close to the sym-
metric limit as shown in Fig. 3. The pion, the electron
and the positron are onshell with momenta ∆2 = −M2

π

and p2
i = p2

f = −m2.
Taking traces yields the following expression for A(t):

A(t) = 1
2π2t

∫
d4Σ (Σ · ∆)2 − Σ2∆2

(p + Σ)2 + m2
F (Q2, Q′2)

Q2 Q′2 . (27)

This integral has poles in the integration domain (which
we discuss in more detail in Sec. IV B) and thus cannot
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be naively integrated except for t = 0. A standard way
to circumvent the problem uses dispersive methods. In
that case the imaginary part of the amplitude along its
cut at t < 0 is given by

Im ALO(t) = π ln γ(t)
2β(t) F (0, 0) , (28)

with γ(t) = (1 − β(t))/(1 + β(t)), which follows from
cutting the two photon lines. The imaginary part gives
the well-known unitary bound for the branching ratio
through the inequality |A(t0)|2 ≥ |ImA(t0)|2:

R ≥
(

mαem
mπ

)2 ln2 γ(t0)
2β(t0) = 4.75 × 10−8.

Using a once-subtracted dispersion relation one then ob-
tains the real part of the amplitude via

Re A(t) = A(0) +
ln2 γ(t) + 1

3 π2 + 4 Li2(−γ(t))
4β(t) , (29)

where Li2(z) is the dilogarithm or Spence function. In
particular, this implies Re A(t0) = A(0)+31.9204 so that
the only unknown left is the constant A(0).

In fact, t = 0 is the only point where Eq. (27) can be
integrated directly to yield

A(0) = 4
3

∞∫

0

dx

[
(x − 2)

√
1 + 1

x
− x + 3

2

]
F (Q2, Q2) ,

with x = Q2/(4m2). A similar formula can be derived
using a Mellin-Barnes representation [? ],

A(0) ≈ −5
4 + 3

2

∫ ∞

0
dx ln(4x) d

dx
F (Q2, Q2), (30)

which is however only valid to leading order in an expan-
sion in the electron mass. With t = 0 the transition form
factor in both cases is evaluated in the symmetric limit
of equal photon momenta, and due to Q2 = 4m2x it is
mainly probed at very low Q2 of the order of the elec-
tron mass. Thus it is important to determine the TFF
at small arguments precisely. We have taken great care
that the numerical error of our calculation in this region
is below the one percent level and obtain the following
value for the constant A(0):

A(0) = −21.94(17) . (31)

It corresponds to a branching ratio of

B(π → e+e−) = 6.21531 × 10−8 (32)

and a decay rate of Γ(π → e+e−) = 4.90721×10−16 GeV.
Our result is compared to other approaches in Ta-

ble III. Whereas our calculation represents a top-down
approach using a well-tested model for the underly-
ing quark-gluon interaction, Refs. [10, 23] uses a phe-
nomenological parametrization of the transition form fac-
tor (TFF) that is adapted to reproduce experimental

TABLE III. Result for the rare decay
Collaboration B(π → e+e−) × 10−8

experiment [9, 24, 25] 6.87 ± 0.36
Dorokhov(2008) [10, 23] 6.23 ± 0.09

Masjuan(2015)[26] 6.23 ± 0.05
our result 6.22 ± 0.53
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FIG. 12. Overlapping branch cuts in the integrand of A(t),
i.e., the complex σ plane, for t = (−1 + i) m2

π/4 and m = 40
MeV. The cut σl (solid, red) is generated by the lepton pole
and the cut σγ (dashed, blue) by the photon poles; the latter
opens at σ = t but the former does not. The dotted line
shows a possible integration path avoiding all singularities.
The units are in GeV2.

data from CLEO together with additional high-energy
QCD constraints. The more recent Ref. [26] uses data-
driven approach via Pade Theory and Canterbury ap-
proximants. All three theoretical results are in agree-
ment with each other thus showing consistency over dif-
ferent approaches. Again, it appears that the decay rate
is not overly sensitive to different representations of the
form factor as long as the QCD constraints are satisfied
(as guaranteed in all three approaches). However, we
also like to point out that all three calculations use dis-
persion relations and the Mellin-Barnes representation.
Thus the only number that influences the final result is
the constant A0. Although a priori one would deem the
dispersive approach reliable it still remains to be checked
vis a more direct approach.

B. Direct calculation of A(t)

The integrand in Eq. (27) has poles for vanishing de-
nominators, i.e., if either of the photons or the interme-
diate lepton go onshell. Depending on the value of t,
this may prohibit a straightforward Euclidean integra-
tion. Specifically, for t ∈ C one can draw a kinematically
safe region in the complex t plane where such an integra-
tion is possible, and a forbidden region where the poles

𝑡

Re 𝜎

Im 𝜎

0.010.00-0.01
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∞< σ <0

Gernot Eichmann (IST Lisboa) Aug 30, 2017 27 / 30



Rare pion decay 𝜋⁰ → 𝑒⁺𝑒⁻ 

Photon and lepton poles produce 
branch cuts in complex 𝛴� = 𝜎 plane: 

‘Euclidean integration’: 

not possible: circular photon cut

∆

2
∆= Σ +Q

p + Σ

2
∆−p

2
∆+p

2
∆−= Σ′Q

8

TABLE II. Result for the two dilepton decays: preliminary
results

Collaboration Γπ→2e+2e− · 10−13GeV
PDG [20] (2.58 ± 0.12)

Terschlusen(2013)[21] 2.68
Escribano(2015) [22] 2.62

our result 2.59

more the quantity α is an abbreviation of

α = 1
2|p1||p2||p3| sin θ2 sin θ3

{(Mπ − E1 − E2 − E3)2−

m2
e − |p2

1| − |p2|2 − |p3|2 − 2|q1||q2| cos θ2

− 2|q1||q3| cos θ3 − 2|q2||q3| cos θ2 cos θ3} (21)

and the combination of heavy-side functions indicated by
Θm is given as

Θm(q, k) = Θ(−q2 − 4m2
e)Θ(−k2 − 4m2

e)

× Θ(Mπ −
√

−q2 −
√

−k2). (22)

These impose constraints on the photon momenta. The
border of integration are from [−1, 1] for the angular in-
tegration and [0,

√
Mπ − m2

e] for |pi| using the equality
E2

i = |pi| + m2
e for i ∈ {1, 2, 3}.

For the direct and indirect contributions Eqs. (19),(20)
to the decay rate of the π0 we obtain

Γ(left)
π→2e+2e− = 2.59 × 10−13GeV. (23)

Γ(right)
π→2e+2e− = 0 × 10−13GeV ??. (24)

We give our results in Tab. II together with the value
from PDG and two other approaches. In Ref. [21] the
same effective theory has been used as for the Dalitz de-
cay, whereas in Ref. [22] a data driven approach is pre-
sented based on the use of rational approximates applied
to the π0, η and η′ transition form factor experimental
data in the space-like region. All results are in agree-
ment within 2% with each other and the experimental
value. Again, the impact of the details of the TFF on
the decay rates is rather small. The phase space inte-
gration restricts the momenta of the virtual photons to
[−2m2

e, −M2
π ]; in this area the TFF is determined by the

anomaly and mainly a constant value close to 1.

IV. RARE DECAY: π0 → e+e−

Finally we consider the two-body decay of the neu-
tral pion into one electron-positron pair. For the π0 this
is certainly the most interesting decay due to a discrep-
ancy between the KTeV experimental result and theoret-
ical calculations [9, 10, 23–26] of the order of 2σ. Using
the elaborate reanalysis of radiative corrections [24, 25]
to the experimental result of the KTeV collaboration [9]
(close to the value given in PDG [20]) one arrives at an

extracted experimental value for the branching ratio of
BR (π0 → e+e−) = (6.87 ± 0.36) × 10−8, which is con-
siderably smaller than the decays considered above.
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FIG. 11. Feynman diagram for π → e+e−

To lowest order in QED the process is described by
the one-loop graph in Fig. 11, which again includes the
transition form factor F (Q2, Q′2) as the only nonpertur-
bative input. The corresponding normalized branching
ratio is given by

R = B(π → e+e−)
B(π → γγ) = 2

(
m αem
πmπ

)2
β(t0) |A(t0)|2 , (25)

where β(t) =
√

1 + m2/t stems from the two body phase
space integration, t0 = −m2

π/4, and B(π → γγ) = 0.988.
The scalar amplitude A(t) can be viewed as the pseu-
doscalar form factor of the electron stemming from the
two-photon coupling, which must be evaluated at the on-
shell pion point t = t0.

A. A(t) with dispersive input

For arbitrary t the amplitude A(t) can be defined from
the matrix element for the π0 → e+e− decay:

∫
d4Σ

(2π)4 Λ(pf ) γµ S(p + Σ) γν Λ(pi)
Λµν(Q, Q′)

Q2 Q′2

= A(t)
(4π)2

2im αem
πfπ

Λ(pf ) γ5 Λ(pi) ,

(26)

where Λµν(Q, Q′) is the π → γγ transition current from
Eq. (1). The kinematics are as discussed in Sec. II A; in
particular, the averaged photon momentum Σ becomes
the loop momentum whereas the photon virtualities Q2

and Q′2 are tested at complex values close to the sym-
metric limit as shown in Fig. 3. The pion, the electron
and the positron are onshell with momenta ∆2 = −M2

π

and p2
i = p2

f = −m2.
Taking traces yields the following expression for A(t):

A(t) = 1
2π2t

∫
d4Σ (Σ · ∆)2 − Σ2∆2

(p + Σ)2 + m2
F (Q2, Q′2)

Q2 Q′2 . (27)

This integral has poles in the integration domain (which
we discuss in more detail in Sec. IV B) and thus cannot
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be naively integrated except for t = 0. A standard way
to circumvent the problem uses dispersive methods. In
that case the imaginary part of the amplitude along its
cut at t < 0 is given by

Im ALO(t) = π ln γ(t)
2β(t) F (0, 0) , (28)

with γ(t) = (1 − β(t))/(1 + β(t)), which follows from
cutting the two photon lines. The imaginary part gives
the well-known unitary bound for the branching ratio
through the inequality |A(t0)|2 ≥ |ImA(t0)|2:

R ≥
(

mαem
mπ

)2 ln2 γ(t0)
2β(t0) = 4.75 × 10−8.

Using a once-subtracted dispersion relation one then ob-
tains the real part of the amplitude via

Re A(t) = A(0) +
ln2 γ(t) + 1

3 π2 + 4 Li2(−γ(t))
4β(t) , (29)

where Li2(z) is the dilogarithm or Spence function. In
particular, this implies Re A(t0) = A(0)+31.9204 so that
the only unknown left is the constant A(0).

In fact, t = 0 is the only point where Eq. (27) can be
integrated directly to yield

A(0) = 4
3

∞∫

0

dx

[
(x − 2)

√
1 + 1

x
− x + 3

2

]
F (Q2, Q2) ,

with x = Q2/(4m2). A similar formula can be derived
using a Mellin-Barnes representation [? ],

A(0) ≈ −5
4 + 3

2

∫ ∞

0
dx ln(4x) d

dx
F (Q2, Q2), (30)

which is however only valid to leading order in an expan-
sion in the electron mass. With t = 0 the transition form
factor in both cases is evaluated in the symmetric limit
of equal photon momenta, and due to Q2 = 4m2x it is
mainly probed at very low Q2 of the order of the elec-
tron mass. Thus it is important to determine the TFF
at small arguments precisely. We have taken great care
that the numerical error of our calculation in this region
is below the one percent level and obtain the following
value for the constant A(0):

A(0) = −21.94(17) . (31)

It corresponds to a branching ratio of

B(π → e+e−) = 6.21531 × 10−8 (32)

and a decay rate of Γ(π → e+e−) = 4.90721×10−16 GeV.
Our result is compared to other approaches in Ta-

ble III. Whereas our calculation represents a top-down
approach using a well-tested model for the underly-
ing quark-gluon interaction, Refs. [10, 23] uses a phe-
nomenological parametrization of the transition form fac-
tor (TFF) that is adapted to reproduce experimental

TABLE III. Result for the rare decay
Collaboration B(π → e+e−) × 10−8

experiment [9, 24, 25] 6.87 ± 0.36
Dorokhov(2008) [10, 23] 6.23 ± 0.09

Masjuan(2015)[26] 6.23 ± 0.05
our result 6.22 ± 0.53
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i.e., the complex σ plane, for t = (−1 + i) m2

π/4 and m = 40
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shows a possible integration path avoiding all singularities.
The units are in GeV2.

data from CLEO together with additional high-energy
QCD constraints. The more recent Ref. [26] uses data-
driven approach via Pade Theory and Canterbury ap-
proximants. All three theoretical results are in agree-
ment with each other thus showing consistency over dif-
ferent approaches. Again, it appears that the decay rate
is not overly sensitive to different representations of the
form factor as long as the QCD constraints are satisfied
(as guaranteed in all three approaches). However, we
also like to point out that all three calculations use dis-
persion relations and the Mellin-Barnes representation.
Thus the only number that influences the final result is
the constant A0. Although a priori one would deem the
dispersive approach reliable it still remains to be checked
vis a more direct approach.

B. Direct calculation of A(t)

The integrand in Eq. (27) has poles for vanishing de-
nominators, i.e., if either of the photons or the interme-
diate lepton go onshell. Depending on the value of t,
this may prohibit a straightforward Euclidean integra-
tion. Specifically, for t ∈ C one can draw a kinematically
safe region in the complex t plane where such an integra-
tion is possible, and a forbidden region where the poles
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TABLE II. Result for the two dilepton decays: preliminary
results

Collaboration Γπ→2e+2e− · 10−13GeV
PDG [20] (2.58 ± 0.12)

Terschlusen(2013)[21] 2.68
Escribano(2015) [22] 2.62

our result 2.59

more the quantity α is an abbreviation of

α = 1
2|p1||p2||p3| sin θ2 sin θ3

{(Mπ − E1 − E2 − E3)2−

m2
e − |p2

1| − |p2|2 − |p3|2 − 2|q1||q2| cos θ2

− 2|q1||q3| cos θ3 − 2|q2||q3| cos θ2 cos θ3} (21)

and the combination of heavy-side functions indicated by
Θm is given as

Θm(q, k) = Θ(−q2 − 4m2
e)Θ(−k2 − 4m2

e)

× Θ(Mπ −
√

−q2 −
√

−k2). (22)

These impose constraints on the photon momenta. The
border of integration are from [−1, 1] for the angular in-
tegration and [0,

√
Mπ − m2

e] for |pi| using the equality
E2

i = |pi| + m2
e for i ∈ {1, 2, 3}.

For the direct and indirect contributions Eqs. (19),(20)
to the decay rate of the π0 we obtain

Γ(left)
π→2e+2e− = 2.59 × 10−13GeV. (23)

Γ(right)
π→2e+2e− = 0 × 10−13GeV ??. (24)

We give our results in Tab. II together with the value
from PDG and two other approaches. In Ref. [21] the
same effective theory has been used as for the Dalitz de-
cay, whereas in Ref. [22] a data driven approach is pre-
sented based on the use of rational approximates applied
to the π0, η and η′ transition form factor experimental
data in the space-like region. All results are in agree-
ment within 2% with each other and the experimental
value. Again, the impact of the details of the TFF on
the decay rates is rather small. The phase space inte-
gration restricts the momenta of the virtual photons to
[−2m2

e, −M2
π ]; in this area the TFF is determined by the

anomaly and mainly a constant value close to 1.

IV. RARE DECAY: π0 → e+e−

Finally we consider the two-body decay of the neu-
tral pion into one electron-positron pair. For the π0 this
is certainly the most interesting decay due to a discrep-
ancy between the KTeV experimental result and theoret-
ical calculations [9, 10, 23–26] of the order of 2σ. Using
the elaborate reanalysis of radiative corrections [24, 25]
to the experimental result of the KTeV collaboration [9]
(close to the value given in PDG [20]) one arrives at an

extracted experimental value for the branching ratio of
BR (π0 → e+e−) = (6.87 ± 0.36) × 10−8, which is con-
siderably smaller than the decays considered above.
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FIG. 11. Feynman diagram for π → e+e−

To lowest order in QED the process is described by
the one-loop graph in Fig. 11, which again includes the
transition form factor F (Q2, Q′2) as the only nonpertur-
bative input. The corresponding normalized branching
ratio is given by

R = B(π → e+e−)
B(π → γγ) = 2

(
m αem
πmπ

)2
β(t0) |A(t0)|2 , (25)

where β(t) =
√

1 + m2/t stems from the two body phase
space integration, t0 = −m2

π/4, and B(π → γγ) = 0.988.
The scalar amplitude A(t) can be viewed as the pseu-
doscalar form factor of the electron stemming from the
two-photon coupling, which must be evaluated at the on-
shell pion point t = t0.

A. A(t) with dispersive input

For arbitrary t the amplitude A(t) can be defined from
the matrix element for the π0 → e+e− decay:

∫
d4Σ

(2π)4 Λ(pf ) γµ S(p + Σ) γν Λ(pi)
Λµν(Q, Q′)

Q2 Q′2

= A(t)
(4π)2

2im αem
πfπ

Λ(pf ) γ5 Λ(pi) ,

(26)

where Λµν(Q, Q′) is the π → γγ transition current from
Eq. (1). The kinematics are as discussed in Sec. II A; in
particular, the averaged photon momentum Σ becomes
the loop momentum whereas the photon virtualities Q2

and Q′2 are tested at complex values close to the sym-
metric limit as shown in Fig. 3. The pion, the electron
and the positron are onshell with momenta ∆2 = −M2

π

and p2
i = p2

f = −m2.
Taking traces yields the following expression for A(t):

A(t) = 1
2π2t

∫
d4Σ (Σ · ∆)2 − Σ2∆2

(p + Σ)2 + m2
F (Q2, Q′2)

Q2 Q′2 . (27)

This integral has poles in the integration domain (which
we discuss in more detail in Sec. IV B) and thus cannot

9

be naively integrated except for t = 0. A standard way
to circumvent the problem uses dispersive methods. In
that case the imaginary part of the amplitude along its
cut at t < 0 is given by

Im ALO(t) = π ln γ(t)
2β(t) F (0, 0) , (28)

with γ(t) = (1 − β(t))/(1 + β(t)), which follows from
cutting the two photon lines. The imaginary part gives
the well-known unitary bound for the branching ratio
through the inequality |A(t0)|2 ≥ |ImA(t0)|2:

R ≥
(

mαem
mπ

)2 ln2 γ(t0)
2β(t0) = 4.75 × 10−8.

Using a once-subtracted dispersion relation one then ob-
tains the real part of the amplitude via

Re A(t) = A(0) +
ln2 γ(t) + 1

3 π2 + 4 Li2(−γ(t))
4β(t) , (29)

where Li2(z) is the dilogarithm or Spence function. In
particular, this implies Re A(t0) = A(0)+31.9204 so that
the only unknown left is the constant A(0).

In fact, t = 0 is the only point where Eq. (27) can be
integrated directly to yield

A(0) = 4
3

∞∫

0

dx

[
(x − 2)

√
1 + 1

x
− x + 3

2

]
F (Q2, Q2) ,

with x = Q2/(4m2). A similar formula can be derived
using a Mellin-Barnes representation [? ],

A(0) ≈ −5
4 + 3

2

∫ ∞

0
dx ln(4x) d

dx
F (Q2, Q2), (30)

which is however only valid to leading order in an expan-
sion in the electron mass. With t = 0 the transition form
factor in both cases is evaluated in the symmetric limit
of equal photon momenta, and due to Q2 = 4m2x it is
mainly probed at very low Q2 of the order of the elec-
tron mass. Thus it is important to determine the TFF
at small arguments precisely. We have taken great care
that the numerical error of our calculation in this region
is below the one percent level and obtain the following
value for the constant A(0):

A(0) = −21.94(17) . (31)

It corresponds to a branching ratio of

B(π → e+e−) = 6.21531 × 10−8 (32)

and a decay rate of Γ(π → e+e−) = 4.90721×10−16 GeV.
Our result is compared to other approaches in Ta-

ble III. Whereas our calculation represents a top-down
approach using a well-tested model for the underly-
ing quark-gluon interaction, Refs. [10, 23] uses a phe-
nomenological parametrization of the transition form fac-
tor (TFF) that is adapted to reproduce experimental

TABLE III. Result for the rare decay
Collaboration B(π → e+e−) × 10−8

experiment [9, 24, 25] 6.87 ± 0.36
Dorokhov(2008) [10, 23] 6.23 ± 0.09

Masjuan(2015)[26] 6.23 ± 0.05
our result 6.22 ± 0.53
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FIG. 12. Overlapping branch cuts in the integrand of A(t),
i.e., the complex σ plane, for t = (−1 + i) m2

π/4 and m = 40
MeV. The cut σl (solid, red) is generated by the lepton pole
and the cut σγ (dashed, blue) by the photon poles; the latter
opens at σ = t but the former does not. The dotted line
shows a possible integration path avoiding all singularities.
The units are in GeV2.

data from CLEO together with additional high-energy
QCD constraints. The more recent Ref. [26] uses data-
driven approach via Pade Theory and Canterbury ap-
proximants. All three theoretical results are in agree-
ment with each other thus showing consistency over dif-
ferent approaches. Again, it appears that the decay rate
is not overly sensitive to different representations of the
form factor as long as the QCD constraints are satisfied
(as guaranteed in all three approaches). However, we
also like to point out that all three calculations use dis-
persion relations and the Mellin-Barnes representation.
Thus the only number that influences the final result is
the constant A0. Although a priori one would deem the
dispersive approach reliable it still remains to be checked
vis a more direct approach.

B. Direct calculation of A(t)

The integrand in Eq. (27) has poles for vanishing de-
nominators, i.e., if either of the photons or the interme-
diate lepton go onshell. Depending on the value of t,
this may prohibit a straightforward Euclidean integra-
tion. Specifically, for t ∈ C one can draw a kinematically
safe region in the complex t plane where such an integra-
tion is possible, and a forbidden region where the poles
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TABLE II. Result for the two dilepton decays: preliminary
results

Collaboration Γπ→2e+2e− · 10−13GeV
PDG [20] (2.58 ± 0.12)

Terschlusen(2013)[21] 2.68
Escribano(2015) [22] 2.62

our result 2.59

more the quantity α is an abbreviation of

α = 1
2|p1||p2||p3| sin θ2 sin θ3

{(Mπ − E1 − E2 − E3)2−

m2
e − |p2

1| − |p2|2 − |p3|2 − 2|q1||q2| cos θ2

− 2|q1||q3| cos θ3 − 2|q2||q3| cos θ2 cos θ3} (21)

and the combination of heavy-side functions indicated by
Θm is given as

Θm(q, k) = Θ(−q2 − 4m2
e)Θ(−k2 − 4m2

e)

× Θ(Mπ −
√

−q2 −
√

−k2). (22)

These impose constraints on the photon momenta. The
border of integration are from [−1, 1] for the angular in-
tegration and [0,

√
Mπ − m2

e] for |pi| using the equality
E2

i = |pi| + m2
e for i ∈ {1, 2, 3}.

For the direct and indirect contributions Eqs. (19),(20)
to the decay rate of the π0 we obtain

Γ(left)
π→2e+2e− = 2.59 × 10−13GeV. (23)

Γ(right)
π→2e+2e− = 0 × 10−13GeV ??. (24)

We give our results in Tab. II together with the value
from PDG and two other approaches. In Ref. [21] the
same effective theory has been used as for the Dalitz de-
cay, whereas in Ref. [22] a data driven approach is pre-
sented based on the use of rational approximates applied
to the π0, η and η′ transition form factor experimental
data in the space-like region. All results are in agree-
ment within 2% with each other and the experimental
value. Again, the impact of the details of the TFF on
the decay rates is rather small. The phase space inte-
gration restricts the momenta of the virtual photons to
[−2m2

e, −M2
π ]; in this area the TFF is determined by the

anomaly and mainly a constant value close to 1.

IV. RARE DECAY: π0 → e+e−

Finally we consider the two-body decay of the neu-
tral pion into one electron-positron pair. For the π0 this
is certainly the most interesting decay due to a discrep-
ancy between the KTeV experimental result and theoret-
ical calculations [9, 10, 23–26] of the order of 2σ. Using
the elaborate reanalysis of radiative corrections [24, 25]
to the experimental result of the KTeV collaboration [9]
(close to the value given in PDG [20]) one arrives at an

extracted experimental value for the branching ratio of
BR (π0 → e+e−) = (6.87 ± 0.36) × 10−8, which is con-
siderably smaller than the decays considered above.
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FIG. 11. Feynman diagram for π → e+e−

To lowest order in QED the process is described by
the one-loop graph in Fig. 11, which again includes the
transition form factor F (Q2, Q′2) as the only nonpertur-
bative input. The corresponding normalized branching
ratio is given by

R = B(π → e+e−)
B(π → γγ) = 2

(
m αem
πmπ

)2
β(t0) |A(t0)|2 , (25)

where β(t) =
√

1 + m2/t stems from the two body phase
space integration, t0 = −m2

π/4, and B(π → γγ) = 0.988.
The scalar amplitude A(t) can be viewed as the pseu-
doscalar form factor of the electron stemming from the
two-photon coupling, which must be evaluated at the on-
shell pion point t = t0.

A. A(t) with dispersive input

For arbitrary t the amplitude A(t) can be defined from
the matrix element for the π0 → e+e− decay:

∫
d4Σ

(2π)4 Λ(pf ) γµ S(p + Σ) γν Λ(pi)
Λµν(Q, Q′)

Q2 Q′2

= A(t)
(4π)2

2im αem
πfπ

Λ(pf ) γ5 Λ(pi) ,

(26)

where Λµν(Q, Q′) is the π → γγ transition current from
Eq. (1). The kinematics are as discussed in Sec. II A; in
particular, the averaged photon momentum Σ becomes
the loop momentum whereas the photon virtualities Q2

and Q′2 are tested at complex values close to the sym-
metric limit as shown in Fig. 3. The pion, the electron
and the positron are onshell with momenta ∆2 = −M2

π

and p2
i = p2

f = −m2.
Taking traces yields the following expression for A(t):

A(t) = 1
2π2t

∫
d4Σ (Σ · ∆)2 − Σ2∆2

(p + Σ)2 + m2
F (Q2, Q′2)

Q2 Q′2 . (27)

This integral has poles in the integration domain (which
we discuss in more detail in Sec. IV B) and thus cannot

9

be naively integrated except for t = 0. A standard way
to circumvent the problem uses dispersive methods. In
that case the imaginary part of the amplitude along its
cut at t < 0 is given by

Im ALO(t) = π ln γ(t)
2β(t) F (0, 0) , (28)

with γ(t) = (1 − β(t))/(1 + β(t)), which follows from
cutting the two photon lines. The imaginary part gives
the well-known unitary bound for the branching ratio
through the inequality |A(t0)|2 ≥ |ImA(t0)|2:

R ≥
(

mαem
mπ

)2 ln2 γ(t0)
2β(t0) = 4.75 × 10−8.

Using a once-subtracted dispersion relation one then ob-
tains the real part of the amplitude via

Re A(t) = A(0) +
ln2 γ(t) + 1

3 π2 + 4 Li2(−γ(t))
4β(t) , (29)

where Li2(z) is the dilogarithm or Spence function. In
particular, this implies Re A(t0) = A(0)+31.9204 so that
the only unknown left is the constant A(0).

In fact, t = 0 is the only point where Eq. (27) can be
integrated directly to yield

A(0) = 4
3

∞∫

0

dx

[
(x − 2)

√
1 + 1

x
− x + 3

2

]
F (Q2, Q2) ,

with x = Q2/(4m2). A similar formula can be derived
using a Mellin-Barnes representation [? ],

A(0) ≈ −5
4 + 3

2

∫ ∞

0
dx ln(4x) d

dx
F (Q2, Q2), (30)

which is however only valid to leading order in an expan-
sion in the electron mass. With t = 0 the transition form
factor in both cases is evaluated in the symmetric limit
of equal photon momenta, and due to Q2 = 4m2x it is
mainly probed at very low Q2 of the order of the elec-
tron mass. Thus it is important to determine the TFF
at small arguments precisely. We have taken great care
that the numerical error of our calculation in this region
is below the one percent level and obtain the following
value for the constant A(0):

A(0) = −21.94(17) . (31)

It corresponds to a branching ratio of

B(π → e+e−) = 6.21531 × 10−8 (32)

and a decay rate of Γ(π → e+e−) = 4.90721×10−16 GeV.
Our result is compared to other approaches in Ta-

ble III. Whereas our calculation represents a top-down
approach using a well-tested model for the underly-
ing quark-gluon interaction, Refs. [10, 23] uses a phe-
nomenological parametrization of the transition form fac-
tor (TFF) that is adapted to reproduce experimental

TABLE III. Result for the rare decay
Collaboration B(π → e+e−) × 10−8

experiment [9, 24, 25] 6.87 ± 0.36
Dorokhov(2008) [10, 23] 6.23 ± 0.09

Masjuan(2015)[26] 6.23 ± 0.05
our result 6.22 ± 0.53

Re 

Im 

(1)

(2)
(3)

(4)

0.010.00-0.01

-0.01

 0.00

 0.01

0.02 0.03
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i.e., the complex σ plane, for t = (−1 + i) m2

π/4 and m = 40
MeV. The cut σl (solid, red) is generated by the lepton pole
and the cut σγ (dashed, blue) by the photon poles; the latter
opens at σ = t but the former does not. The dotted line
shows a possible integration path avoiding all singularities.
The units are in GeV2.

data from CLEO together with additional high-energy
QCD constraints. The more recent Ref. [26] uses data-
driven approach via Pade Theory and Canterbury ap-
proximants. All three theoretical results are in agree-
ment with each other thus showing consistency over dif-
ferent approaches. Again, it appears that the decay rate
is not overly sensitive to different representations of the
form factor as long as the QCD constraints are satisfied
(as guaranteed in all three approaches). However, we
also like to point out that all three calculations use dis-
persion relations and the Mellin-Barnes representation.
Thus the only number that influences the final result is
the constant A0. Although a priori one would deem the
dispersive approach reliable it still remains to be checked
vis a more direct approach.

B. Direct calculation of A(t)

The integrand in Eq. (27) has poles for vanishing de-
nominators, i.e., if either of the photons or the interme-
diate lepton go onshell. Depending on the value of t,
this may prohibit a straightforward Euclidean integra-
tion. Specifically, for t ∈ C one can draw a kinematically
safe region in the complex t plane where such an integra-
tion is possible, and a forbidden region where the poles
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TABLE II. Result for the two dilepton decays: preliminary
results

Collaboration Γπ→2e+2e− · 10−13GeV
PDG [20] (2.58 ± 0.12)

Terschlusen(2013)[21] 2.68
Escribano(2015) [22] 2.62

our result 2.59

more the quantity α is an abbreviation of

α = 1
2|p1||p2||p3| sin θ2 sin θ3

{(Mπ − E1 − E2 − E3)2−

m2
e − |p2

1| − |p2|2 − |p3|2 − 2|q1||q2| cos θ2

− 2|q1||q3| cos θ3 − 2|q2||q3| cos θ2 cos θ3} (21)

and the combination of heavy-side functions indicated by
Θm is given as

Θm(q, k) = Θ(−q2 − 4m2
e)Θ(−k2 − 4m2

e)

× Θ(Mπ −
√

−q2 −
√

−k2). (22)

These impose constraints on the photon momenta. The
border of integration are from [−1, 1] for the angular in-
tegration and [0,

√
Mπ − m2

e] for |pi| using the equality
E2

i = |pi| + m2
e for i ∈ {1, 2, 3}.

For the direct and indirect contributions Eqs. (19),(20)
to the decay rate of the π0 we obtain

Γ(left)
π→2e+2e− = 2.59 × 10−13GeV. (23)

Γ(right)
π→2e+2e− = 0 × 10−13GeV ??. (24)

We give our results in Tab. II together with the value
from PDG and two other approaches. In Ref. [21] the
same effective theory has been used as for the Dalitz de-
cay, whereas in Ref. [22] a data driven approach is pre-
sented based on the use of rational approximates applied
to the π0, η and η′ transition form factor experimental
data in the space-like region. All results are in agree-
ment within 2% with each other and the experimental
value. Again, the impact of the details of the TFF on
the decay rates is rather small. The phase space inte-
gration restricts the momenta of the virtual photons to
[−2m2

e, −M2
π ]; in this area the TFF is determined by the

anomaly and mainly a constant value close to 1.

IV. RARE DECAY: π0 → e+e−

Finally we consider the two-body decay of the neu-
tral pion into one electron-positron pair. For the π0 this
is certainly the most interesting decay due to a discrep-
ancy between the KTeV experimental result and theoret-
ical calculations [9, 10, 23–26] of the order of 2σ. Using
the elaborate reanalysis of radiative corrections [24, 25]
to the experimental result of the KTeV collaboration [9]
(close to the value given in PDG [20]) one arrives at an

extracted experimental value for the branching ratio of
BR (π0 → e+e−) = (6.87 ± 0.36) × 10−8, which is con-
siderably smaller than the decays considered above.
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FIG. 11. Feynman diagram for π → e+e−

To lowest order in QED the process is described by
the one-loop graph in Fig. 11, which again includes the
transition form factor F (Q2, Q′2) as the only nonpertur-
bative input. The corresponding normalized branching
ratio is given by

R = B(π → e+e−)
B(π → γγ) = 2

(
m αem
πmπ

)2
β(t0) |A(t0)|2 , (25)

where β(t) =
√

1 + m2/t stems from the two body phase
space integration, t0 = −m2

π/4, and B(π → γγ) = 0.988.
The scalar amplitude A(t) can be viewed as the pseu-
doscalar form factor of the electron stemming from the
two-photon coupling, which must be evaluated at the on-
shell pion point t = t0.

A. A(t) with dispersive input

For arbitrary t the amplitude A(t) can be defined from
the matrix element for the π0 → e+e− decay:

∫
d4Σ

(2π)4 Λ(pf ) γµ S(p + Σ) γν Λ(pi)
Λµν(Q, Q′)

Q2 Q′2

= A(t)
(4π)2

2im αem
πfπ

Λ(pf ) γ5 Λ(pi) ,

(26)

where Λµν(Q, Q′) is the π → γγ transition current from
Eq. (1). The kinematics are as discussed in Sec. II A; in
particular, the averaged photon momentum Σ becomes
the loop momentum whereas the photon virtualities Q2

and Q′2 are tested at complex values close to the sym-
metric limit as shown in Fig. 3. The pion, the electron
and the positron are onshell with momenta ∆2 = −M2

π

and p2
i = p2

f = −m2.
Taking traces yields the following expression for A(t):

A(t) = 1
2π2t

∫
d4Σ (Σ · ∆)2 − Σ2∆2

(p + Σ)2 + m2
F (Q2, Q′2)

Q2 Q′2 . (27)

This integral has poles in the integration domain (which
we discuss in more detail in Sec. IV B) and thus cannot

9

be naively integrated except for t = 0. A standard way
to circumvent the problem uses dispersive methods. In
that case the imaginary part of the amplitude along its
cut at t < 0 is given by

Im ALO(t) = π ln γ(t)
2β(t) F (0, 0) , (28)

with γ(t) = (1 − β(t))/(1 + β(t)), which follows from
cutting the two photon lines. The imaginary part gives
the well-known unitary bound for the branching ratio
through the inequality |A(t0)|2 ≥ |ImA(t0)|2:

R ≥
(

mαem
mπ

)2 ln2 γ(t0)
2β(t0) = 4.75 × 10−8.

Using a once-subtracted dispersion relation one then ob-
tains the real part of the amplitude via

Re A(t) = A(0) +
ln2 γ(t) + 1

3 π2 + 4 Li2(−γ(t))
4β(t) , (29)

where Li2(z) is the dilogarithm or Spence function. In
particular, this implies Re A(t0) = A(0)+31.9204 so that
the only unknown left is the constant A(0).

In fact, t = 0 is the only point where Eq. (27) can be
integrated directly to yield

A(0) = 4
3

∞∫

0

dx

[
(x − 2)

√
1 + 1

x
− x + 3

2

]
F (Q2, Q2) ,

with x = Q2/(4m2). A similar formula can be derived
using a Mellin-Barnes representation [? ],

A(0) ≈ −5
4 + 3

2

∫ ∞

0
dx ln(4x) d

dx
F (Q2, Q2), (30)

which is however only valid to leading order in an expan-
sion in the electron mass. With t = 0 the transition form
factor in both cases is evaluated in the symmetric limit
of equal photon momenta, and due to Q2 = 4m2x it is
mainly probed at very low Q2 of the order of the elec-
tron mass. Thus it is important to determine the TFF
at small arguments precisely. We have taken great care
that the numerical error of our calculation in this region
is below the one percent level and obtain the following
value for the constant A(0):

A(0) = −21.94(17) . (31)

It corresponds to a branching ratio of

B(π → e+e−) = 6.21531 × 10−8 (32)

and a decay rate of Γ(π → e+e−) = 4.90721×10−16 GeV.
Our result is compared to other approaches in Ta-

ble III. Whereas our calculation represents a top-down
approach using a well-tested model for the underly-
ing quark-gluon interaction, Refs. [10, 23] uses a phe-
nomenological parametrization of the transition form fac-
tor (TFF) that is adapted to reproduce experimental

TABLE III. Result for the rare decay
Collaboration B(π → e+e−) × 10−8

experiment [9, 24, 25] 6.87 ± 0.36
Dorokhov(2008) [10, 23] 6.23 ± 0.09

Masjuan(2015)[26] 6.23 ± 0.05
our result 6.22 ± 0.53
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FIG. 12. Overlapping branch cuts in the integrand of A(t),
i.e., the complex σ plane, for t = (−1 + i) m2

π/4 and m = 40
MeV. The cut σl (solid, red) is generated by the lepton pole
and the cut σγ (dashed, blue) by the photon poles; the latter
opens at σ = t but the former does not. The dotted line
shows a possible integration path avoiding all singularities.
The units are in GeV2.

data from CLEO together with additional high-energy
QCD constraints. The more recent Ref. [26] uses data-
driven approach via Pade Theory and Canterbury ap-
proximants. All three theoretical results are in agree-
ment with each other thus showing consistency over dif-
ferent approaches. Again, it appears that the decay rate
is not overly sensitive to different representations of the
form factor as long as the QCD constraints are satisfied
(as guaranteed in all three approaches). However, we
also like to point out that all three calculations use dis-
persion relations and the Mellin-Barnes representation.
Thus the only number that influences the final result is
the constant A0. Although a priori one would deem the
dispersive approach reliable it still remains to be checked
vis a more direct approach.

B. Direct calculation of A(t)

The integrand in Eq. (27) has poles for vanishing de-
nominators, i.e., if either of the photons or the interme-
diate lepton go onshell. Depending on the value of t,
this may prohibit a straightforward Euclidean integra-
tion. Specifically, for t ∈ C one can draw a kinematically
safe region in the complex t plane where such an integra-
tion is possible, and a forbidden region where the poles
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TABLE II. Result for the two dilepton decays: preliminary
results

Collaboration Γπ→2e+2e− · 10−13GeV
PDG [20] (2.58 ± 0.12)

Terschlusen(2013)[21] 2.68
Escribano(2015) [22] 2.62

our result 2.59

more the quantity α is an abbreviation of

α = 1
2|p1||p2||p3| sin θ2 sin θ3

{(Mπ − E1 − E2 − E3)2−

m2
e − |p2

1| − |p2|2 − |p3|2 − 2|q1||q2| cos θ2

− 2|q1||q3| cos θ3 − 2|q2||q3| cos θ2 cos θ3} (21)

and the combination of heavy-side functions indicated by
Θm is given as

Θm(q, k) = Θ(−q2 − 4m2
e)Θ(−k2 − 4m2

e)

× Θ(Mπ −
√

−q2 −
√

−k2). (22)

These impose constraints on the photon momenta. The
border of integration are from [−1, 1] for the angular in-
tegration and [0,

√
Mπ − m2

e] for |pi| using the equality
E2

i = |pi| + m2
e for i ∈ {1, 2, 3}.

For the direct and indirect contributions Eqs. (19),(20)
to the decay rate of the π0 we obtain

Γ(left)
π→2e+2e− = 2.59 × 10−13GeV. (23)

Γ(right)
π→2e+2e− = 0 × 10−13GeV ??. (24)

We give our results in Tab. II together with the value
from PDG and two other approaches. In Ref. [21] the
same effective theory has been used as for the Dalitz de-
cay, whereas in Ref. [22] a data driven approach is pre-
sented based on the use of rational approximates applied
to the π0, η and η′ transition form factor experimental
data in the space-like region. All results are in agree-
ment within 2% with each other and the experimental
value. Again, the impact of the details of the TFF on
the decay rates is rather small. The phase space inte-
gration restricts the momenta of the virtual photons to
[−2m2

e, −M2
π ]; in this area the TFF is determined by the

anomaly and mainly a constant value close to 1.

IV. RARE DECAY: π0 → e+e−

Finally we consider the two-body decay of the neu-
tral pion into one electron-positron pair. For the π0 this
is certainly the most interesting decay due to a discrep-
ancy between the KTeV experimental result and theoret-
ical calculations [9, 10, 23–26] of the order of 2σ. Using
the elaborate reanalysis of radiative corrections [24, 25]
to the experimental result of the KTeV collaboration [9]
(close to the value given in PDG [20]) one arrives at an

extracted experimental value for the branching ratio of
BR (π0 → e+e−) = (6.87 ± 0.36) × 10−8, which is con-
siderably smaller than the decays considered above.
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FIG. 11. Feynman diagram for π → e+e−

To lowest order in QED the process is described by
the one-loop graph in Fig. 11, which again includes the
transition form factor F (Q2, Q′2) as the only nonpertur-
bative input. The corresponding normalized branching
ratio is given by

R = B(π → e+e−)
B(π → γγ) = 2

(
m αem
πmπ

)2
β(t0) |A(t0)|2 , (25)

where β(t) =
√

1 + m2/t stems from the two body phase
space integration, t0 = −m2

π/4, and B(π → γγ) = 0.988.
The scalar amplitude A(t) can be viewed as the pseu-
doscalar form factor of the electron stemming from the
two-photon coupling, which must be evaluated at the on-
shell pion point t = t0.

A. A(t) with dispersive input

For arbitrary t the amplitude A(t) can be defined from
the matrix element for the π0 → e+e− decay:

∫
d4Σ

(2π)4 Λ(pf ) γµ S(p + Σ) γν Λ(pi)
Λµν(Q, Q′)

Q2 Q′2

= A(t)
(4π)2

2im αem
πfπ

Λ(pf ) γ5 Λ(pi) ,

(26)

where Λµν(Q, Q′) is the π → γγ transition current from
Eq. (1). The kinematics are as discussed in Sec. II A; in
particular, the averaged photon momentum Σ becomes
the loop momentum whereas the photon virtualities Q2

and Q′2 are tested at complex values close to the sym-
metric limit as shown in Fig. 3. The pion, the electron
and the positron are onshell with momenta ∆2 = −M2

π

and p2
i = p2

f = −m2.
Taking traces yields the following expression for A(t):

A(t) = 1
2π2t

∫
d4Σ (Σ · ∆)2 − Σ2∆2

(p + Σ)2 + m2
F (Q2, Q′2)

Q2 Q′2 . (27)

This integral has poles in the integration domain (which
we discuss in more detail in Sec. IV B) and thus cannot

9

be naively integrated except for t = 0. A standard way
to circumvent the problem uses dispersive methods. In
that case the imaginary part of the amplitude along its
cut at t < 0 is given by

Im ALO(t) = π ln γ(t)
2β(t) F (0, 0) , (28)

with γ(t) = (1 − β(t))/(1 + β(t)), which follows from
cutting the two photon lines. The imaginary part gives
the well-known unitary bound for the branching ratio
through the inequality |A(t0)|2 ≥ |ImA(t0)|2:

R ≥
(

mαem
mπ

)2 ln2 γ(t0)
2β(t0) = 4.75 × 10−8.

Using a once-subtracted dispersion relation one then ob-
tains the real part of the amplitude via

Re A(t) = A(0) +
ln2 γ(t) + 1

3 π2 + 4 Li2(−γ(t))
4β(t) , (29)

where Li2(z) is the dilogarithm or Spence function. In
particular, this implies Re A(t0) = A(0)+31.9204 so that
the only unknown left is the constant A(0).

In fact, t = 0 is the only point where Eq. (27) can be
integrated directly to yield

A(0) = 4
3

∞∫

0

dx

[
(x − 2)

√
1 + 1

x
− x + 3

2

]
F (Q2, Q2) ,

with x = Q2/(4m2). A similar formula can be derived
using a Mellin-Barnes representation [? ],

A(0) ≈ −5
4 + 3

2

∫ ∞

0
dx ln(4x) d

dx
F (Q2, Q2), (30)

which is however only valid to leading order in an expan-
sion in the electron mass. With t = 0 the transition form
factor in both cases is evaluated in the symmetric limit
of equal photon momenta, and due to Q2 = 4m2x it is
mainly probed at very low Q2 of the order of the elec-
tron mass. Thus it is important to determine the TFF
at small arguments precisely. We have taken great care
that the numerical error of our calculation in this region
is below the one percent level and obtain the following
value for the constant A(0):

A(0) = −21.94(17) . (31)

It corresponds to a branching ratio of

B(π → e+e−) = 6.21531 × 10−8 (32)

and a decay rate of Γ(π → e+e−) = 4.90721×10−16 GeV.
Our result is compared to other approaches in Ta-

ble III. Whereas our calculation represents a top-down
approach using a well-tested model for the underly-
ing quark-gluon interaction, Refs. [10, 23] uses a phe-
nomenological parametrization of the transition form fac-
tor (TFF) that is adapted to reproduce experimental

TABLE III. Result for the rare decay
Collaboration B(π → e+e−) × 10−8

experiment [9, 24, 25] 6.87 ± 0.36
Dorokhov(2008) [10, 23] 6.23 ± 0.09

Masjuan(2015)[26] 6.23 ± 0.05
our result 6.22 ± 0.53
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FIG. 12. Overlapping branch cuts in the integrand of A(t),
i.e., the complex σ plane, for t = (−1 + i) m2

π/4 and m = 40
MeV. The cut σl (solid, red) is generated by the lepton pole
and the cut σγ (dashed, blue) by the photon poles; the latter
opens at σ = t but the former does not. The dotted line
shows a possible integration path avoiding all singularities.
The units are in GeV2.

data from CLEO together with additional high-energy
QCD constraints. The more recent Ref. [26] uses data-
driven approach via Pade Theory and Canterbury ap-
proximants. All three theoretical results are in agree-
ment with each other thus showing consistency over dif-
ferent approaches. Again, it appears that the decay rate
is not overly sensitive to different representations of the
form factor as long as the QCD constraints are satisfied
(as guaranteed in all three approaches). However, we
also like to point out that all three calculations use dis-
persion relations and the Mellin-Barnes representation.
Thus the only number that influences the final result is
the constant A0. Although a priori one would deem the
dispersive approach reliable it still remains to be checked
vis a more direct approach.

B. Direct calculation of A(t)

The integrand in Eq. (27) has poles for vanishing de-
nominators, i.e., if either of the photons or the interme-
diate lepton go onshell. Depending on the value of t,
this may prohibit a straightforward Euclidean integra-
tion. Specifically, for t ∈ C one can draw a kinematically
safe region in the complex t plane where such an integra-
tion is possible, and a forbidden region where the poles

𝑡
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0.010.00-0.01

-0.01

 0.00

 0.01

0.02 0.03

∞< σ <0

Gernot Eichmann (IST Lisboa) Aug 30, 2017 27 / 30



Rare pion decay 𝜋⁰ → 𝑒⁺𝑒⁻ 

‘Euclidean integration’: 

not possible: circular photon cut

deform integration contour: 
cut opens at t

but lepton cut does not open at t!

deform contour such that it never
crosses any cut!

∆

2
∆= Σ +Q

p + Σ

2
∆−p

2
∆+p

2
∆−= Σ′Q

8

TABLE II. Result for the two dilepton decays: preliminary
results

Collaboration Γπ→2e+2e− · 10−13GeV
PDG [20] (2.58 ± 0.12)

Terschlusen(2013)[21] 2.68
Escribano(2015) [22] 2.62

our result 2.59

more the quantity α is an abbreviation of

α = 1
2|p1||p2||p3| sin θ2 sin θ3

{(Mπ − E1 − E2 − E3)2−

m2
e − |p2

1| − |p2|2 − |p3|2 − 2|q1||q2| cos θ2

− 2|q1||q3| cos θ3 − 2|q2||q3| cos θ2 cos θ3} (21)

and the combination of heavy-side functions indicated by
Θm is given as

Θm(q, k) = Θ(−q2 − 4m2
e)Θ(−k2 − 4m2

e)

× Θ(Mπ −
√

−q2 −
√

−k2). (22)

These impose constraints on the photon momenta. The
border of integration are from [−1, 1] for the angular in-
tegration and [0,

√
Mπ − m2

e] for |pi| using the equality
E2

i = |pi| + m2
e for i ∈ {1, 2, 3}.

For the direct and indirect contributions Eqs. (19),(20)
to the decay rate of the π0 we obtain

Γ(left)
π→2e+2e− = 2.59 × 10−13GeV. (23)

Γ(right)
π→2e+2e− = 0 × 10−13GeV ??. (24)

We give our results in Tab. II together with the value
from PDG and two other approaches. In Ref. [21] the
same effective theory has been used as for the Dalitz de-
cay, whereas in Ref. [22] a data driven approach is pre-
sented based on the use of rational approximates applied
to the π0, η and η′ transition form factor experimental
data in the space-like region. All results are in agree-
ment within 2% with each other and the experimental
value. Again, the impact of the details of the TFF on
the decay rates is rather small. The phase space inte-
gration restricts the momenta of the virtual photons to
[−2m2

e, −M2
π ]; in this area the TFF is determined by the

anomaly and mainly a constant value close to 1.

IV. RARE DECAY: π0 → e+e−

Finally we consider the two-body decay of the neu-
tral pion into one electron-positron pair. For the π0 this
is certainly the most interesting decay due to a discrep-
ancy between the KTeV experimental result and theoret-
ical calculations [9, 10, 23–26] of the order of 2σ. Using
the elaborate reanalysis of radiative corrections [24, 25]
to the experimental result of the KTeV collaboration [9]
(close to the value given in PDG [20]) one arrives at an

extracted experimental value for the branching ratio of
BR (π0 → e+e−) = (6.87 ± 0.36) × 10−8, which is con-
siderably smaller than the decays considered above.

γ(k)

γ(k − P )

e−

e+

γ

Fπ0γγFπ0γγ

e+(p)

e−(p)
γ(k)

γ(k − q)

π0(q) π0

γ(k4)

γ(k5)

e−(p1)

e+(p2)

π0(P ) p1 − k

γ(Q)

γ(Q′)

π0(∆)

e+(pf )

e−(pi)

FIG. 11. Feynman diagram for π → e+e−

To lowest order in QED the process is described by
the one-loop graph in Fig. 11, which again includes the
transition form factor F (Q2, Q′2) as the only nonpertur-
bative input. The corresponding normalized branching
ratio is given by

R = B(π → e+e−)
B(π → γγ) = 2

(
m αem
πmπ

)2
β(t0) |A(t0)|2 , (25)

where β(t) =
√

1 + m2/t stems from the two body phase
space integration, t0 = −m2

π/4, and B(π → γγ) = 0.988.
The scalar amplitude A(t) can be viewed as the pseu-
doscalar form factor of the electron stemming from the
two-photon coupling, which must be evaluated at the on-
shell pion point t = t0.

A. A(t) with dispersive input

For arbitrary t the amplitude A(t) can be defined from
the matrix element for the π0 → e+e− decay:

∫
d4Σ

(2π)4 Λ(pf ) γµ S(p + Σ) γν Λ(pi)
Λµν(Q, Q′)

Q2 Q′2

= A(t)
(4π)2

2im αem
πfπ

Λ(pf ) γ5 Λ(pi) ,

(26)

where Λµν(Q, Q′) is the π → γγ transition current from
Eq. (1). The kinematics are as discussed in Sec. II A; in
particular, the averaged photon momentum Σ becomes
the loop momentum whereas the photon virtualities Q2

and Q′2 are tested at complex values close to the sym-
metric limit as shown in Fig. 3. The pion, the electron
and the positron are onshell with momenta ∆2 = −M2

π

and p2
i = p2

f = −m2.
Taking traces yields the following expression for A(t):

A(t) = 1
2π2t

∫
d4Σ (Σ · ∆)2 − Σ2∆2

(p + Σ)2 + m2
F (Q2, Q′2)

Q2 Q′2 . (27)

This integral has poles in the integration domain (which
we discuss in more detail in Sec. IV B) and thus cannot
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be naively integrated except for t = 0. A standard way
to circumvent the problem uses dispersive methods. In
that case the imaginary part of the amplitude along its
cut at t < 0 is given by

Im ALO(t) = π ln γ(t)
2β(t) F (0, 0) , (28)

with γ(t) = (1 − β(t))/(1 + β(t)), which follows from
cutting the two photon lines. The imaginary part gives
the well-known unitary bound for the branching ratio
through the inequality |A(t0)|2 ≥ |ImA(t0)|2:

R ≥
(

mαem
mπ

)2 ln2 γ(t0)
2β(t0) = 4.75 × 10−8.

Using a once-subtracted dispersion relation one then ob-
tains the real part of the amplitude via

Re A(t) = A(0) +
ln2 γ(t) + 1

3 π2 + 4 Li2(−γ(t))
4β(t) , (29)

where Li2(z) is the dilogarithm or Spence function. In
particular, this implies Re A(t0) = A(0)+31.9204 so that
the only unknown left is the constant A(0).

In fact, t = 0 is the only point where Eq. (27) can be
integrated directly to yield

A(0) = 4
3

∞∫

0

dx

[
(x − 2)

√
1 + 1

x
− x + 3

2

]
F (Q2, Q2) ,

with x = Q2/(4m2). A similar formula can be derived
using a Mellin-Barnes representation [? ],

A(0) ≈ −5
4 + 3

2

∫ ∞

0
dx ln(4x) d

dx
F (Q2, Q2), (30)

which is however only valid to leading order in an expan-
sion in the electron mass. With t = 0 the transition form
factor in both cases is evaluated in the symmetric limit
of equal photon momenta, and due to Q2 = 4m2x it is
mainly probed at very low Q2 of the order of the elec-
tron mass. Thus it is important to determine the TFF
at small arguments precisely. We have taken great care
that the numerical error of our calculation in this region
is below the one percent level and obtain the following
value for the constant A(0):

A(0) = −21.94(17) . (31)

It corresponds to a branching ratio of

B(π → e+e−) = 6.21531 × 10−8 (32)

and a decay rate of Γ(π → e+e−) = 4.90721×10−16 GeV.
Our result is compared to other approaches in Ta-

ble III. Whereas our calculation represents a top-down
approach using a well-tested model for the underly-
ing quark-gluon interaction, Refs. [10, 23] uses a phe-
nomenological parametrization of the transition form fac-
tor (TFF) that is adapted to reproduce experimental

TABLE III. Result for the rare decay
Collaboration B(π → e+e−) × 10−8

experiment [9, 24, 25] 6.87 ± 0.36
Dorokhov(2008) [10, 23] 6.23 ± 0.09

Masjuan(2015)[26] 6.23 ± 0.05
our result 6.22 ± 0.53
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FIG. 12. Overlapping branch cuts in the integrand of A(t),
i.e., the complex σ plane, for t = (−1 + i) m2

π/4 and m = 40
MeV. The cut σl (solid, red) is generated by the lepton pole
and the cut σγ (dashed, blue) by the photon poles; the latter
opens at σ = t but the former does not. The dotted line
shows a possible integration path avoiding all singularities.
The units are in GeV2.

data from CLEO together with additional high-energy
QCD constraints. The more recent Ref. [26] uses data-
driven approach via Pade Theory and Canterbury ap-
proximants. All three theoretical results are in agree-
ment with each other thus showing consistency over dif-
ferent approaches. Again, it appears that the decay rate
is not overly sensitive to different representations of the
form factor as long as the QCD constraints are satisfied
(as guaranteed in all three approaches). However, we
also like to point out that all three calculations use dis-
persion relations and the Mellin-Barnes representation.
Thus the only number that influences the final result is
the constant A0. Although a priori one would deem the
dispersive approach reliable it still remains to be checked
vis a more direct approach.

B. Direct calculation of A(t)

The integrand in Eq. (27) has poles for vanishing de-
nominators, i.e., if either of the photons or the interme-
diate lepton go onshell. Depending on the value of t,
this may prohibit a straightforward Euclidean integra-
tion. Specifically, for t ∈ C one can draw a kinematically
safe region in the complex t plane where such an integra-
tion is possible, and a forbidden region where the poles

𝑡
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Rare pion decay 𝜋⁰ → 𝑒⁺𝑒⁻ 

Algorithm is
stable & efficient

Can be applied to
any integral as long 
as singularity
locations known

Useful for treating
resonances!

∆

2
∆= Σ +Q

p + Σ

2
∆−p

2
∆+p

2
∆−= Σ′Q

8

TABLE II. Result for the two dilepton decays: preliminary
results

Collaboration Γπ→2e+2e− · 10−13GeV
PDG [20] (2.58 ± 0.12)

Terschlusen(2013)[21] 2.68
Escribano(2015) [22] 2.62

our result 2.59

more the quantity α is an abbreviation of

α = 1
2|p1||p2||p3| sin θ2 sin θ3

{(Mπ − E1 − E2 − E3)2−

m2
e − |p2

1| − |p2|2 − |p3|2 − 2|q1||q2| cos θ2

− 2|q1||q3| cos θ3 − 2|q2||q3| cos θ2 cos θ3} (21)

and the combination of heavy-side functions indicated by
Θm is given as

Θm(q, k) = Θ(−q2 − 4m2
e)Θ(−k2 − 4m2

e)

× Θ(Mπ −
√

−q2 −
√

−k2). (22)

These impose constraints on the photon momenta. The
border of integration are from [−1, 1] for the angular in-
tegration and [0,

√
Mπ − m2

e] for |pi| using the equality
E2

i = |pi| + m2
e for i ∈ {1, 2, 3}.

For the direct and indirect contributions Eqs. (19),(20)
to the decay rate of the π0 we obtain

Γ(left)
π→2e+2e− = 2.59 × 10−13GeV. (23)

Γ(right)
π→2e+2e− = 0 × 10−13GeV ??. (24)

We give our results in Tab. II together with the value
from PDG and two other approaches. In Ref. [21] the
same effective theory has been used as for the Dalitz de-
cay, whereas in Ref. [22] a data driven approach is pre-
sented based on the use of rational approximates applied
to the π0, η and η′ transition form factor experimental
data in the space-like region. All results are in agree-
ment within 2% with each other and the experimental
value. Again, the impact of the details of the TFF on
the decay rates is rather small. The phase space inte-
gration restricts the momenta of the virtual photons to
[−2m2

e, −M2
π ]; in this area the TFF is determined by the

anomaly and mainly a constant value close to 1.

IV. RARE DECAY: π0 → e+e−

Finally we consider the two-body decay of the neu-
tral pion into one electron-positron pair. For the π0 this
is certainly the most interesting decay due to a discrep-
ancy between the KTeV experimental result and theoret-
ical calculations [9, 10, 23–26] of the order of 2σ. Using
the elaborate reanalysis of radiative corrections [24, 25]
to the experimental result of the KTeV collaboration [9]
(close to the value given in PDG [20]) one arrives at an

extracted experimental value for the branching ratio of
BR (π0 → e+e−) = (6.87 ± 0.36) × 10−8, which is con-
siderably smaller than the decays considered above.
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e−(p)
γ(k)
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γ(Q′)

π0(∆)

e+(pf )

e−(pi)

FIG. 11. Feynman diagram for π → e+e−

To lowest order in QED the process is described by
the one-loop graph in Fig. 11, which again includes the
transition form factor F (Q2, Q′2) as the only nonpertur-
bative input. The corresponding normalized branching
ratio is given by

R = B(π → e+e−)
B(π → γγ) = 2

(
m αem
πmπ

)2
β(t0) |A(t0)|2 , (25)

where β(t) =
√

1 + m2/t stems from the two body phase
space integration, t0 = −m2

π/4, and B(π → γγ) = 0.988.
The scalar amplitude A(t) can be viewed as the pseu-
doscalar form factor of the electron stemming from the
two-photon coupling, which must be evaluated at the on-
shell pion point t = t0.

A. A(t) with dispersive input

For arbitrary t the amplitude A(t) can be defined from
the matrix element for the π0 → e+e− decay:

∫
d4Σ

(2π)4 Λ(pf ) γµ S(p + Σ) γν Λ(pi)
Λµν(Q, Q′)

Q2 Q′2

= A(t)
(4π)2

2im αem
πfπ

Λ(pf ) γ5 Λ(pi) ,

(26)

where Λµν(Q, Q′) is the π → γγ transition current from
Eq. (1). The kinematics are as discussed in Sec. II A; in
particular, the averaged photon momentum Σ becomes
the loop momentum whereas the photon virtualities Q2

and Q′2 are tested at complex values close to the sym-
metric limit as shown in Fig. 3. The pion, the electron
and the positron are onshell with momenta ∆2 = −M2

π

and p2
i = p2

f = −m2.
Taking traces yields the following expression for A(t):

A(t) = 1
2π2t

∫
d4Σ (Σ · ∆)2 − Σ2∆2

(p + Σ)2 + m2
F (Q2, Q′2)

Q2 Q′2 . (27)

This integral has poles in the integration domain (which
we discuss in more detail in Sec. IV B) and thus cannot

9

be naively integrated except for t = 0. A standard way
to circumvent the problem uses dispersive methods. In
that case the imaginary part of the amplitude along its
cut at t < 0 is given by

Im ALO(t) = π ln γ(t)
2β(t) F (0, 0) , (28)

with γ(t) = (1 − β(t))/(1 + β(t)), which follows from
cutting the two photon lines. The imaginary part gives
the well-known unitary bound for the branching ratio
through the inequality |A(t0)|2 ≥ |ImA(t0)|2:

R ≥
(

mαem
mπ

)2 ln2 γ(t0)
2β(t0) = 4.75 × 10−8.

Using a once-subtracted dispersion relation one then ob-
tains the real part of the amplitude via

Re A(t) = A(0) +
ln2 γ(t) + 1

3 π2 + 4 Li2(−γ(t))
4β(t) , (29)

where Li2(z) is the dilogarithm or Spence function. In
particular, this implies Re A(t0) = A(0)+31.9204 so that
the only unknown left is the constant A(0).

In fact, t = 0 is the only point where Eq. (27) can be
integrated directly to yield

A(0) = 4
3

∞∫

0

dx

[
(x − 2)

√
1 + 1

x
− x + 3

2

]
F (Q2, Q2) ,

with x = Q2/(4m2). A similar formula can be derived
using a Mellin-Barnes representation [? ],

A(0) ≈ −5
4 + 3

2

∫ ∞

0
dx ln(4x) d

dx
F (Q2, Q2), (30)

which is however only valid to leading order in an expan-
sion in the electron mass. With t = 0 the transition form
factor in both cases is evaluated in the symmetric limit
of equal photon momenta, and due to Q2 = 4m2x it is
mainly probed at very low Q2 of the order of the elec-
tron mass. Thus it is important to determine the TFF
at small arguments precisely. We have taken great care
that the numerical error of our calculation in this region
is below the one percent level and obtain the following
value for the constant A(0):

A(0) = −21.94(17) . (31)

It corresponds to a branching ratio of

B(π → e+e−) = 6.21531 × 10−8 (32)

and a decay rate of Γ(π → e+e−) = 4.90721×10−16 GeV.
Our result is compared to other approaches in Ta-

ble III. Whereas our calculation represents a top-down
approach using a well-tested model for the underly-
ing quark-gluon interaction, Refs. [10, 23] uses a phe-
nomenological parametrization of the transition form fac-
tor (TFF) that is adapted to reproduce experimental

TABLE III. Result for the rare decay
Collaboration B(π → e+e−) × 10−8

experiment [9, 24, 25] 6.87 ± 0.36
Dorokhov(2008) [10, 23] 6.23 ± 0.09

Masjuan(2015)[26] 6.23 ± 0.05
our result 6.22 ± 0.53
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FIG. 12. Overlapping branch cuts in the integrand of A(t),
i.e., the complex σ plane, for t = (−1 + i) m2

π/4 and m = 40
MeV. The cut σl (solid, red) is generated by the lepton pole
and the cut σγ (dashed, blue) by the photon poles; the latter
opens at σ = t but the former does not. The dotted line
shows a possible integration path avoiding all singularities.
The units are in GeV2.

data from CLEO together with additional high-energy
QCD constraints. The more recent Ref. [26] uses data-
driven approach via Pade Theory and Canterbury ap-
proximants. All three theoretical results are in agree-
ment with each other thus showing consistency over dif-
ferent approaches. Again, it appears that the decay rate
is not overly sensitive to different representations of the
form factor as long as the QCD constraints are satisfied
(as guaranteed in all three approaches). However, we
also like to point out that all three calculations use dis-
persion relations and the Mellin-Barnes representation.
Thus the only number that influences the final result is
the constant A0. Although a priori one would deem the
dispersive approach reliable it still remains to be checked
vis a more direct approach.

B. Direct calculation of A(t)

The integrand in Eq. (27) has poles for vanishing de-
nominators, i.e., if either of the photons or the interme-
diate lepton go onshell. Depending on the value of t,
this may prohibit a straightforward Euclidean integra-
tion. Specifically, for t ∈ C one can draw a kinematically
safe region in the complex t plane where such an integra-
tion is possible, and a forbidden region where the poles

Weil, GE, Fischer, Williams,
PRD 96 (2017)
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Tetraquarks

Light scalar mesons 𝜎, 𝜅, 𝑎₀, 𝑓₀ as tetraquarks:
solution of four-body equation reproduces mass pattern
GE, Fischer, Heupel,  PLB 753 (2016)

BSE dynamically generates 
meson poles in wave function:

Four quarks rearrange
to “meson molecule”
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Towards multiquarks

Transition from quark-gluon to nuclear degrees of freedom:

6 ground states, one of them deuteron

Dibaryons vs. hidden color?

Deuteron FFs from quark level?

Microscopic origins of nuclear binding?

Dyson, Xuong, PRL 13 (1964)

Bashkanov, Brodsky, Clement, PLB 727 (2013)

Weise, Nucl. Phys. A805 (2008)

NN potential

r
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distance

two-pion
exchange

one-pion
exchange

only quarks and gluons

quark interchange
and pion exchange
automatically included

dibaryon exchanges

s
channel

t
channel

u
channel
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 = 0

 = 4  = 0 =
 4 =
 0
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(a) (b) (c)Six quarks Two baryons Three diquarks?
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(a) (b) (c)Six quarks Two baryons Three diquarks?
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Compton scattering

Nucleon polarizabilities:
ChPT & dispersion relations
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FIGURE 1. (Color online). The scalar polarizabilities of the proton. Magenta blob represents the PDG summary [15]. Experi-
mental results are from Federspiel et al. [16], Zieger et al. [17], MacGibbon et al. [18], and TAPS [19]. ‘Sum Rule’ indicates the
Baldin sum rule evaluations of αE1 + βM1 [19] (broader band) and [20]. ChPT calculations are from [10] (BChPT—red blob) and
the ‘unconstrained fit’ of [21] (HBChPT—blue ellipse).

proton Compton scattering, where these polarizabilities prominently appear, the calculations show that upon inclusion
of O(p4) contributions the HBChPT achieves roughly the same results as O(p3 + p4/∆) BChPT [13], albeit with a
loss of some predictive power due to the appearance of two new LECs.

The present status of the BChPT, HBChPT, as well as “more empirical" extractions of proton polarizabilities, as
summarised in [14], is shown in Fig. 1. Note the significant discrepancy of the BChPT prediction with the current
Particle Data Group values, which thes far has been attributed to a sizeable underestimate of uncertainty in the TAPS
and subsequently PDG values.

3. RELEVANCE: HYDROGEN LAMB SHIFT

The electric polarizability of the proton is responsible for a zero-range force in atoms, which lead to a shift in the
S-levels:

∆E(pol.)
nS = −4αem φ 2

n (0)

∞∫

0

dQ

[√
1+

Q2

4m2
�

− Q
2m�

]
αE1(Q2), (1)

where αem is the fine-structure constant, φ 2
n (0) = α3

emm3
r /(πn3) is the square of the hydrogen wave-function at the

origin, m� is the lepton mass and mr is the reduced mass: mr = Mpm�/(Mp +m�). The effect of magnetic polarizability
is suppressed.

The effect in Eq. (1) is of order α5
em; there is one αem implicit in the polarizability. It is therefore of the same order as

the effects of 3rd Zemach radius and can make an impact on "charge radius puzzle" [22, 23], i.e., the 7σ discrepancy
between the proton charge radius extraction based on either the electronic (eH) or muonic (µH) hydrogen Lamb shift.
The factor in the square brackets of Eq. (1) acts a soft cutoff at the scale of order of the lepton mass m�, and hence the
proton polarizability contribution in µH is expected to be bigger than in eH. How much bigger?

The transfer-momentum dependence of αE1 is inferred from the forward doubly-virtual Compton scattering, and
hence is not accessible in a direct experiment. Only the sum, αE1(Q2)+βM1(Q2), is accessible through a generalized
Baldin sum rule. The Baldin sum rule has been evaluated in several works leading to the so-called ‘inelastic’

Hagelstein, Miskimen, Pascalutsa,  PPNP 88 (2016)

3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)

’

RCS
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FW
D
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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 Born + 1PI + ∆
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𝜂₊

𝛼� + 𝛽�   [10⁻⁴ fm³] 

𝛽�  [10⁻⁴ fm³] 

 Born + 1PI

 DR

compared to DRs
Pasquini et al., EPJ A11 (2001),
Downie & Fonvieille, EPJ ST 198 (2011)

Quark Compton vertex
(Born + 1PI) calculated,
added 𝛥 exchange

First DSE results: 

Quark-level effects  ↔  Baldin sum rule
+ nucleon resonances (mostly 𝛥) 
+ pion cloud (at low 𝜂₊)? 

In total: polarizabilities � 

𝛼�  dominated by handbag,
𝛽� by 𝛥 contribution
 

GE, FBS 57 (2016)

⇒ large “QCD background”!
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Hadron physics with functional methods

Understand properties of 
elementary n-point functions

Calculate hadronic observables:
mass spectra, form factors, scattering amplitudes, . . .

∎  QCD
∎  symmetries intact (Poincare invariance & chiral symmetry important) 
∎  access to all momentum scales & all quark masses 
∎  compute mesons, baryons, tetraquarks, . . . from same dynamics

access to underlying
nonperturbative dynamics!

↔

∎  systematic construction of truncations 
∎  technical challenges: coupled integral equations, 
    complex analysis, structure of 3-, 4-, ... point functions,
    need lots of computational power!
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Backup slides

Tetraquark notes

Gernot Eichmann

Defining the momenta as in your notes, we have the
two momentum multiplets

SM =
4∑

i=1
pi = P , T +

M = 1
2




1√
3 (p + q + k)

1√
6 (p + q − 2k)

1√
2 (q − p)


 . (1)

Apart from the trivial singlet P 2, the resulting nine
Lorentz invariants are

S0 = T +
M · T +

M = 1
4 (p2 + q2 + k2) ,

D0 = T +
M ∗ T +

M = 1
4S0

[ √
3 (q2 − p2)

p2 + q2 − 2k2

]
,

T0 = T +
M ∨ T +

M = 1
4S0




2 (ω1 + ω2 + ω3)√
2 (ω1 + ω2 − 2ω3)√

6 (ω2 − ω1)


 , (2)

T1 = T +
M · SM = 1

4S0




2 (η1 + η2 + η3)√
2 (η1 + η2 − 2η3)√

6 (η2 − η1)


 ,

with

ω1 = q · k , ω2 = p · k , ω3 = p · q (3)

and

η1 = p · P̂ , η2 = q · P̂ , η3 = k · P̂ . (4)

We can express p2, q2, k2 in terms of the doublet vari-
ables:

p2 = 2
3 S0(2 + s −

√
3 a) ,

q2 = 2
3 S0(2 + s −

√
3 a) ,

k2 = 4
3 S0(1 − s) .

(5)

Now let’s express the ‘pole variables’ in terms of these.
Let’s say Z+ = (p1 + p2)2 and Z− = (p3 + p4)2. Then

Z± =
(

k ± P

2

)2
= k2 − M2

4 ± iMη3

= k2 − M2

4 ± iM
√

k2 z3 ,

(6)

where z3 = k̂ · P̂ ∈ (−1, 1). This is the usual parabola in
the complex k2 plane with apex −M2/4. That is, a pole
at Z± = −m2

π (or along the contour of the parabola with
apex −m2

π) leads to the condition

16
3 S0(1 − s) = M2 − 4m2

π (7)

and therefore.

s = 1 + 3
16S0

(4m2
π − M2) . (8)

So it looks like above threshold M > 4mπ we have indeed
the situation that the poles cross over into the spacelike
region (s < 1). However, below threshold this cannot
happen. (The same analysis would work for the remain-
ing poles with X+ = (p2 + p3)2, etc.)

• Since you see a similar behavior at large quark
masses, but at the opposite side of the triangle:
Could it be that the Maris-Tandy scalar diquark
simply comes out very low, i.e., that the diquark
mass bends down at large quark masses and crosses
the threshold? Can you calculate scalar diquarks
too? Might be good to know as a check.

• This is all very interesting. I found a similar condi-
tion for the baryon, although the interpretation as
two-body poles at the border of the triangle doesn’t
work in that case (because it’s S3, the triangle is
bounded by the three quark momenta).
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QED

Γ−e=S−e]ψ,A¯ψ,[D
∫

QED’s classical action: Quantum “effective action”: 
]

µνFµνF4
1+ψ)m+A/ig+∂/ (ψ̄

[
x4d

∫
=

=

S

g

-1 -1 -1 -1
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QED
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µνFµνF4
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Perturbation theory: expand Green functions
in powers of the coupling
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QED

Γ−e=S−e]ψ,A¯ψ,[D
∫

QED’s classical action: Quantum “effective action”: 
]

µνFµνF4
1+ψ)m+A/ig+∂/ (ψ̄

[
x4d

∫
=

=

S

g

-1 -1 -1 -1

Perturbation theory: expand Green functions
in powers of the coupling

Light-by-light
scattering

Compton 
scattering

Moller 
scattering

+ ...

+ ...

+ ...

=

+=

=

⟹ extremely precise 
     theory predictions!
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QCD

Γ−e=S−e]ψ,A¯ψ,[D
∫

QCD’s classical action: Quantum “effective action”: 
]

µνFµνF4
1+ψ)m+A/ig

a

a+∂/ (ψ̄
[

x4d
∫

=

=

S

g g g 2

-1 -1 -1 -1

Perturbation theory: expand Green functions
in powers of the coupling
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QCD

Γ−e=S−e]ψ,A¯ψ,[D
∫

QCD’s classical action: Quantum “effective action”: 
]

µνFµνF4
1+ψ)m+A/ig

a

a+∂/ (ψ̄
[

x4d
∫

=

=

S

g g g 2

-1 -1 -1 -1

Perturbation theory: expand Green functions
in powers of the coupling

But ...

⟹ need non-
perturbative 
methods!

           becomes large at low momenta)2Q(α
( )

Bethke, PPNP 58 (2007)
𝛼���(𝑄)

𝑄 [𝐺𝑒𝑉]
1 10 100

0.1

0.2

0.3

0.4

0.5

large distances: all these can 
contribute with same magnitude! 

dominant at
small distances
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Bethe-Salpeter equations

Eigenvalue spectrum of BS kernel:

Homogeneous BSE becomes

Eigenvectors =
BS amplitudes

1nλ
𝑃�           −𝑚��

most general Dirac-Lorentz structure,
Lorentz-invariant dressing functions:

pion is made of s waves and p waves!
(relative momentum ~ orbital angular momentum)

⊗] )P/q,/[4f+q/3f+P/2f+1f Color ⊗ Flavor

)2m−=2P, P·, q2q(if=if
⟹ 

5γ ( P·q

)′, z
2′q(jf)′q·, q′, z, z

2′, q2q(ijK′q4d
∫

) =, z2q(if

iqz
)n(

f)2P(nλ=′z′jq
)n(

f′zz′ij qqK

Example pion: quark-antiquark bound state ⟺ Goldstone boson of DCSB
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Williams, Fischer, Heupel,
PRD 93 (2016)

GE, Sanchis-Alepuz, Williams,
Alkofer, Fischer, PPNP 91 (2016)

Fischer, Kubrak, Williams,  EPJ A 51 (2015)

GE, Fischer, Weil, Williams,  
1704.05774 [hep-ph]

Mesons

Pion is Goldstone 
boson: 𝑚�� ~ 𝑚�

Light meson spectrum beyond rainbow-ladder

Charmonium spectrum Pion transition form factor
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Tetraquarks in charm region?

Can we distinguish different
tetraquark configurations? 

compact
tetraquark

diquark-
antidiquark

meson
molecule

‘hadro-
quarkonium’

q

Q

q

Q

Q

q

q

Q

q
Q

q

Q

qQ

q Q

4.5

4.0

3.5

3.0

ps v av avsc t t
0 0 1

av
12 2 ?1 1 ?? ? ??

(3770)ψ

(4040)ψ

(4160)ψ

(4415)ψ

(4008)Y

(4660)Y

(4260)Y
(4360)Y

ch

)P(2ch (3915)Y
)P(22cχ

DD

∗DD
sDsD

∗D∗D
s
∗DsD

s
∗Ds

∗D
1DD

J/ψ

cη

)S(2cη

)S(3cη
(3940)X

(4160)X

)S(2ψ

0cχ
1cχ

(3872)X
)P(21cχ

2cχ

2D11

2D12 (4140)Y

(4350)X

(3900)cZ

(4020)cZ

(4200)cZ

(4430)cZ

(4050)1Z

(4250)2Z

Tetraquarks in charmonium & bottomonium spectrum:
X(3872), Y(4260), charged Z states? 

    

adapted from
Esposito, Guerrieri, Piccinini, Pilloni, Polosa,
Int. J. Mod. Phys. A 30 (2015)

Four quarks dynamically rearrange themselves into dq-dq, molecule, hadroquarkonium; 
strengths determined by four-body BSE:

    
Molecule  

Hadro-
charmonium 

Diquark-
antidiquark 

hadro-charm
onium m

ol
ec

ul
e

)c̄n) (n c(¯)c̄n) (¯n c( )c̄c) (n̄n(

1],[0∈r

1],[0∈r

2M−π
2m4

0S
0.01

0.03

0.06

0.10

0.15

0.20

diquark-antidiquark diquark-antidiquark

pi
on

-p
io

npion-pion

?

Gernot Eichmann (IST Lisboa) Aug 30, 2017 30 / 30



nPI effective action

3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables
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(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
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, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
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Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
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ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
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the cone is the spacelike region that is integrated over. Real
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.

⇒

Self-energy:

Vacuum polarization:

BSE kernel:

Vertex:

nPI effective actions provide symmetry-preserving closed truncations.
3PI at 3-loop: all two- and three-point functions are dressed; 4, 5, ... do not appear.
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3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables
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=
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Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
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, σ =
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Here, a hat denotes a normalized four-momentum (e.g.,
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Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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η− are even under photon crossing and charge conjuga-
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We work with Euclidean conventions but all relations be-
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form factors that we derive in Tables I, II and V, are the
same in Minkowski space.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.

⇒

nPI effective actions provide symmetry-preserving closed truncations.
3PI at 3-loop: all two- and three-point functions are dressed; 4, 5, ... do not appear.

So we arrive at a closed system of equations:

Crossed ladder 
cannot be added by hand,
requires vertex correction!

Similar in QCD. nPI truncation
guarantees chiral symmetry,
massless pion in chiral limit, etc.

without 3-loop term: 
rainbow-ladder 
with tree-level vertex ⇒ 2PI

but still requires DSE solutions
for propagators!
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
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=
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, τ ′ =
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A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].
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Q′2 = 0 ⇒ η+ = ω.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
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=
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4
, τ ′ =

Q′2
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=
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.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
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• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.

⇒

nPI effective actions provide symmetry-preserving closed truncations.
3PI at 3-loop: all two- and three-point functions are dressed; 4, 5, ... do not appear.

So we arrive at a closed system of equations:

Crossed ladder 
cannot be added by hand,
requires vertex correction!

Similar in QCD. nPI truncation
guarantees chiral symmetry,
massless pion in chiral limit, etc.

without 3-loop term: 
rainbow-ladder 
with tree-level vertex ⇒ 2PI

but still requires DSE solutions
for propagators!
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2
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=
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4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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B. Kinematics and definitions
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pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
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Σ = 1
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We work with Euclidean conventions but all relations be-
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form factors that we derive in Tables I, II and V, are the
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The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
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=
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4
, τ ′ =

Q′2
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=
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.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=
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4
, τ ′ =

Q′2
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=
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.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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A toy model
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B. Kinematics and definitions
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so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
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=
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, τ ′ =
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.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
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Σ = 1
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We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
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The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
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cone are spanned by the {σ, t} and {τ, τ ′} axes because
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τ =
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A cross section through the planes of fixed t leads to the
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We can also localize the various kinematic limits in this
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Q2 = Q′2 = 0 ⇒ η+ = ω = 0.
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Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=
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4
, τ ′ =

Q′2

4m2
=
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.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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A toy model
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η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
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tween Lorentz-invariant quantities, such as the Compton
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
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A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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the cone is the spacelike region that is integrated over. Real
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ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail
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η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
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and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).
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+ . (15)
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τ =
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• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
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=
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4
, τ ′ =
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A cross section through the planes of fixed t leads to the
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We can also localize the various kinematic limits in this
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• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
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4m2
=
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4
, τ ′ =
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We can also localize the various kinematic limits in this
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• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
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Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail
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+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
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form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +
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η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.

3

B. Kinematics and definitions
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Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
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pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
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=
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=
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η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
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duced in Ref. [1]:
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η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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Here is what happens when I „blindly“ integrate over the poles: 

Again: M  =  E,  but also in the Euclidean formula we must
do the integration properly (= include residues).
 

outside blue region: naive integration
over poles (wrong) 

rise is due to t-channel bound state

scattering amplitude almost 
independent of 𝜆! 

Subtract Born terms to get rid of 
s- and u-channel poles ( ↔ 1PI part ):

t
channel

u
channel

s
channel

 = 0

 = 1

 = 0  =
 0

 = 

 =
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Baryon spectrum
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dynamics of ps diquark produces 
2 nearby states: N(1535), N(1650)

Level ordering between
Roper and N(1535):
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Eigenvalue spectra

)
− −

N(    ) and ∆(    ) channels 
hardly affected by ps, v diquarks

+

2
1 +

2
3

all other channels:
sc, av → masses too high
sc, av, ps, v → masses too low

not all eigenvalues extrapolate
to masses below 2 GeV

some are complex conjugate 
(but imaginary parts small), 
some split into 2 real branches: 
numerical or truncation artifact?

GE, Fischer, Sanchis-Alepuz, 1607.05748
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Resonances

)
− −

Current-mass evolution of Roper:
GE, Fischer, Sanchis-Alepuz, PRD 94 (2016)

Branch cuts & widths generated by 
meson-baryon interactions: Roper → 𝑁𝜋 , etc.

Lattice: finite volume, DSE (so far): bound states

Re

Im

2P

2P

N(940)

N(1440)

N(1710)
N(1880)

)2P(G

Re

Im

2P

2P

N(940)N(1440)N(1710)N(1880)

𝑁𝜋
𝑅

𝑁

𝛥𝑁

‘Pion cloud’ effects difficult to implement 
at quark-gluon level: 

Resonance dynamics 
shifts poles into complex plane, 
but effects on real parts small?

“         ”

“         ”

Re

Im 2P

N(940)

2P
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Nucleon em. form factors

Nucleon magnetic moments: 
isovector (p-n), isoscalar (p+n)

!!
But: pion-cloud cancels in 𝜅�  ⟺ quark core 

       Exp:    𝜅� = –0.12   
Calc:   𝜅� = –0.12(1)

Nucleon charge radii: 
isovector (p-n) Dirac (F1) radius

Pion-cloud effects missing 
(⇒ divergence!), agreement with 
lattice at larger quark masses. GE,  PRD 84 (2011)
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ETMC (Alexandrou 13, 
Abdel-Rehim 15)

DSE PDG
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First three-body results similar
Alkofer, GE, Sanchis-Alepuz, Williams, Hyp. Int. 234 (2015)

Nucleon-𝛥-𝛾 transition  

*

Electric & Coulomb quadrupole ratios
small & negative, encode deformation.
Reproduced without pion cloud: OAM from p waves! 

Magnetic dipole transition (𝐺� ) dominant: 
quark spin flip (s wave).  “Core + 25% pion cloud”
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GE, Nicmorus,  PRD 85 (2012)

 

Quark model: need d waves or pion cloud.
Perturbative QCD: 𝑅�� → 1, 𝑅�� → const.

𝛥
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Resonances?

Branch cuts & widths generated by 
meson-baryon interactions: Roper → 𝑁𝜋 , etc.

Without them: bound states without widths

To generate resonances dynamically at quark level: 
complicated topologies beyond rainbow-ladder
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)2P(G
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“         ”

“         ”

cf. 𝜌 meson: bound state vs. resonance
below / above 𝜋𝜋 threshold

References:
see  GE et al.,
PPNP 91 (2016)
1606.09602  

resonance dynamics shifts pole into
complex plane, effect on real part small?
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Complex eigenvalues?

Excited states: some EVs 
are complex conjugate? 

Typical for unequal-mass systems,
already in Wick-Cutkosky model 
Wick 1954, Cutkosky 1954

Ahlig, Alkofer,  Ann. Phys. 275 (1999)
Connection with “anomalous” states?

)M(K )M(G )M(iφ )M(iφ

= iλ

K and G are Hermitian (even for 
unequal masses!) but KG is not

If               and             : 
Cholesky decomposition 

†G=G 0G >

L†L=G

iφiλ=iL φ†K L

)iLφ(iλ) =iLφ) (†LKL(

⇒  Hermitian problem 
     with same EVs!

⇒  all EVs strictly real
⇒  “anomalous states” removed?
⇒  low-lying exotics removed!

GE, FBS 58 (2017)

𝜆
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Complex eigenvalues?

Excited states: some EVs 
are complex conjugate? 

Typical for unequal-mass systems,
already in Wick-Cutkosky model 
Wick 1954, Cutkosky 1954

Ahlig, Alkofer,  Ann. Phys. 275 (1999)
Connection with “anomalous” states?

)M(K )M(G )M(iφ )M(iφ

= iλ

K and G are Hermitian (even for 
unequal masses!) but KG is not

If               and             : 
Cholesky decomposition 

†G=G 0G >

L†L=G

iφiλ=iL φ†K L

)iLφ(iλ) =iLφ) (†LKL(

⇒  Hermitian problem 
     with same EVs!

⇒  all EVs strictly real
⇒  level repulsion
⇒  “anomalous states” removed?

GE, FBS 58 (2017)
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Complex eigenvalues?

Excited states: some EVs 
are complex conjugate? 

Typical for unequal-mass systems,
already in Wick-Cutkosky model 
Wick 1954, Cutkosky 1954

Ahlig, Alkofer,  Ann. Phys. 275 (1999)
Connection with “anomalous” states?

)M(K )M(G )M(iφ )M(iφ

= iλ

K and G are Hermitian (even for 
unequal masses!) but KG is not

If               and             : 
Cholesky decomposition 

†G=G 0G >

L†L=G

iφiλ=iL φ†K L

)iLφ(iλ) =iLφ) (†LKL(

⇒  Hermitian problem 
     with same EVs!

Eigenvalue spectrum
for pion channel

⇒  all EVs strictly real
⇒  level repulsion
⇒  “anomalous states” removed?

GE, FBS 58 (2017)

before: after:

only pos. EVs in G
only neg. EVs in G
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Extracting resonances

=

= + + . . .

. . .

. . .

. . .

+ +

+ + + +

+ +

=

=

Scattering amplitudes at quark-gluon level:

𝑇

cat‘s ears diagramshandbag t-channel meson poles

+ ++

Nucleon resonances

  

𝑇

=

𝑁, 𝑁*, 𝛥, . . .
𝜋, 𝜌, . . .

GPD

GE, Fischer,  PRD 85 (2012),  PRD 87 (2013)

Photoproduction of exotic mesons at JLab/GlueX:

𝑁, 𝑁*, 𝛥, . . .
XX

M

What if exotic mesons are relativistic qq states?
⇒ study with DSE/BSE!
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Meson electroproduction

GE, Sanchis-Alepuz, Williams, Alkofer, Fischer,  PPNP 91 (2016) Fubini, Nambu, Wataghin 1958,  Dennery 1961

3 independent variables (↔ s, t, u):

Amplitude depends on 6 Lorentz-invariant “FFs”

Photoproduction (𝜏 = 0) Electroproduction (𝜏 > 0) 

Kinematics:

=
(a) (b) (d)(c)

π, ρ, ω, ...

N, ∆, N∗N, ∆, N∗

Figure 2.2: Pion electroproduction amplitude. Diagrams (a) and (b) constitute the s- and u-channel nucleon and nucleon resonance
contributions to photo- and electroproduction. The non-resonant t-channel meson exchanges (c) contribute to the background of the
process. Figure (d) is an example for intermediate meson-baryon channels which provide the necessary cut structure.

2.2 Photo- and electroproduction processes

In this section we summarise the necessary elements to describe single-meson photo- and electroproduction
experiments, such as the kinematical phase space, choice of amplitudes and observables. We will also briefly
describe the models used to extract information on the resonance spectrum and their properties from the
scattering amplitudes.

Consider the process e− + N → e− + N + π. In the one-photon exchange approximation the amplitude
factorizes into a leptonic and a hadronic part and it is sufficient to consider the reaction γ∗+N → N +π, which
is the pion electroproduction amplitude depicted in Fig. 2.2. It depends on three independent momenta: the
average nucleon momentum P = (Pf + Pi)/2, the virtual photon momentum Q, and the pion momentum K.
In addition we denote the t-channel momentum transfer by ∆ = Q−K = Pf −Pi. Both nucleons and the pion
are onshell (P 2

f = P 2
i = −m2, K2 = −m2

π) and therefore the process is described by three Lorentz-invariant
kinematic variables. For later convenience and also in view of the analogous situation in Compton scattering
discussed in Sec. 5, we choose them as6

τ =
Q2

4m2
, η =

K · Q

m2
, λ = −P · Q

m2
= −P · K

m2
, (2.1)

where λ is the crossing variable and m the nucleon mass. Naturally the description through any other com-
bination of three independent Lorentz invariants is equivalent; for example in terms of the three Mandelstam
variables {s, u, t̃}:

{
s
u

}
= −

(
P ± Q + K

2

)2

= m2 (1 − η ± 2λ), t̃ = −∆2 = −Q2 + 2m2η + m2
π . (2.2)

These Mandelstam variables satisfy the usual relation s+t̃+u = 2m2+m2
π−Q2 where the minus sign reflects the

Euclidean convention for the virtual photon momentum. The fact that t̃ is negative in the experimental region
and that it usually appears in combination with a factor 4m2 motivates to slightly redefine the Mandelstam
variable in this channel as

t =
∆2

4m2
= τ − η

2
− µ , (2.3)

where we used the abbreviation µ = m2
π/(4m2).

At the hadronic level, the electroproduction amplitude is expressed by the sum of Born terms for the nu-
cleon and its resonances (the ∆ resonance, Roper, etc.), illustrated by the diagrams (a, b) in Fig. 2.2, which are
augmented by t-channel meson exchanges in diagram (c) as well as hadronic loops (d). If one has sufficiently
good control over the ‘QCD background’ stemming from the latter two topologies, this is ultimately how infor-
mation on nucleon resonance masses and their transition form factors can be extracted from experiments. The
relevant information is encoded in the six electroproduction amplitudes Ai(τ, η, λ) which enter in the covariant

6We use Euclidean conventions throughout this review, but since Lorentz-invariant scalar products differ from their Minkowski
counterparts only by minus signs these variables are the same in Minkowski space if one defines them as τ = −q2/(4m2), η = −k·q/m2,
etc., cf. App. A for more details.
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=
(a) (b) (d)(c)

π, ρ, ω, ...

N, ∆, N∗N, ∆, N∗

Figure 2.2: Pion electroproduction amplitude. Diagrams (a) and (b) constitute the s- and u-channel nucleon and nucleon resonance
contributions to photo- and electroproduction. The non-resonant t-channel meson exchanges (c) contribute to the background of the
process. Figure (d) is an example for intermediate meson-baryon channels which provide the necessary cut structure.

2.2 Photo- and electroproduction processes

In this section we summarise the necessary elements to describe single-meson photo- and electroproduction
experiments, such as the kinematical phase space, choice of amplitudes and observables. We will also briefly
describe the models used to extract information on the resonance spectrum and their properties from the
scattering amplitudes.

Consider the process e− + N → e− + N + π. In the one-photon exchange approximation the amplitude
factorizes into a leptonic and a hadronic part and it is sufficient to consider the reaction γ∗+N → N +π, which
is the pion electroproduction amplitude depicted in Fig. 2.2. It depends on three independent momenta: the
average nucleon momentum P = (Pf + Pi)/2, the virtual photon momentum Q, and the pion momentum K.
In addition we denote the t-channel momentum transfer by ∆ = Q−K = Pf −Pi. Both nucleons and the pion
are onshell (P 2

f = P 2
i = −m2, K2 = −m2

π) and therefore the process is described by three Lorentz-invariant
kinematic variables. For later convenience and also in view of the analogous situation in Compton scattering
discussed in Sec. 5, we choose them as6

τ =
Q2

4m2
, η =

K · Q

m2
, λ = −P · Q

m2
= −P · K

m2
, (2.1)

where λ is the crossing variable and m the nucleon mass. Naturally the description through any other com-
bination of three independent Lorentz invariants is equivalent; for example in terms of the three Mandelstam
variables {s, u, t̃}:

{
s
u

}
= −

(
P ± Q + K

2

)2

= m2 (1 − η ± 2λ), t̃ = −∆2 = −Q2 + 2m2η + m2
π . (2.2)

These Mandelstam variables satisfy the usual relation s+t̃+u = 2m2+m2
π−Q2 where the minus sign reflects the

Euclidean convention for the virtual photon momentum. The fact that t̃ is negative in the experimental region
and that it usually appears in combination with a factor 4m2 motivates to slightly redefine the Mandelstam
variable in this channel as

t =
∆2

4m2
= τ − η

2
− µ , (2.3)

where we used the abbreviation µ = m2
π/(4m2).

At the hadronic level, the electroproduction amplitude is expressed by the sum of Born terms for the nu-
cleon and its resonances (the ∆ resonance, Roper, etc.), illustrated by the diagrams (a, b) in Fig. 2.2, which are
augmented by t-channel meson exchanges in diagram (c) as well as hadronic loops (d). If one has sufficiently
good control over the ‘QCD background’ stemming from the latter two topologies, this is ultimately how infor-
mation on nucleon resonance masses and their transition form factors can be extracted from experiments. The
relevant information is encoded in the six electroproduction amplitudes Ai(τ, η, λ) which enter in the covariant

6We use Euclidean conventions throughout this review, but since Lorentz-invariant scalar products differ from their Minkowski
counterparts only by minus signs these variables are the same in Minkowski space if one defines them as τ = −q2/(4m2), η = −k·q/m2,
etc., cf. App. A for more details.
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and that it usually appears in combination with a factor 4m2 motivates to slightly redefine the Mandelstam
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where we used the abbreviation µ = m2
π/(4m2).

At the hadronic level, the electroproduction amplitude is expressed by the sum of Born terms for the nu-
cleon and its resonances (the ∆ resonance, Roper, etc.), illustrated by the diagrams (a, b) in Fig. 2.2, which are
augmented by t-channel meson exchanges in diagram (c) as well as hadronic loops (d). If one has sufficiently
good control over the ‘QCD background’ stemming from the latter two topologies, this is ultimately how infor-
mation on nucleon resonance masses and their transition form factors can be extracted from experiments. The
relevant information is encoded in the six electroproduction amplitudes Ai(τ, η, λ) which enter in the covariant
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Figure 2.3: Phase space of the pion electroproduction amplitude in the variables η and λ, with τ held fixed. The left panel shows
the case of photoproduction (τ = 0) and the right panel the analogous situation in electroproduction (τ > 0). The s- and u-channel
nucleon Born poles are shown by the thick (red) lines together with the nucleon resonance regions. The horizontal lines and bands
indicate the t-channel region t < 0. The shaded (blue) area in the bottom right is the physical region; the dot marks the threshold and
the dashed line is the limit cos θ = 0.

decomposition of the full amplitude:

Mµ(P, K, Q) = u(Pf )

(
6∑

i=1

Ai(τ, η, λ) Mµ
i (P, K, Q)

)
u(Pi) . (2.4)

Electromagnetic gauge invariance entails that the amplitude is transverse with respect to the photon momen-
tum, QµMµ(P, K, Q) = 0, which leaves six independent amplitudes in the general case and four amplitudes in
photoproduction where the photon is real (τ = 0).

The description in terms of the variables (2.1) has the advantage that the nucleon resonance positions at
fixed s = sR and u = uR do not change with τ , so they only depend on two Lorentz-invariant kinematic
variables as can be seen from (2.2) and Fig. 2.3. The two diagrams illustrate the phase space for photopro-
duction (τ = 0, left panel) and for electroproduction (τ > 0, right panel) in the variables λ and η.7 The Born
poles appear at s = m2 and u = m2 corresponding to λ = ±η/2. The resonance regions are indicated by
the shaded (red) areas in the plot, where at larger s and u the resonances are eventually washed out because
their hadronic decay widths shift their poles into the complex plane. The horizontal lines mark the onset of
the timelike t-channel regions for t < 0, where one has in addition the pion pole stemming from diagram (c)
in Fig. 2.2 as well as other meson poles. In addition, at fixed η one has branch cuts from multiparticle Nπ,
Nππ, . . . production: the right-hand cut starts at the threshold s = (m + mπ)2 and extends to infinity and
the left-hand cut begins at u = (m + mπ)2. In the t-channel region there are additional cuts from multipion
production starting at t = −4µ.

The shaded (blue) areas in the bottom right show the physical regions that are accessible in pion electro-
production experiments, defined by s > (m + mπ)2, τ > 0 and −1 < cos θ < 1, where θ is the CM scattering
angle from (2.11) below. They start at the thresholds

λthr =
2
√

µ

1 + 2
√

µ

(
τ + (1 +

√
µ)2

)
, ηthr =

4
√

µ

1 + 2
√

µ
(τ − µ − √

µ) (2.5)

with µ = m2
π/(4m2). Note that both thresholds vanish in the chiral limit mπ = 0. In the physical region the

amplitudes Ai(τ, η, λ) are necessarily complex functions due to the cut structure. In practice one performs
multipole expansions for their angular dependence in cos θ around the central value cos θ = 0, which we will
discuss further below, so that the remaining multipole amplitudes only depend on s and τ . In principle one can
then extract the various Nγ∗ → N∗ transition form factors, which are functions of τ only, from the resonance
locations s = sR.

7 Note that the phase space for πN scattering is identical if Q2 is held fixed at Q2 = −m2
π, or equivalently τ = −µ.
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Ideally one would like to work with electroproduction amplitudes Ai(τ, η, λ) that only have physical poles
and cuts and are otherwise free of kinematic singularities or constraints. In principle this can be achieved
by choosing an appropriate tensor basis constructed along the lines of Lorentz covariance, gauge invariance,
analyticity and charge-conjugation invariance. The simplest such basis is given by

Mµ
1...6(P, K, Q) = iγ5

{
[γµ, /Q] , tµνQK P ν , tµνQQ P ν , tµνQP iγν , λ tµνQK iγν , λ tµνQQ iγν

}
, (2.6)

where we abbreviated
tµνAB = A · B δµν − BµAν . (2.7)

Because Aµ tµνAB = 0, one immediately verifies that all tensors are transverse to the photon momentum. They
are free of kinematic singularities and feature the lowest possible powers in Qµ, i.e., the basis is ‘minimal’ with
respect to the photon momentum. Furthermore, the factors λ ensure that each basis element is invariant under
charge conjugation: Mµ

i (P, K, Q) = −C Mµ
i (−P, K, Q)T CT , where C = γ4γ2 is the charge-conjugation matrix

(cf. App. A), because the same invariance must hold for the full amplitude as well. As a consequence, the
amplitudes Ai(τ, η, λ) are symmetric in λ and thus they only depend on λ2, so we really only need to discuss
the right half of the phase space (λ > 0) in Fig. 2.3. In the case of real photons, Mµ

3 and Mµ
6 decouple from

the cross section and one is left with four independent amplitudes.
As a side remark, we note that the covariant tensors defined in [44, 45], which are frequently used in

theoretical descriptions of pion electroproduction,

M̃µ
1...6 =

{
−Mµ

1

2
, Mµ

3 − 2Mµ
2 ,

Mµ
5

λ
, mMµ

1 + 2Mµ
4 ,

4τMµ
2 − ηMµ

3

λ
,

Mµ
6

λ

}
, (2.8)

do not form a minimal basis due to the element M̃µ
5 = iγ5 tµνQQ Kν . The relation between (2.6) and (2.8) shows

that two of the corresponding ‘Dennery amplitudes’ Ã2 and Ã5 have a kinematic singularity at the pion pole
location t = −µ, which is outside of the physical region but still has to be subtracted in dispersion integrals [46].
In any case, M̃µ

5 and M̃µ
6 drop out in photoproduction where the remaining amplitudes are kinematically safe.

Note also that Ã3,5,6 are antisymmetric in λ and therefore they vanish for λ = 0.

Pion electroproduction in the CM frame. In the one-photon approximation the reaction e−+N → e−+N+π
can be split into a leptonic and a hadronic part. It is common to evaluate the former in the laboratory frame
and the latter in the nucleon-pion CM frame, which is illustrated in Fig. 2.4. The leptonic reaction takes place
in the scattering plane and the hadronic reaction in the reaction plane, where θ is the scattering angle between
the virtual photon and the pion in the CM frame. Using a Euclidean notation, the virtual photon, pion and
nucleon momenta in the CM frame are given by

Q =

[
q

iEq

]
, K =

[
k

iEk

]
, Pi =

[
−q
iEi

]
, Pf =

[
−k
iEf

]
. (2.9)

If we introduce a variable δ by writing s = m2(1+4δ), then their relations to the Lorentz invariants s and τ are
given by

Eq =
2m2

√
s

(δ − τ) ,

Ek =
2m2

√
s

(δ + µ) ,

Ei =
2m2

√
s

(
1
2 + δ + τ

)
,

Ef =
2m2

√
s

(
1
2 + δ − µ

)
,

|q| =
2m2

√
s

√
(δ + τ)2 + τ ,

|k| =
2m2

√
s

√
(δ − µ)2 − µ ,

(2.10)

with µ = m2
π/(4m2). The CM scattering angle defined by q · k = |q||k| cos θ additionally depends on t and it is

related to the Lorentz invariants via

t =
Ei Ef − q · k − m2

2m2
⇒ cos θ =

(δ + τ)(δ − µ) + 1
2(τ − µ) − (δ + 1

4) 2t√
((δ + τ)2 + τ) ((δ − µ)2 − µ)

. (2.11)

The unphysical point |q| = 0 is called the pseudo-threshold or Siegert limit [47].

10

with appropriate tensor basis: no kinematic singularities (in contrast to Dennery amplitudes)

’

RCS

VCS

FW
D

GP

 
 

R
es

on
an

ce
s 

in
 s

R
esonances in u

 
 

 
 

 

 
 

 

 = 0 

 = 0 

(  = 0): (   0): 

Photo-
production

Electro-
production

cos  = 0 

cos  = 0 

 
 

R
es

on
an

ce
s 

in
 s

R
esonances in u

 
 

 
 

 

 
 

 

 = 0 

 = 0 

(  = 0): (   0): 

Photo-
production

Electro-
production

cos  = 0 

cos  = 0 

Gernot Eichmann (IST Lisboa) Aug 30, 2017 30 / 30



Meson electroproduction

Photoproduction (𝜏 = 0) Electroproduction (𝜏 > 0) 

Kinematics:

=
(a) (b) (d)(c)

π, ρ, ω, ...

N, ∆, N∗N, ∆, N∗

Figure 2.2: Pion electroproduction amplitude. Diagrams (a) and (b) constitute the s- and u-channel nucleon and nucleon resonance
contributions to photo- and electroproduction. The non-resonant t-channel meson exchanges (c) contribute to the background of the
process. Figure (d) is an example for intermediate meson-baryon channels which provide the necessary cut structure.

2.2 Photo- and electroproduction processes

In this section we summarise the necessary elements to describe single-meson photo- and electroproduction
experiments, such as the kinematical phase space, choice of amplitudes and observables. We will also briefly
describe the models used to extract information on the resonance spectrum and their properties from the
scattering amplitudes.

Consider the process e− + N → e− + N + π. In the one-photon exchange approximation the amplitude
factorizes into a leptonic and a hadronic part and it is sufficient to consider the reaction γ∗+N → N +π, which
is the pion electroproduction amplitude depicted in Fig. 2.2. It depends on three independent momenta: the
average nucleon momentum P = (Pf + Pi)/2, the virtual photon momentum Q, and the pion momentum K.
In addition we denote the t-channel momentum transfer by ∆ = Q−K = Pf −Pi. Both nucleons and the pion
are onshell (P 2

f = P 2
i = −m2, K2 = −m2

π) and therefore the process is described by three Lorentz-invariant
kinematic variables. For later convenience and also in view of the analogous situation in Compton scattering
discussed in Sec. 5, we choose them as6

τ =
Q2

4m2
, η =

K · Q

m2
, λ = −P · Q

m2
= −P · K

m2
, (2.1)

where λ is the crossing variable and m the nucleon mass. Naturally the description through any other com-
bination of three independent Lorentz invariants is equivalent; for example in terms of the three Mandelstam
variables {s, u, t̃}:

{
s
u

}
= −

(
P ± Q + K

2

)2

= m2 (1 − η ± 2λ), t̃ = −∆2 = −Q2 + 2m2η + m2
π . (2.2)

These Mandelstam variables satisfy the usual relation s+t̃+u = 2m2+m2
π−Q2 where the minus sign reflects the

Euclidean convention for the virtual photon momentum. The fact that t̃ is negative in the experimental region
and that it usually appears in combination with a factor 4m2 motivates to slightly redefine the Mandelstam
variable in this channel as

t =
∆2

4m2
= τ − η

2
− µ , (2.3)

where we used the abbreviation µ = m2
π/(4m2).

At the hadronic level, the electroproduction amplitude is expressed by the sum of Born terms for the nu-
cleon and its resonances (the ∆ resonance, Roper, etc.), illustrated by the diagrams (a, b) in Fig. 2.2, which are
augmented by t-channel meson exchanges in diagram (c) as well as hadronic loops (d). If one has sufficiently
good control over the ‘QCD background’ stemming from the latter two topologies, this is ultimately how infor-
mation on nucleon resonance masses and their transition form factors can be extracted from experiments. The
relevant information is encoded in the six electroproduction amplitudes Ai(τ, η, λ) which enter in the covariant

6We use Euclidean conventions throughout this review, but since Lorentz-invariant scalar products differ from their Minkowski
counterparts only by minus signs these variables are the same in Minkowski space if one defines them as τ = −q2/(4m2), η = −k·q/m2,
etc., cf. App. A for more details.
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Figure 2.2: Pion electroproduction amplitude. Diagrams (a) and (b) constitute the s- and u-channel nucleon and nucleon resonance
contributions to photo- and electroproduction. The non-resonant t-channel meson exchanges (c) contribute to the background of the
process. Figure (d) is an example for intermediate meson-baryon channels which provide the necessary cut structure.

2.2 Photo- and electroproduction processes

In this section we summarise the necessary elements to describe single-meson photo- and electroproduction
experiments, such as the kinematical phase space, choice of amplitudes and observables. We will also briefly
describe the models used to extract information on the resonance spectrum and their properties from the
scattering amplitudes.

Consider the process e− + N → e− + N + π. In the one-photon exchange approximation the amplitude
factorizes into a leptonic and a hadronic part and it is sufficient to consider the reaction γ∗+N → N +π, which
is the pion electroproduction amplitude depicted in Fig. 2.2. It depends on three independent momenta: the
average nucleon momentum P = (Pf + Pi)/2, the virtual photon momentum Q, and the pion momentum K.
In addition we denote the t-channel momentum transfer by ∆ = Q−K = Pf −Pi. Both nucleons and the pion
are onshell (P 2

f = P 2
i = −m2, K2 = −m2

π) and therefore the process is described by three Lorentz-invariant
kinematic variables. For later convenience and also in view of the analogous situation in Compton scattering
discussed in Sec. 5, we choose them as6

τ =
Q2

4m2
, η =

K · Q

m2
, λ = −P · Q
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= −P · K

m2
, (2.1)

where λ is the crossing variable and m the nucleon mass. Naturally the description through any other com-
bination of three independent Lorentz invariants is equivalent; for example in terms of the three Mandelstam
variables {s, u, t̃}:

{
s
u

}
= −

(
P ± Q + K

2

)2

= m2 (1 − η ± 2λ), t̃ = −∆2 = −Q2 + 2m2η + m2
π . (2.2)

These Mandelstam variables satisfy the usual relation s+t̃+u = 2m2+m2
π−Q2 where the minus sign reflects the

Euclidean convention for the virtual photon momentum. The fact that t̃ is negative in the experimental region
and that it usually appears in combination with a factor 4m2 motivates to slightly redefine the Mandelstam
variable in this channel as

t =
∆2

4m2
= τ − η

2
− µ , (2.3)

where we used the abbreviation µ = m2
π/(4m2).

At the hadronic level, the electroproduction amplitude is expressed by the sum of Born terms for the nu-
cleon and its resonances (the ∆ resonance, Roper, etc.), illustrated by the diagrams (a, b) in Fig. 2.2, which are
augmented by t-channel meson exchanges in diagram (c) as well as hadronic loops (d). If one has sufficiently
good control over the ‘QCD background’ stemming from the latter two topologies, this is ultimately how infor-
mation on nucleon resonance masses and their transition form factors can be extracted from experiments. The
relevant information is encoded in the six electroproduction amplitudes Ai(τ, η, λ) which enter in the covariant

6We use Euclidean conventions throughout this review, but since Lorentz-invariant scalar products differ from their Minkowski
counterparts only by minus signs these variables are the same in Minkowski space if one defines them as τ = −q2/(4m2), η = −k·q/m2,
etc., cf. App. A for more details.
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Ideally one would like to work with electroproduction amplitudes Ai(τ, η, λ) that only have physical poles
and cuts and are otherwise free of kinematic singularities or constraints. In principle this can be achieved
by choosing an appropriate tensor basis constructed along the lines of Lorentz covariance, gauge invariance,
analyticity and charge-conjugation invariance. The simplest such basis is given by

Mµ
1...6(P, K, Q) = iγ5

{
[γµ, /Q] , tµνQK P ν , tµνQQ P ν , tµνQP iγν , λ tµνQK iγν , λ tµνQQ iγν

}
, (2.6)

where we abbreviated
tµνAB = A · B δµν − BµAν . (2.7)

Because Aµ tµνAB = 0, one immediately verifies that all tensors are transverse to the photon momentum. They
are free of kinematic singularities and feature the lowest possible powers in Qµ, i.e., the basis is ‘minimal’ with
respect to the photon momentum. Furthermore, the factors λ ensure that each basis element is invariant under
charge conjugation: Mµ

i (P, K, Q) = −C Mµ
i (−P, K, Q)T CT , where C = γ4γ2 is the charge-conjugation matrix

(cf. App. A), because the same invariance must hold for the full amplitude as well. As a consequence, the
amplitudes Ai(τ, η, λ) are symmetric in λ and thus they only depend on λ2, so we really only need to discuss
the right half of the phase space (λ > 0) in Fig. 2.3. In the case of real photons, Mµ

3 and Mµ
6 decouple from

the cross section and one is left with four independent amplitudes.
As a side remark, we note that the covariant tensors defined in [44, 45], which are frequently used in

theoretical descriptions of pion electroproduction,

M̃µ
1...6 =

{
−Mµ

1

2
, Mµ

3 − 2Mµ
2 ,

Mµ
5

λ
, mMµ

1 + 2Mµ
4 ,

4τMµ
2 − ηMµ

3

λ
,

Mµ
6

λ

}
, (2.8)

do not form a minimal basis due to the element M̃µ
5 = iγ5 tµνQQ Kν . The relation between (2.6) and (2.8) shows

that two of the corresponding ‘Dennery amplitudes’ Ã2 and Ã5 have a kinematic singularity at the pion pole
location t = −µ, which is outside of the physical region but still has to be subtracted in dispersion integrals [46].
In any case, M̃µ

5 and M̃µ
6 drop out in photoproduction where the remaining amplitudes are kinematically safe.

Note also that Ã3,5,6 are antisymmetric in λ and therefore they vanish for λ = 0.

Pion electroproduction in the CM frame. In the one-photon approximation the reaction e−+N → e−+N+π
can be split into a leptonic and a hadronic part. It is common to evaluate the former in the laboratory frame
and the latter in the nucleon-pion CM frame, which is illustrated in Fig. 2.4. The leptonic reaction takes place
in the scattering plane and the hadronic reaction in the reaction plane, where θ is the scattering angle between
the virtual photon and the pion in the CM frame. Using a Euclidean notation, the virtual photon, pion and
nucleon momenta in the CM frame are given by

Q =

[
q

iEq

]
, K =

[
k

iEk

]
, Pi =

[
−q
iEi

]
, Pf =

[
−k
iEf

]
. (2.9)

If we introduce a variable δ by writing s = m2(1+4δ), then their relations to the Lorentz invariants s and τ are
given by

Eq =
2m2

√
s

(δ − τ) ,

Ek =
2m2

√
s

(δ + µ) ,

Ei =
2m2

√
s

(
1
2 + δ + τ

)
,

Ef =
2m2

√
s

(
1
2 + δ − µ

)
,

|q| =
2m2

√
s

√
(δ + τ)2 + τ ,

|k| =
2m2

√
s

√
(δ − µ)2 − µ ,

(2.10)

with µ = m2
π/(4m2). The CM scattering angle defined by q · k = |q||k| cos θ additionally depends on t and it is

related to the Lorentz invariants via

t =
Ei Ef − q · k − m2

2m2
⇒ cos θ =

(δ + τ)(δ − µ) + 1
2(τ − µ) − (δ + 1

4) 2t√
((δ + τ)2 + τ) ((δ − µ)2 − µ)

. (2.11)

The unphysical point |q| = 0 is called the pseudo-threshold or Siegert limit [47].

10

’

RCS

VCS

FW
D

GP

 
 

R
es

on
an

ce
s 

in
 s

R
esonances in u

 
 

 
 

 

 
 

 

 = 0 

 = 0 

(  = 0): (   0): 

Photo-
production

Electro-
production

cos  = 0 

cos  = 0 

 
 

R
es

on
an

ce
s 

in
 s

R
esonances in u

 
 

 
 

 

 
 

 

 = 0 

 = 0 

(  = 0): (   0): 

Photo-
production

Electro-
production

cos  = 0 

cos  = 0 

if amplitudes free of kinematic singularities, 
only physical poles and cuts
⇒  extrapolate from unphysical regions (or offshell kinematics)

clean solution (expensive): use contour deformations

Singularity structure of quark propagator prevents
direct kinematic access to all relevant regions

Strategies:

Mesons

Kernel can be derived in accordance with chiral symmetry:

-1
=

=

=
-1

+ +

= + + + + +

+

Rainbow-ladder:
effective gluon exchange

Maris,  Tandy, PRC 60 (1999),  Qin et al., PRC 84 (2011)

 (   ) =         ,  + ( ²)  2 ²
²

adjust scale  to observable, 
keep width  as parameter

 

 
 
 
 
 

12

15

9

6

3

0
0 0.5 1 1.5 2

   [ ]

(    )

1.6
1.7
1.8
1.9
2.0

 (   )2

 (   )2

1.5

1.0

0.5

0.0
+−0 −−1 ++0 −+1 ++1 −+0−−0 +−1

2PI-3L

3PI-3L

PDG

(1600) [ ]

(1260)
(1450)(1450)

(1300) (1235)
(1400)

see talk by Andreas Windisch!

Quark propagator calculated
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. . . and more

Scattering amplitudes from quark level:

Hadronic light-by-light scattering 
Nucleon
Compton
scattering

𝜋𝜋 scattering

GE, Fischer,  PRD 85 (2012) & 
PRD 87 (2013),  GE,  FBS 57 (2016)

Bicudo et al., 
PRD 65 (2002),

Cotanch, Maris,  
PRD 66 (2002)

Goecke, Fischer, Williams,  PLB 704 (2011),   
GE, Fischer, Heupel,  PRD 92 (2015)

Colangelo,
PoS Kaon (2008)

Colangelo,
PoS Kaon (2008)

t
channel

u
channel

s
channel

 = 0

 = 1

 = 0  =
 0

 = 4

 =
 4

Universal band

ChPT tree, 1 loop, 2 loops
ChPT + dispersion theory (2001)

DIRAC (2005)
NA48 K -> 3 π  (2005)
E865 isospin corrected
NA48 isospin-corrected

MILC (2004) 
NPLQCD (2005) 
Del Debbio (2007) 
ETM (2007) 

DSE (rainbow-ladder)
0.16

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.18 0.20 0.22 0.24 0.26
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Muon g-2

Theory uncertainty dominated by QCD:
Is QCD contribution under control? 

Hadronic 
light-by-light 
scattering

Exp: 

SM: 

QED:

Diff:

EW:
Hadronic:

VP (LO+HO)
LBL

11 659 208.9

11 658 

11 659 182.8

15.3

685.1
10.5

26.1

(6.3)

(0.0)
(0.2)

(4.3)
(2.6)    ?

(4.9)
(8.0)

471.9

]10−[10µa

Hadronic 
vacuum 
polarization

LbL amplitude: ENJL & MD model results
Bijnens 1995,  Hakayawa 1995,  Knecht 2002,  Melnikov 2004,  Prades 2009,  Jegerlehner 2009,  Pauk 2014

Jegerlehner, Ny�eler,  
Phys. Rept.  477 (2009)

=

22 8 ... 11

scalar
exchange

pseudoscalar
exchange

Quark loop axialvector
exchange

𝜋, 𝐾 loop

++ + + + . . .

−1 −2 )10−10×(

13

Apart from global factors k ·Q, the four tensor structures
corresponding to f3,4,7,8 are linear and the remaining four
are quadratic in the photon momentum.

The question remains whether Eq. (82) can be ob-
tained from a systematic construction principle. To this
end we define the quantities

tµνab := a · b δµν − bµaν ,

εµνab := γ5 εµναβaαbβ ,
(84)

with aµ, bµ ∈ {kµ, Qµ}. They are both regular in the
limits a → 0 or b → 0. tµνab is transverse to aµ and bν ,

aµ tµνab = 0 , tµνab bν = 0 , (85)

whereas εµνab is transverse to a and b in both Lorentz in-
dices. The usual transverse projectors can thus be writ-

ten as Tµν
Q = tµνQQ/Q2 and Tµν

Q′ = tµνQ′Q′/Q′2.
With the help of these definitions one can generate the

basis (82) as follows. Take the four tensor structures that
are independent of the photon momentum:

γν , [γν , /k] , kν , kν/k . (86)

Contract them with tµνQQ, tµνQk and εµνQk to generate eight
transverse basis elements that are kinematically indepen-
dent and linear or quadratic in the four-momentum Qµ:

tµνQQ





γν

[γν , /k]

kν

kν/k





= Q2





γµ
T

[γµ
T , /k]

kµ
T

kµ
T /k





,

tµνQk

{
γν

[γν , /k]

}
=

{
k ·Q γµ − kµ /Q

[k ·Q γµ − kµ /Q, /k]

}
,

εµνQk

{
γν

[γν , /k]

}
=

{
1
6 [γµ, /k, /Q]

tµνQk [γν , /k] − k2 [γµ, /Q]

}
.

(87)

Instead of using tµνQk and εµνQk, one could contract the four

elements in Eq. (86) also with tµνQγ = /Q δµν − γµQν and
use commutators where necessary. However, this does
not generate any new elements:

1
2

[
tµνQγ , γν

]
= − [γµ, /Q] ,

1
2

[
tµνQγ , γν , /k

]
= [γµ, /k, /Q] ,

tµνQγ kν = −4 tµνQk γν ,
[
tµνQγ kν , /k

]
= −tµνQk [γν , /k] .

(88)

Finally, attach appropriate factors k ·Q to ensure charge-
conjugation invariance of the dressing functions.

We will henceforth use Eq. (82) as our reference basis
for the transverse part of the fermion-photon vertex. We
write it in a compact way:

τµ
1 = tµνQQ γν ,

τµ
2 = tµνQQ k ·Q i

2 [γν , /k] ,

τµ
3 = i

2 [γµ, /Q] ,

τµ
4 = 1

6 [γµ, /k, /Q] ,

τµ
5 = tµνQQ ikν ,

τµ
6 = tµνQQ kν/k ,

τµ
7 = tµνQk k ·Q γν ,

τµ
8 = tµνQk

i
2 [γν , /k] .

(89)

The full vertex is thus given by Eq. (74), with the trans-
verse part

− iΓµ
T (k, Q) =

8∑

i=1

fi(k
2, k · Q, Q2) τµ

i (k, Q) . (90)

The dimensionful dressing functions fi(k
2, k ·Q, Q2) are

again even in k · Q. They are kinematically independent
and can remain constant at vanishing photon momen-
tum. The basis (89) is essentially identical to Eq. (A.8)
in Ref. [53] and Eq. (A2) in Ref. [55]. The relations be-
tween our τµ

i and the transverse tensor structures Tµ
i in

those papers are

τ1 = −T3 ,

τ2 = − 1
2 k ·Q T4 ,

τ3 = T5 ,

τ4 = T8 ,

τ5 = T1 ,

τ6 = 1
2 T2 ,

τ7 = − 1
2 k ·Q T6 ,

τ8 = 1
2 T7 .

(91)

The dressing functions associated with τ3 and τ4 con-
tribute to the onshell anomalous magnetic moment,
cf. Ref. [48] and Eq. (96) below, and τ7 constitutes the
transverse part of the Curtis-Pennington vertex [56].

Finally, to obtain a connection with the nucleon’s on-
shell current, we investigate the limit where the incoming
and outgoing fermion lines are taken on the mass shell,
i.e., k2

± = −m2 or

k2 = −m2 − Q2/4 , k · Q = 0 . (92)

The onshell vertex

Jµ(k, Q) = Λf
+ Γµ(k, Q) Λi

+

∣∣∣
Eq. (92)

(93)

is sandwiched between Dirac spinors that are eigenvec-
tors of the positive-energy projectors

Λf
+ = Λ+(k+),

Λi
+ = Λ+(k−),

Λ+(p) =
1+ /̂p

2
. (94)

By virtue of the projectors, only two of the basis elements
in Eq. (89) remain independent, and the vertex can be
written in the standard form

Jµ(k, Q) = iΛf
+

(
F1 γµ +

iF2

4m
[γµ, /Q]

)
Λi
+ , (95)

where F1, F2 are dimensionless functions of Q2 only. Via
Eq. (74) they consist of Ball-Chiu parts and transverse
components which are related to the functions ΣA, ∆A,
∆B and fj in the onshell limit:

F1(Q
2) = A(−m2) + 2m

[
B′(−m2) − mA′(−m2)

]

+ Q2

[
f1 − m (f5 + mf6) − f4 − mf8

2

] ∣∣∣∣∣
Eq. (92)

,

F2(Q
2)

2m
= f3 − mf4 −

[
B′(−m2) − mA′(−m2)

]

+
Q2

2

[
f5 + mf6 − f8

2

] ∣∣∣∣∣
Eq. (92)

.

(96)

Muon anomalous magnetic moment: 

)p(u
]

m2
νq

µνσ
)2q(2F–µγ)2q(1F

[
)′p(ūie

𝑞
〉H|)2x(ψ̄)1x(T ψ|0〈) =2, x1x(χ

𝑝’ 𝑝

total SM prediction deviates from exp. by ~3σ
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Muon g-2

Theory uncertainty dominated by QCD:
Is QCD contribution under control? 

Hadronic 
light-by-light 
scattering

Exp: 

SM: 

QED:

Diff:

EW:
Hadronic:

VP (LO+HO)
LBL

11 659 208.9

11 658 

11 659 182.8

15.3

685.1
10.5

26.1

(6.3)

(0.0)
(0.2)

(4.3)
(2.6)    ?

(4.9)
(8.0)

471.9

]10−[10µa

Hadronic 
vacuum 
polarization

LbL amplitude at quark level, derived from gauge invariance:
GE, Fischer,  PRD 85 (2012),   Goecke, Fischer, Williams, PRD 87 (2013)

need to understand
structure of amplitude

no double-counting, 
gauge invariant!

Jegerlehner, Ny�eler,  
Phys. Rept.  477 (2009)

= + 𝑇 =

quark 
Compton vertex

Born terms GE, Fischer, Heupel, PRD 92 (2015)

13

Apart from global factors k ·Q, the four tensor structures
corresponding to f3,4,7,8 are linear and the remaining four
are quadratic in the photon momentum.

The question remains whether Eq. (82) can be ob-
tained from a systematic construction principle. To this
end we define the quantities

tµνab := a · b δµν − bµaν ,

εµνab := γ5 εµναβaαbβ ,
(84)

with aµ, bµ ∈ {kµ, Qµ}. They are both regular in the
limits a → 0 or b → 0. tµνab is transverse to aµ and bν ,

aµ tµνab = 0 , tµνab bν = 0 , (85)

whereas εµνab is transverse to a and b in both Lorentz in-
dices. The usual transverse projectors can thus be writ-

ten as Tµν
Q = tµνQQ/Q2 and Tµν

Q′ = tµνQ′Q′/Q′2.
With the help of these definitions one can generate the

basis (82) as follows. Take the four tensor structures that
are independent of the photon momentum:

γν , [γν , /k] , kν , kν/k . (86)

Contract them with tµνQQ, tµνQk and εµνQk to generate eight
transverse basis elements that are kinematically indepen-
dent and linear or quadratic in the four-momentum Qµ:

tµνQQ





γν

[γν , /k]

kν

kν/k





= Q2





γµ
T

[γµ
T , /k]

kµ
T

kµ
T /k





,

tµνQk

{
γν

[γν , /k]

}
=

{
k ·Q γµ − kµ /Q

[k ·Q γµ − kµ /Q, /k]

}
,

εµνQk

{
γν

[γν , /k]

}
=

{
1
6 [γµ, /k, /Q]

tµνQk [γν , /k] − k2 [γµ, /Q]

}
.

(87)

Instead of using tµνQk and εµνQk, one could contract the four

elements in Eq. (86) also with tµνQγ = /Q δµν − γµQν and
use commutators where necessary. However, this does
not generate any new elements:

1
2

[
tµνQγ , γν

]
= − [γµ, /Q] ,

1
2

[
tµνQγ , γν , /k

]
= [γµ, /k, /Q] ,

tµνQγ kν = −4 tµνQk γν ,
[
tµνQγ kν , /k

]
= −tµνQk [γν , /k] .

(88)

Finally, attach appropriate factors k ·Q to ensure charge-
conjugation invariance of the dressing functions.

We will henceforth use Eq. (82) as our reference basis
for the transverse part of the fermion-photon vertex. We
write it in a compact way:

τµ
1 = tµνQQ γν ,

τµ
2 = tµνQQ k ·Q i

2 [γν , /k] ,

τµ
3 = i

2 [γµ, /Q] ,

τµ
4 = 1

6 [γµ, /k, /Q] ,

τµ
5 = tµνQQ ikν ,

τµ
6 = tµνQQ kν/k ,

τµ
7 = tµνQk k ·Q γν ,

τµ
8 = tµνQk

i
2 [γν , /k] .

(89)

The full vertex is thus given by Eq. (74), with the trans-
verse part

− iΓµ
T (k, Q) =

8∑

i=1

fi(k
2, k · Q, Q2) τµ

i (k, Q) . (90)

The dimensionful dressing functions fi(k
2, k ·Q, Q2) are

again even in k · Q. They are kinematically independent
and can remain constant at vanishing photon momen-
tum. The basis (89) is essentially identical to Eq. (A.8)
in Ref. [53] and Eq. (A2) in Ref. [55]. The relations be-
tween our τµ

i and the transverse tensor structures Tµ
i in

those papers are

τ1 = −T3 ,

τ2 = − 1
2 k ·Q T4 ,

τ3 = T5 ,

τ4 = T8 ,

τ5 = T1 ,

τ6 = 1
2 T2 ,

τ7 = − 1
2 k ·Q T6 ,

τ8 = 1
2 T7 .

(91)

The dressing functions associated with τ3 and τ4 con-
tribute to the onshell anomalous magnetic moment,
cf. Ref. [48] and Eq. (96) below, and τ7 constitutes the
transverse part of the Curtis-Pennington vertex [56].

Finally, to obtain a connection with the nucleon’s on-
shell current, we investigate the limit where the incoming
and outgoing fermion lines are taken on the mass shell,
i.e., k2

± = −m2 or

k2 = −m2 − Q2/4 , k · Q = 0 . (92)

The onshell vertex

Jµ(k, Q) = Λf
+ Γµ(k, Q) Λi

+

∣∣∣
Eq. (92)

(93)

is sandwiched between Dirac spinors that are eigenvec-
tors of the positive-energy projectors

Λf
+ = Λ+(k+),

Λi
+ = Λ+(k−),

Λ+(p) =
1+ /̂p

2
. (94)

By virtue of the projectors, only two of the basis elements
in Eq. (89) remain independent, and the vertex can be
written in the standard form

Jµ(k, Q) = iΛf
+

(
F1 γµ +

iF2

4m
[γµ, /Q]

)
Λi
+ , (95)

where F1, F2 are dimensionless functions of Q2 only. Via
Eq. (74) they consist of Ball-Chiu parts and transverse
components which are related to the functions ΣA, ∆A,
∆B and fj in the onshell limit:

F1(Q
2) = A(−m2) + 2m

[
B′(−m2) − mA′(−m2)

]

+ Q2

[
f1 − m (f5 + mf6) − f4 − mf8

2

] ∣∣∣∣∣
Eq. (92)

,

F2(Q
2)

2m
= f3 − mf4 −

[
B′(−m2) − mA′(−m2)

]

+
Q2

2

[
f5 + mf6 − f8

2

] ∣∣∣∣∣
Eq. (92)

.

(96)

Muon anomalous magnetic moment: 

)p(u
]

m2
νq

µνσ
)2q(2F–µγ)2q(1F

[
)′p(ūie

𝑞
〉H|)2x(ψ̄)1x(T ψ|0〈) =2, x1x(χ

𝑝’ 𝑝

total SM prediction deviates from exp. by ~3σ
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