

Baryon spectrum and structure, nucleon Compton scattering

Gernot Eichmann

INT Workshop "Tomography of Hadrons and Nuclei at Jefferson Lab"

August 30, 2017 Seattle, WA, USA

<ロト < 回 > < 三 > < 三 > < 三 > < 回 > < 回 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Why?

QCD Lagrangian: $\mathcal{L} = \bar{\psi} \left(\partial + i g A + m \right) \psi + \frac{1}{4} F_{\mu\nu}^{a} F_{a}^{\mu\nu}$

- if it only were that simple... we don't measure quarks and gluons, but hadrons qq g q g pentaguarks?? tetraguarks? mesons hvbrids? alueballs?
- · origin of mass generation and confinement?

barvons

	u	d	s	с	b	t
Current mass [GeV]	0.003	0.005	0.1	1	4	175
"Constituent" mass [GeV]	0.35	0.35	0.5	1.5	4.5	175

· need to understand spectrum and interactions!

Compton scattering

 Two-photon corrections to form factors: can explain difference between Rosenbluth and polarization transfer measurements Guichon, Vanderhaehen, PRL 91 (2003)

Arrington, Blunden, Melnitchouk Prog. Part. Nucl. Phys. 66 (2011)

· Proton radius puzzle:

can TPE explain discrepancy between $e \& \mu$ measurements? So far: probably not, but ...

Antonigni et al., Ann Phys 331 (2013), Pohl et al., Ann Rev Nucl Part Sci 63 (2013), Carlson, Prog. Part. Nucl. Phys. 82 (2015)

Nucleon polarizabilities:

efforts from ChPT & dispersion relations Hagelstein, Miskimen, Pascalutsa, Prog. Part. Nucl. Phys. 88 (2016)

Compton scattering

• Forward limit:

determined by photoabsorption cross section and nucleon structure functions

$$\sum = \sum \left| \sum \left| \sum \right|^2 \right|^2$$

- Virtual CS: generalized polarizabilities, DVCS: factorization & handbag dominance, extraction of GPDs
- Real CS: dominant quark-level mechanism in WACS?
- Timelike CS: pp annihilation @ PANDA

GPD

Hamilton et al., PRL 94 (2005)

< ロ ト < 同 ト < 三 ト < 三 ト

Compton scattering ...

Compton amplitude = sum of Born terms + 1PI structure part:

Meso	ns							
0-+	0++	1-+	1	1++	1+-	2-+	2++	3
$\pi(140)$ $\pi(1300)$ $\pi(1800)$	a ₀ (980) a ₀ (1450) a ₀ (1950)	π ₁ (1400) π ₁ (1600)	ho(770) ho(1450) ho(1570) ho(1570) ho(1700) ho(1900)	a1(1260) a1(1420) a1(1640)	b1(1235)	π ₂ (1670) π ₂ (1880)	a ₂ (1320) a ₂ (1700)	ρ ₈ (1690) ρ ₃ (1990)
K(494) K(1460) K(1830)	$egin{array}{c} K_0^*(800) \ K_0^*(1430) \ K_0^*(1950) \end{array}$		K*(892) K*(1410) K*(1680)	K1(1400) K1(1650)	K ₁ (1270)	$egin{array}{c} K_3(1580) \ K_2(1770) \ K_2(1820) \end{array}$	K[*]₂(1430) K [*] ₂ (1980)	K [*] ₈ (1780)
η (548) η' (958) η (1295) η (1405) η (1405) η (1475) η (1760)	$f_0(500)$ $f_0(980)$ $f_0(1370)$ $f_0(1500)$ $f_0(1710)$		ω (782) ϕ (1020) ω (1420) ω (1650) ϕ (1680)	f1(1285) f1(1420) f1(1510)	h ₁ (1170) h ₁ (1380) h ₁ (1595)	η₂(1645) η ₂ (1870)	$f_2(1270)$ $f_2(1430)$ $f_3(1525)$ $f_3(1565)$ $f_3(1640)$ $f_3(1810)$ $f_2(1910)$ $f_2(1950)$	ω ₃ (1670) φ ₃ (1850)

Baryons

1+ 2	1- 2	3 ⁺	8- 2	5 ⁺ 2	5-	7+ 2
N(939) N(1440) N(1710) N(1880)	N(1535) N(1650) N(1895)	N(1720) N(1900)	N(1520) N(1700) N(1875)	N(1680) N(1860) N(2000)	N(1675)	N(1990)
∆(1910)	∆(1620) ∆(1900)	∆(1232) ∆(1600) ∆(1920)	∆(1700) ∆(1940)	∆(1905) ∆(2000)	∆(1930)	∆(1950)
Λ(1116) Λ(1600) Λ(1810)	A(1405) A(1670) A(1800)	Λ(1890)	A(1520) A(1690)	∆(1820)	A(1830)	
Σ(1189) Σ(1660) Σ(1880)	Σ(1750)	Σ(1385)	Σ(1670) Σ(1940)	Σ(1915)	Σ(1775)	
E(1315)		E(1530)	표(1820)			
		Ω(1672)				

< ロト < 回 ト < 三 ト < 三 ト</p>

590

Gernot Eichmann (IST Lisboa)

Э Aug 30, 2017 5/30

590

< □ > < □ > < □ > < □ > < □ >

Gernot Eichmann (IST Lisboa)

Э Aug 30, 2017 5/30

590

<ロト < 回ト < 回ト < ヨト < ヨト

Gernot Eichmann (IST Lisboa)

Э Aug 30, 2017 5/30

590

< ロト < 回 ト < 三 ト < 三 ト</p>

Light baryons

• Extraction of resonances?

- Gluon exchange vs. flavor dependence?
- Nature of Roper?
- qqq vs. quark-diquark?
- "Quark core" vs. chiral dynamics?
- Hybrid baryons?

QCD

QCD's classical action:

$$S = \int d^4x \left[\bar{\psi} \left(\partial \!\!\!/ + ig A + m \right) \psi + \frac{1}{4} F^a_{\mu\nu} F^{\mu\nu}_a \right] \\ = \boxed{ \underbrace{ - \frac{1}{2}}_{0}}_{0} \frac{\partial \!\!\!/ }{\partial \!\!\!\!/ } \frac{\partial \!\!\!/ }{\partial \!\!\!\!/ } \frac{\partial \!\!\!/ }{\partial \!\!\!/ } \frac{\partial \!\!\!/ }{\partial \!\!/ } \frac{\partial \!\!/ }{\partial \!\!/ } \frac{\partial \!\!\!/ }{\partial \!\!/ } \frac{\partial \!\!\!/ }{\partial \!\!\!/ } \frac{\partial \!\!\!/ }{\partial \!\!/ } \frac{\partial \!\!\!/ }{\partial \!\!/ } \frac{\partial \!\!\!/ }{\partial \!\!/ } \frac{\partial \!\!/ }{\partial \!\!/ } \frac{\partial$$

DSEs = quantum equations of motion: derived from path integral, relate n-point functions

Quantum "effective action":

$$\int \mathcal{D}[\psi,\bar{\psi},A] e^{-S} = e^{-\Gamma}$$

$$-\mathbf{O}^{-1} - \mathbf{O}^{-1} \quad \mathbf{O}$$

- · infinitely many coupled equations
- reproduce perturbation theory, but **nonperturbative!**
- systematic truncations: neglect higher n-point functions to obtain closed system

Reviews:

Roberts, Williams, Prog. Part. Nucl. Phys. 33 (1994), Alkofer, von Smekal, Phys. Rept. 353 (2001) GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog. Part. Nucl. Phys. 91 (2016), 1606.09602 [hep-ph]

QCD

QCD's classical action:

$$S = \int d^4x \left[\bar{\psi} \left(\partial \!\!\!/ + igA + m \right) \psi + \frac{1}{4} F^a_{\mu\nu} F^{\mu\nu}_a \right] \\ = \boxed{ \underbrace{ - \frac{1}{2}}_{0}}_{0} \frac{1}{2} \underbrace{ \frac{1}{2}}_{0} \underbrace{ \frac{1}{2}}$$

DSEs = quantum equations of motion: derived from path integral, relate n-point functions

Quantum "effective action":

Quark propagator: DCSB generates 'constituent-quark masses'

QCD

QCD's classical action:

 $S = \int d^4x \left[\bar{\psi} \left(\partial + igA + m \right) \psi + \frac{1}{4} F^a_{\mu\nu} F^{\mu\nu}_a \right]$ $= \boxed{ - \frac{1}{2} - \frac{1}{2$

Gluon propagator

Three-gluon vertex

Quark-gluon vertex

Agreement between lattice, DSE & FRG within reach!

Hadrons?

• Simplest n-point function that encodes information on **baryons:** quark 6-point correlator $\langle \psi_{\alpha}(x_1) \psi_{\beta}(x_2) \psi_{\gamma}(x_3) \overline{\psi}_{\rho}(y_1) \overline{\psi}_{\sigma}(y_2) \overline{\psi}_{\tau}(y_3) \rangle$

Hadrons?

• Simplest n-point function that encodes information on **baryons:** quark 6-point correlator $\langle \psi_{\alpha}(x_1) \psi_{\beta}(x_2) \psi_{\gamma}(x_3) \overline{\psi}_{\rho}(y_1) \overline{\psi}_{\sigma}(y_2) \overline{\psi}_{\tau}(y_3) \rangle$

Bethe-Salpeter wave function: residue at pole, contains all information about baryon

• Spectral decomposition:

$$\sum_{\lambda} \, |\lambda\rangle \langle \lambda \,| \quad \rightarrow \quad \sum_{\lambda} \, \frac{\cdots}{P^2 + m_i^2}$$

 \Rightarrow Same singularity structure as in

DSEs & BSEs

• Homogeneous Bethe-Salpeter equation for BS wave function:

 Depends on QCD's n-point functions as input, satisfy DSEs = quantum equations of motion

• Kernel can be derived in accordance with chiral symmetry:

Quark propagator

Dynamical chiral symmetry breaking generates 'constituentquark masses'

DSEs & BSEs

Williams, Fischer, Heupel, PRD 93 (2016)

GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, PPNP 91 (2016)

• Kernel can be derived in accordance with chiral symmetry:

DSEs & BSEs

Light meson spectrum beyond rainbow-ladder:

Williams, Fischer, Heupel, PRD 93 (2016)

GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, PPNP 91 (2016)

• Kernel can be derived in accordance with chiral symmetry:

Rainbow-ladder:

effective gluon exchange

$$\alpha(k^2) = \alpha_{\rm IR}\left(\frac{k^2}{\Lambda^2}, \eta\right) + \alpha_{\rm UV}(k^2)$$

adjust scale Λ to observable, keep width η as parameter Maris, Tandy, PRC 60 (1999), Qin et al., PRC 84 (2011)

Gernot Eichmann (IST Lisboa)

Baryons

Covariant Faddeev equation for baryons:

GE, Alkofer, Krassnigg, Nicmorus, PRL 104 (2010)

- 3-gluon diagram vanishes ⇒ 3-body effects small?
- 2-body kernels same as for mesons, no further approximations: $M_N = 0.94 \,\mathrm{GeV}$
- Relativistic bound states carry OAM: 64 (128) tensors for nucleon (Δ)
- Octet & decuplet baryons, pion cloud effects, first steps beyond rainbow-ladder
- Baryon form factors: nucleon and Δ FFs, N→Δγ transition, ...

Review: GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, PPNP 91 (2016), 1606.09602

DSE / Faddeev landscape $N o N^* \gamma$

					Three-quark			
	Contact interaction	QCD-based model	DSE (RL)	RL	bRL	bRL + 3q		
N, Δ masses N, Δ em. FFs $N \rightarrow \Delta \gamma$		\checkmark		\checkmark \checkmark	~			
Roper $N \rightarrow N^* \gamma$	√ √	√ √	√ 	√ 				
$N^*(1535), \ldots$ $N \to N^* \gamma$			√ 	√ 				
	Roberts, Bashir, Segovia, Chen, Wilson, Lu,	Oettel, Alkofer, Roberts, Cloet, Segovia,	GE, Alkofer, Nicmorus,	GE, Sanchis-Alepuz, Fischer, Alkofer, Williams,				

The role of diquarks

Mesons and 'diquarks' closely related: after taking traces, only factor 1/2 remains ⇒ diquarks 'less bound' than mesons

Pseudoscalar & vector mesons already good in rainbow-ladder

Scalar & axialvector mesons too light, repulsion beyond RL

 $= \frac{1}{2} K$

 \Leftrightarrow

 \Leftrightarrow

- Scalar & axialvector diquarks sufficient for nucleon and Δ
- Pseudoscalar & vector diquarks important for remaining channels

The role of diquarks

Simulate beyond-RL effects:

Insert factor 0 < c < 1 in 'bad' meson and diquark channels \Rightarrow increases masses, adjusted in meson sector (ρ - a_1 splitting)

⇒ reduces strength of ps + v diquarks

Baryon spectrum I

Three-quark vs. quark-diquark in rainbow-ladder: GE, Fischer, Sanchis-Alepuz, PRD 94 (2016)

- qqq and q-dq agrees: N, Δ, Roper, N(1535)
- # levels compatible with experiment: no states missing
- N, Δ and their 1st excitations (including Roper) agree with experiment
- But remaining states too low ⇒ wrong level ordering between Roper and N(1535)

Baryon spectrum

Quark-diquark with reduced pseudoscalar + vector diquarks: GE, Fischer, Sanchis-Alepuz, PRD 94 (2016)

- · Quantitative agreement with experiment
- N(¹/₂) and Δ(³⁺/₂) depend on sc + av diquarks; remaining ones "polluted" by ps + v diquarks
- Correct level ordering between Roper and N(1535)

- Scale Λ set by f_{π}
- Current-quark mass m_q set by m_π
- c adjusted to ρ-a₁ splitting
- η doesn't change much

Baryon spectrum

Quark-diquark with reduced pseudoscalar + vector diquarks: GE, FBS 58 (2017)

Orbital angular momentum content:

- in nonrelativistic quark model: N, $\Delta \sim s$ waves, negative-parity states ~ p waves, etc.
- Here: 'quark-model forbidden' contributions are always present, e.g. Roper: dominated by p waves ⇒ relativity is important!

Nucleon

Delta

Omega

Lambda

Sigma

Form factors

Insert spectral decomposition in $\langle \cdots \psi(x_1) \cdots \overline{\psi}(y_1) \cdots j^{\mu}(z) \cdots \rangle$

Use properties of (functional) derivative, obtain general expression for current matrix elements and scattering amplitudes:

$$\mathcal{J}^{\mu} = -\overline{\Psi}_{f} \left(\mathbf{G}^{-1}\right)^{\mu} \Psi_{i} \qquad \qquad \mathcal{M}^{\mu\nu} = \overline{\Psi}_{f} \left[\left(\mathbf{G}^{-1}\right)^{\{\mu} \mathbf{G} \left(\mathbf{G}^{-1}\right)^{\nu\}} - \left(\mathbf{G}^{-1}\right)^{\mu\nu} \right] \Psi_{i}$$

$$\begin{split} \left(\mathbf{G}^{-1}\right)^{\mu} &= \left(\mathbf{G_{0}}^{-1}\right)^{\mu} - \mathbf{K}^{\mu} = \left[\Gamma^{\mu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu} \otimes K_{(2)} - S^{-1} \otimes K_{(2)}^{\mu} + \operatorname{perm.} \right] - K_{(3)}^{\mu} \\ \left(\mathbf{G}^{-1}\right)^{\mu\nu} &= \left(\mathbf{G_{0}}^{-1}\right)^{\mu\nu} - \mathbf{K}^{\mu\nu} = \left[\Gamma^{\mu\nu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu\nu} \otimes K_{(2)} + \Gamma^{\{\mu} \otimes \Gamma^{\nu\}} \otimes S^{-1} - \Gamma^{\{\mu} \otimes K_{(2)}^{\nu\}} - S^{-1} \otimes K_{(2)}^{\mu\nu} + \operatorname{perm.} \right] - K_{(3)}^{\mu\nu} \\ \left(\mathbf{G}^{-1}\right)^{\mu\nu} - \mathbf{K}^{\mu\nu} = \left[\Gamma^{\mu\nu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu\nu} \otimes K_{(2)} + \Gamma^{\{\mu} \otimes \Gamma^{\nu\}} \otimes S^{-1} - \Gamma^{\{\mu} \otimes K_{(2)}^{\nu} - S^{-1} \otimes K_{(2)}^{\mu\nu} + \operatorname{perm.} \right] \\ - K_{(3)}^{\mu\nu} = \left[\Gamma^{\mu\nu} \otimes S^{-1} \otimes S$$

Current matrix element:

- · impulse approximation + coupling to kernels
- gauge invariance is automatic, as long as all ingredients calculated from same symmetry-preserving kernel

$$\mathcal{J}^{\mu} =$$

Use properties of (functional) derivative, obtain general expression for current matrix elements and scattering amplitudes:

$$\mathcal{J}^{\mu} = -\overline{\Psi}_{f} \left(\mathbf{G}^{-1}\right)^{\mu} \Psi_{i} \qquad \qquad \mathcal{M}^{\mu\nu} = \overline{\Psi}_{f} \left[\left(\mathbf{G}^{-1}\right)^{\{\mu} \mathbf{G} \left(\mathbf{G}^{-1}\right)^{\nu\}} - \left(\mathbf{G}^{-1}\right)^{\mu\nu} \right] \Psi_{i}$$

$$\left(\mathbf{G}^{-1} \right)^{\mu} = \left(\mathbf{G}_{0}^{-1} \right)^{\mu} - \mathbf{K}^{\mu} = \left[\Gamma^{\mu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu} \otimes K_{(2)} - S^{-1} \otimes K_{(2)}^{\mu} + \text{perm.} \right] - K_{(3)}^{\mu} \\ \left[\mathbf{G}^{-1} \right]^{\mu\nu} = \left(\mathbf{G}_{0}^{-1} \right)^{\mu\nu} - \mathbf{K}^{\mu\nu} = \left[\Gamma^{\mu\nu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu\nu} \otimes K_{(2)} + \Gamma^{\{\mu} \otimes \Gamma^{\nu\}} \otimes S^{-1} - \Gamma^{\{\mu} \otimes K_{(2)}^{\nu\}} - S^{-1} \otimes K_{(2)}^{\mu\nu} + \text{perm.} \right] - K_{(3)}^{\mu\nu}$$

Current matrix element:

- · impulse approximation + coupling to kernels
- gauge invariance is automatic, as long as all ingredients calculated from same symmetry-preserving kernel

$$\mathcal{J}^{\mu} =$$

Use properties of (functional) derivative, obtain general expression for current matrix elements and scattering amplitudes:

$$\mathcal{J}^{\mu} = -\overline{\Psi}_{f} \left(\mathbf{G}^{-1}\right)^{\mu} \Psi_{i} \qquad \qquad \mathcal{M}^{\mu\nu} = \overline{\Psi}_{f} \left[\left(\mathbf{G}^{-1}\right)^{\{\mu\}} \mathbf{G} \left(\mathbf{G}^{-1}\right)^{\nu\}} - \left(\mathbf{G}^{-1}\right)^{\mu\nu} \right] \Psi_{i}$$

$$(\mathbf{G}^{-1})^{\mu} = (\mathbf{G}_{0}^{-1})^{\mu} - \mathbf{K}^{\mu} = \left[\Gamma^{\mu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu} \otimes K_{(2)} - S^{-1} \otimes K_{(2)}^{\mu} + \operatorname{perm.} \right] - K_{(3)}^{\mu} \\ \mathbf{G}^{-1})^{\mu\nu} = \left(\mathbf{G}_{0}^{-1} \right)^{\mu\nu} - \mathbf{K}^{\mu\nu} = \left[\Gamma^{\mu\nu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu\nu} \otimes K_{(2)} + \Gamma^{\{\mu} \otimes \Gamma^{\nu\}} \otimes S^{-1} - \Gamma^{\{\mu} \otimes K_{(2)}^{\nu\}} - S^{-1} \otimes K_{(2)}^{\mu\nu} + \operatorname{perm.} \right] - K_{(3)}^{\mu\nu}$$

Form factors

Nucleon em. form factors from three-quark equation GE, PRD 84 (2011)

- Timelike vector-meson poles generated in quark-photon vertex
- "Quark core without pion-cloud"
- similar: N → Δγ transition, axial & pseudoscalar FFs, octet & decuplet em. FFs

Review: GE, Sanchis-Alepuz, Williams, Fischer, Alkofer, PPNP 91 (2016), 1606.09602

• $\pi \rightarrow \gamma \gamma^*$ transition: vm. poles modify asymptotic scaling! GE, Fischer, Weil, Williams, 1704.05774 [hep-ph]

イロト イポト イヨト イヨト

Pion form factor

A. Krassnigg (Schladming 2010), Maris & Tandy, Nucl. Phys. Proc. Suppl. 161 (2006)

· Form factor from

• Timelike vector meson poles automatically generated by quark-photon vertex BSE!

- $\Rightarrow \Gamma^{\mu} = \begin{array}{l} {\rm Ball-Chiu} \\ ({\rm em.\ gauge\ invariance}) \end{array}$
 - + Transverse part (vm. poles & dominance)
- Form factor at large Q^2 Chang, Cloet, Roberts, Schmidt, Tandy, PRL 111 (2013)
- Include pion cloud effects: GE, Fischer, Kubrak, Williams, in preparation

Compton scattering ...

Compton amplitude = sum of Born terms + 1PI structure part:

Gernot Eichmann (IST Lisboa)

Aug 30, 2017 21 / 30

Extracting resonances

Hadronic coupled-channel equations:

Sato-Lee/EBAC/ANL-Osaka, Dubna-Mainz-Taiwan, Valencia, Jülich-Bonn, GSI, JLab, MAID, SAID, KSU, Giessen, Bonn-Gatchina, JPAC,...

Suzuki et al., PRL 104 (2010)

Microscopic effects?

What is an "offshell hadron"?

Scattering amplitude:

Use properties of (functional) derivative, obtain general expression for current matrix elements and scattering amplitudes:

$$\mathcal{J}^{\mu} = -\overline{\Psi}_{f} \left(\mathbf{G}^{-1}
ight)^{\mu} \Psi_{i} \qquad \qquad \mathcal{M}^{\mu
u} = \overline{\Psi}_{f} \left[\left(\mathbf{G}^{-1}
ight)^{\ell\mu} \mathbf{G} \left(\mathbf{G}^{-1}
ight)^{
u
angle} - \left(\mathbf{G}^{-1}
ight)^{\mu
u}
ight] \Psi_{i}$$

$$\begin{split} \left(\mathbf{G}^{-1}\right)^{\mu} &= \left(\mathbf{G_0}^{-1}\right)^{\mu} - \mathbf{K}^{\mu} = \left[\Gamma^{\mu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu} \otimes K_{(2)} - S^{-1} \otimes K_{(2)}^{\mu} + \operatorname{perm.}\right] - K_{(3)}^{\mu} \\ \left(\mathbf{G}^{-1}\right)^{\mu\nu} &= \left(\mathbf{G_0}^{-1}\right)^{\mu\nu} - \mathbf{K}^{\mu\nu} = \left[\Gamma^{\mu\nu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu\nu} \otimes K_{(2)} + \Gamma^{\{\mu} \otimes \Gamma^{\nu\}} \otimes S^{-1} - \Gamma^{\{\mu} \otimes K_{(2)}^{\nu\}} - S^{-1} \otimes K_{(2)}^{\mu\nu} + \operatorname{perm.}\right] - K_{(3)}^{\mu\nu} \\ \end{split}$$

Scattering amplitude:

Use properties of (functional) derivative, obtain general expression for current matrix elements and scattering amplitudes:

$$\mathcal{J}^{\mu} = -\overline{\Psi}_{f} \left(\mathbf{G}^{-1} \right)^{\mu} \Psi_{i} \qquad \qquad \mathcal{M}^{\mu\nu} = \overline{\Psi}_{f} \left[\left(\mathbf{G}^{-1} \right)^{\ell \mu} \mathbf{G} \left(\mathbf{G}^{-1} \right)^{\nu \ell} - \left(\mathbf{G}^{-1} \right)^{\mu \nu} \right] \Psi_{i}$$

$$\begin{split} \left(\mathbf{G}^{-1}\right)^{\mu} &= \left(\mathbf{G_{0}}^{-1}\right)^{\mu} - \mathbf{K}^{\mu} = \left[\Gamma^{\mu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu} \otimes K_{(2)} - S^{-1} \otimes K_{(2)}^{\mu} + \operatorname{perm.}\right] - K_{(3)}^{\mu} \\ \left(\mathbf{G}^{-1}\right)^{\mu\nu} &= \left(\mathbf{G_{0}}^{-1}\right)^{\mu\nu} - \mathbf{K}^{\mu\nu} = \left[\Gamma^{\mu\nu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu\nu} \otimes K_{(2)} + \Gamma^{\{\mu} \otimes \Gamma^{\nu\}} \otimes S^{-1} - \Gamma^{\{\mu} \otimes K_{(2)}^{\nu\}} - S^{-1} \otimes K_{(2)}^{\mu\nu} + \operatorname{perm.}\right] - K_{(3)}^{\mu\nu} \\ \left(\mathbf{G}^{-1}\right)^{\mu\nu} - \mathbf{K}^{\mu\nu} = \left[\Gamma^{\mu\nu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu\nu} \otimes K_{(2)} + \Gamma^{\{\mu\}} \otimes \Gamma^{\nu\}} \otimes S^{-1} - \Gamma^{\{\mu\}} \otimes K_{(2)}^{\nu} - S^{-1} \otimes K_{(2)}^{\mu\nu} + \operatorname{perm.}\right] \\ - K_{(3)}^{\mu\nu} - \mathbf{K}^{\mu\nu} = \left[\Gamma^{\mu\nu} \otimes S^{-1} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu\nu} \otimes K_{(2)} + \Gamma^{\{\mu\}} \otimes S^{-1} - \Gamma^{\{\mu\}} \otimes S^{-1} \otimes$$

Scattering amplitude:

Use properties of (functional) derivative, obtain general expression for current matrix elements and scattering amplitudes:

$$\mathcal{J}^{\mu} = -\overline{\Psi}_{f} \left(\mathbf{G}^{-1}
ight)^{\mu} \Psi_{i} \qquad \qquad \mathcal{M}^{\mu
u} = \overline{\Psi}_{f} \left[\left(\mathbf{G}^{-1}
ight)^{\ell \mu} \mathbf{G} \left(\mathbf{G}^{-1}
ight)^{
u
angle} - \left(\mathbf{G}^{-1}
ight)^{\mu
u}
ight] \Psi_{i}$$

$$\begin{split} \left(\mathbf{G}^{-1}\right)^{\mu} &= \left(\mathbf{G_{0}}^{-1}\right)^{\mu} - \mathbf{K}^{\mu} = \left[\Gamma^{\mu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu} \otimes K_{(2)} - S^{-1} \otimes K_{(2)}^{\mu} + \text{perm.}\right] - K_{(3)}^{\mu} \\ \left(\mathbf{G}^{-1}\right)^{\mu\nu} &= \left(\mathbf{G_{0}}^{-1}\right)^{\mu\nu} - \mathbf{K}^{\mu\nu} = \left[\Gamma^{\mu\nu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu\nu} \otimes K_{(2)} + \Gamma^{\{\mu} \otimes \Gamma^{\nu\}} \otimes S^{-1}\right] - \Gamma^{\{\mu} \otimes K_{(2)}^{\nu} - S^{-1} \otimes K_{(2)}^{\mu\nu} + \text{perm.}\right] - K_{(3)}^{\mu\nu} \\ \left(\mathbf{G}^{-1}\right)^{\mu\nu} - \mathbf{K}^{\mu\nu} = \left[\Gamma^{\mu\nu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu\nu} \otimes K_{(2)} + \Gamma^{\{\mu} \otimes \Gamma^{\nu\}} \otimes S^{-1}\right] - \Gamma^{\{\mu} \otimes K_{(2)}^{\nu} - S^{-1} \otimes K_{(2)}^{\mu\nu} + \text{perm.}\right] - K_{(3)}^{\mu\nu} \\ \left(\mathbf{G}^{-1}\right)^{\mu\nu} - \mathbf{K}^{\mu\nu} = \left[\Gamma^{\mu\nu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu\nu} \otimes K_{(2)} + \Gamma^{\{\mu} \otimes \Gamma^{\nu\}} \otimes S^{-1}\right] - \Gamma^{\{\mu} \otimes K_{(2)}^{\nu} + \mathbf{K}^{\mu\nu} \otimes S^{-1} \otimes S^{-1} \\ \left(\mathbf{G}^{-1}\right)^{\mu\nu} - \mathbf{K}^{\mu\nu} = \left[\Gamma^{\mu\nu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu\nu} \otimes K_{(2)} + \Gamma^{\{\mu\nu\}} \otimes S^{-1}\right] - \Gamma^{\{\mu\nu\}} \otimes S^{-1} \otimes S^{-1} \\ \left(\mathbf{G}^{-1} \otimes S^{-1} \\ \left(\mathbf{G}^{-1} \otimes S^{-1} \otimes S$$

Scattering amplitude:

Use properties of (functional) derivative, obtain general expression for current matrix elements and scattering amplitudes:

$$\mathcal{J}^{\mu} = -\overline{\Psi}_{f}\left(\mathrm{G}^{-1}
ight)^{\mu}\Psi_{i} \qquad \qquad \mathcal{M}^{\mu
u} = \overline{\Psi}_{f}\left[\left(\mathrm{G}^{-1}
ight)^{\left\{\mu\right\}}\mathrm{G}\left(\mathrm{G}^{-1}
ight)^{
u
ight\}} - \left(\mathrm{G}^{-1}
ight)^{\mu
u}
ight]\Psi_{i}$$

$$\left(\mathbf{G}^{-1} \right)^{\mu} = \left(\mathbf{G}_{0}^{-1} \right)^{\mu} - \mathbf{K}^{\mu} = \left[\Gamma^{\mu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu} \otimes K_{(2)} - S^{-1} \otimes K_{(2)}^{\mu} + \text{perm.} \right] - K_{(3)}^{\mu} \\ \left(\mathbf{G}^{-1} \right)^{\mu\nu} = \left(\mathbf{G}_{0}^{-1} \right)^{\mu\nu} - \mathbf{K}^{\mu\nu} = \left[\Gamma^{\mu\nu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu\nu} \otimes K_{(2)} + \Gamma^{\{\mu} \otimes \Gamma^{\nu\}} \otimes S^{-1} \right] - \Gamma^{\{\mu} \otimes K_{(2)}^{\nu} + \text{perm.} \\ \right] - K_{(3)}^{\mu\nu} = \left(\mathbf{G}_{0}^{-1} \right)^{\mu\nu} - \mathbf{K}^{\mu\nu} = \left[\Gamma^{\mu\nu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu\nu} \otimes K_{(2)} + \Gamma^{\{\mu} \otimes \Gamma^{\nu\}} \otimes S^{-1} \right] - \Gamma^{\{\mu} \otimes K_{(2)}^{\nu} + \text{perm.}$$

Scattering amplitude:

Use properties of (functional) derivative, obtain general expression for current matrix elements and scattering amplitudes:

$$\mathcal{J}^{\mu} = -\overline{\Psi}_{f} \left(\mathbf{G}^{-1}
ight)^{\mu} \Psi_{i} \qquad \qquad \mathcal{M}^{\mu
u} = \overline{\Psi}_{f} \left[\left(\mathbf{G}^{-1}
ight)^{\ell\mu} \mathbf{G} \left(\mathbf{G}^{-1}
ight)^{
u
angle} - \left(\mathbf{G}^{-1}
ight)^{\mu
u}
ight] \Psi_{i}$$

$$\left(\mathbf{G}^{-1} \right)^{\mu} = \left(\mathbf{G}_{0}^{-1} \right)^{\mu} - \mathbf{K}^{\mu} = \left[\Gamma^{\mu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu} \otimes K_{(2)} - S^{-1} \otimes K_{(2)}^{\mu} + \text{perm.} \right] - K_{(3)}^{\mu} \\ \left(\mathbf{G}^{-1} \right)^{\mu\nu} = \left(\mathbf{G}_{0}^{-1} \right)^{\mu\nu} - \mathbf{K}^{\mu\nu} = \left[\Gamma^{\mu\nu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu\nu} \otimes K_{(2)} + \Gamma^{\{\mu} \otimes \Gamma^{\nu\}} \otimes S^{-1} \right] - \Gamma^{\{\mu} \otimes K_{(2)}^{\nu} + \text{perm.} \\ \right] - K_{(3)}^{\mu\nu} = \left(\mathbf{G}_{0}^{-1} \right)^{\mu\nu} - \mathbf{K}^{\mu\nu} = \left[\Gamma^{\mu\nu} \otimes S^{-1} \otimes S^{-1} - \Gamma^{\mu\nu} \otimes K_{(2)} + \Gamma^{\{\mu} \otimes \Gamma^{\nu\}} \otimes S^{-1} \right] - \Gamma^{\{\mu} \otimes K_{(2)}^{\nu} + \text{perm.}$$

Scattering amplitude: GE, Fischer, PRD 85 (2012) & PRD 87 (2013)

- · Poincaré covariance and crossing symmetry are automatic
- gauge invariance and chiral symmetry are automatic, as long as all ingredients calculated from same symmetry-preserving kernel
- · perturbative processes are included
- s, t, u channel poles are generated dynamically, no need for "offshell hadrons"
- · hadronic rescattering is implicit

Kinematics

Electromagnetic current:

2 form factors (Dirac + Pauli), 1 kinematic variable Q^2

CS amplitude:

Ν

$$\mathcal{M}(p,Q,Q') = \frac{e^2}{m} \varepsilon^{\mu}(Q') \,\bar{u}(p_f) \,\Gamma^{\mu\nu}(p,Q,Q') \,u(p_i) \,\varepsilon^{\nu}(Q)$$

Tarrach, Nuovo Cim. A28 (1975), GE, Ramalho, in preparation **18 Compton form factors (CFFs),** 4 kinematic variables:

$$\eta_{+} = \frac{Q^{2} + Q'^{2}}{2m^{2}}, \quad \eta_{-} = \frac{Q \cdot Q'}{m^{2}}, \quad \omega = \frac{Q^{2} - Q'^{2}}{2m^{2}}, \quad \lambda = -\frac{p \cdot Q}{m^{2}} = -\frac{p \cdot Q'}{m^{2}}$$

イロト イロト イヨト イヨト

$$\Rightarrow \sum_{i=1}^{18} c_i(\eta_+, \eta_-, \omega, \lambda) \, \bar{u}(p_f) \, \tau_i^{\mu\nu}(p, Q, Q') \, u(p_i)$$

Kinematics

Forward CS

 $\begin{aligned} \text{Forward limit:} \quad \Delta^{\mu} &= 0 \quad \Rightarrow \text{2 variables:} \quad \eta = \eta_{+} = \eta_{-} = \frac{Q^{2}}{m^{2}}, \quad \lambda = -\frac{p \cdot Q}{m^{2}}, \quad \omega = 0 \\ \Rightarrow \text{4 CFFs:} \quad \bar{u}(p) \left(\frac{c_{1}}{m^{4}} t_{Qp}^{\mu\alpha} t_{pQ}^{\alpha\nu} + \frac{c_{2}}{m^{2}} t_{QQ}^{\mu\nu} + \frac{c_{3}}{m} i \varepsilon_{Q\gamma}^{\mu\nu} + \frac{c_{4}}{m^{2}} \lambda \left[t_{Q\gamma}^{\mu\alpha}, t_{\gamma Q}^{\alpha\nu} \right] \right) u(p) \end{aligned}$

Forward CS

Forward limit: $\Delta^{\mu} = 0 \Rightarrow 2$ variables: $\eta = \eta_{+} = \eta_{-} = \frac{Q^{2}}{m^{2}}, \quad \lambda = -\frac{p \cdot Q}{m^{2}}, \quad \omega = 0$ $\Rightarrow 4 \text{ CFFs:} \quad \bar{u}(p) \left(\frac{c_{1}}{m^{4}} t^{\mu\alpha}_{Qp} t^{\alpha\nu}_{pQ} + \frac{c_{2}}{m^{2}} t^{\mu\nu}_{QQ} + \frac{c_{3}}{m} i \varepsilon^{\mu\nu}_{Q\gamma} + \frac{c_{4}}{m^{2}} \lambda \left[t^{\mu\alpha}_{Q\gamma} t^{\alpha\nu}_{\gamma Q} \right] \right) u(p)$

Low-energy expansion:

$$\begin{split} c_1(\eta,\lambda) &= c_1^{\text{Born}}(\eta,\lambda) + \alpha(\eta) + \beta(\eta) + \mathcal{O}(\lambda^2) \\ c_2(\eta,\lambda) &= c_2^{\text{Born}}(\eta,\lambda) + \beta(\eta) + \mathcal{O}(\lambda^2) \end{split}$$

- Nucleon resonances at $s, u > m^2$, $N\pi$ branch cuts for $s, u > (m+m_\pi)^2$
- **TPE region** \rightarrow proton radius puzzle
- Im c_i for $x = \eta / (2\lambda) \in [0, 1]$ known from $N\gamma^* \rightarrow X$ cross section
- · Use dispersion relations for rest:

$$c_i(\eta, \lambda) = \frac{1}{\pi} \int_{\lambda_{el}^2}^{\infty} d\lambda'^2 \frac{\text{Im } c_i(\eta, \lambda')}{\lambda'^2 - \lambda^2 - i\epsilon}$$

⇒ Baldin sum rule for α + β , but β unconstrained (need subtracted DR) ⇒ ChPT + pQCD, but result much to small to explain discrepancy Birse, McGovern, EPJ A 48 (2012)

くロ と く 戸 と く 三 と 一

Forward CS

 $\begin{aligned} \text{Forward limit:} \quad \Delta^{\mu} &= 0 \quad \Rightarrow \text{2 variables:} \quad \eta = \eta_{+} = \eta_{-} = \frac{Q^{2}}{m^{2}}, \quad \lambda = -\frac{p \cdot Q}{m^{2}}, \quad \omega = 0 \\ \Rightarrow \text{4 CFFs:} \quad \bar{u}(p) \left(\frac{c_{1}}{m^{4}} t_{Qp}^{\mu\alpha} t_{pQ}^{\alpha\nu} + \frac{c_{2}}{m^{2}} t_{QQ}^{\mu\nu} + \frac{c_{3}}{m} i \varepsilon_{Q\gamma}^{\mu\nu} + \frac{c_{4}}{m^{2}} \lambda \left[t_{Q\gamma}^{\mu\alpha}, t_{\gamma Q}^{\alpha\nu} \right] \right) u(p) \end{aligned}$

Singularity structure of quark propagator prevents direct kinematic access to all relevant regions ...

- if amplitudes free of kinematic singularities:
 only phys. poles and cuts, extrapolate from unphysical regions
- clean solution (expensive): contour deformations

Quark singularities complicate matters: symmetric limit ok, but asymmetric limit only up to $\sim 4~GeV^2$ Maris, Tandy, PRC 65 (2002)

Gernot Eichmann (IST Lisboa)

- Idea: calculate FF inside cone
 - interpolate to physical plane using VM pole as constraint
 - can be done for arbitrary Q^2

Gernot Eichmann (IST Lisboa)

• After reanalysis of radiative corrections still 2*σ* discrepancy in branching ratio between exp and theory:

$6.87(36) \times 10^{-8}$	KTeV Collab.: Abouzaid et al., PRD 75 (2007); Husek, Kampf, Novotny, EPJ C74 (2014)
$6.23(09) \times 10^{-8}$	Dorokhov, JETP Lett. 91 (2010), Masjuan, Sanchez-Puertas, 1504.07001

• Depends on pion transition FF as input: GE, Fischer, Weil, Williams, 1704.05774

$$\mathcal{A}(t) = \frac{1}{2\pi^2 t} \int d^4 \Sigma \, \frac{(\Sigma \cdot \Delta)^2 - \Sigma^2 \Delta^2}{(p+\Sigma)^2 + m^2} \, \frac{F(Q^2,Q'^2)}{Q^2 \, Q'^2} \, . \label{eq:alpha}$$

 cannot be calculated directly in Euclidean kinematics because of photon and lepton poles

• After reanalysis of radiative corrections still 2*σ* discrepancy in branching ratio between exp and theory:

$5.87(36) \times 10^{-8}$	KTeV Collab.: Abouzaid et al., PRD 75 (2007); Husek, Kampf, Novotny, EPJ C74 (2014)
$6.23(09) \times 10^{-8}$	Dorokhov, JETP Lett. 91 (2010), Masjuan, Sanchez-Puertas, 1504.07001

• Depends on pion transition FF as input: GE, Fischer, Weil, Williams, 1704.05774

$$\mathcal{A}(t) = \frac{1}{2\pi^2 t} \int d^4 \Sigma \, \frac{(\Sigma \cdot \Delta)^2 - \Sigma^2 \Delta^2}{(p + \Sigma)^2 + m^2} \, \frac{F(Q^2, Q'^2)}{Q^2 \, Q'^2} \, .$$

- cannot be calculated directly in Euclidean kinematics because of photon and lepton poles
- · workaround with dispersion relations:

$$\operatorname{Im} \mathcal{A}^{\operatorname{LO}}(t) = \frac{\pi \ln \gamma(t)}{2\beta(t)} F(0,0) \qquad \Rightarrow \qquad \operatorname{Re} \mathcal{A}(t) = \frac{\mathcal{A}(0)}{\mathcal{A}(0)} + \frac{\ln^2 \gamma(t) + \frac{1}{3}\pi^2 + 4\operatorname{Li}_2(-\gamma(t))}{4\beta(t)}$$

Photon and lepton poles produce **branch cuts** in complex $\Sigma^2 = \sigma$ plane:

• 'Euclidean integration': $0 < \sigma < \infty$

Gernot Eichmann (IST Lisboa)

Photon and lepton poles produce **branch cuts** in complex $\Sigma^2 = \sigma$ plane:

- 'Euclidean integration': $0 < \sigma < \infty$
- not possible: circular photon cut

Gernot Eichmann (IST Lisboa)

Photon and lepton poles produce **branch cuts** in complex $\Sigma^2 = \sigma$ plane:

- 'Euclidean integration': $0 < \sigma < \infty$
- not possible: circular photon cut
- deform integration contour: cut opens at t

Photon and lepton poles produce **branch cuts** in complex $\Sigma^2 = \sigma$ plane:

- 'Euclidean integration': $0 < \sigma < \infty$
- not possible: circular photon cut
- deform integration contour: cut opens at t
- but lepton cut does not open at t!

Photon and lepton poles produce **branch cuts** in complex $\Sigma^2 = \sigma$ plane:

- 'Euclidean integration': $0 < \sigma < \infty$
- not possible: circular photon cut
- deform integration contour: cut opens at t
- but lepton cut does not open at t!
- deform contour such that it never crosses any cut!

$$\mathcal{A}(t) = \frac{1}{2\pi^2 t} \int d^4 \Sigma \, \frac{(\Sigma \cdot \Delta)^2 - \Sigma^2 \Delta^2}{(p + \Sigma)^2 + m^2} \, \frac{F(Q^2, {Q'}^2)}{Q^2 \, {Q'}^2}$$

Gernot Eichmann (IST Lisboa)

$$\mathcal{A}(t) = \frac{1}{2\pi^2 t} \int d^4 \Sigma \, \frac{(\Sigma \cdot \Delta)^2 - \Sigma^2 \Delta^2}{(p + \Sigma)^2 + m^2} \, \frac{F(Q^2, {Q'}^2)}{Q^2 \, {Q'}^2}$$

Gernot Eichmann (IST Lisboa)

$$\mathcal{A}(t) = \frac{1}{2\pi^2 t} \int d^4 \Sigma \, \frac{(\Sigma \cdot \Delta)^2 - \Sigma^2 \Delta^2}{(p + \Sigma)^2 + m^2} \, \frac{F(Q^2, {Q'}^2)}{Q^2 \, {Q'}^2}$$

- Algorithm is stable & efficient
- Can be applied to any integral as long as singularity locations known
- Useful for treating resonances!

Weil, GE, Fischer, Williams, PRD 96 (2017)

Tetraquarks

Towards multiquarks

Transition from quark-gluon to nuclear degrees of freedom:

- 6 ground states, one of them **deuteron** Dyson, Xuong, PRL 13 (1964)
- Dibaryons vs. hidden color? Bashkanov, Brodsky, Clement, PLB 727 (2013)
- Deuteron FFs from quark level?

Microscopic origins of nuclear binding?

only quarks and gluons

- quark interchange and pion exchange automatically included
- dibaryon exchanges

Weise, Nucl. Phys. A805 (2008)

Compton scattering

Nucleon polarizabilities:

ChPT & dispersion relations Hagelstein, Miskimen, Pascalutsa, PPNP 88 (2016)

In total: polarizabilities \approx

 $\label{eq:Quark-level effects} \ \leftrightarrow \ \text{Baldin sum rule}$

- + nucleon resonances (mostly Δ)
- + pion cloud (at low η_+)?

First DSE results: GE, FBS 57 (2016)

- Quark Compton vertex (Born + 1PI) calculated, added ∠ exchange
- compared to DRs Pasquini et al., EPJ A11 (2001), Downie & Fonvieille, EPJ ST 198 (2011)
- α_E dominated by handbag, β_M by Δ contribution

\Rightarrow large "QCD background"!

 $\alpha_E + \beta_M \ [10^{-4} \, {\rm fm}^3]$

Hadron physics with functional methods

Understand properties of elementary n-point functions

---- mom ----

Calculate hadronic **observables**: mass spectra, form factors, scattering amplitudes, ...

QCD

symmetries intact (Poincare invariance & chiral symmetry important)

 \leftrightarrow

- access to all momentum scales & all quark masses
- compute mesons, baryons, tetraquarks, ... from same dynamics
- systematic construction of truncations
- technical challenges: coupled integral equations, complex analysis, structure of 3-, 4-, ... point functions, need lots of computational power!

access to underlying nonperturbative dynamics!
Backup slides

QED

QED's classical action:

Quantum "effective action":

$$\int \mathcal{D}[\psi,\bar{\psi},A]e^{-S} = e^{-\Gamma}$$

$$-\infty^{-1} \quad \sqrt{2} \quad \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum$$

QED

QED's classical action:

Perturbation theory: expand Green functions in powers of the coupling

$$\frac{-1}{A(p^2)(ip+M(p^2))} = \frac{-1}{ip+m} + \frac{-1}{2m} + \dots \quad \text{mass}$$
function
$$\frac{1}{p^{-1}(p^2)(p^2\delta^{\mu\nu} - p^{\mu}p^{\nu})} = \frac{1}{p^2\delta^{\mu\nu} - p^{\mu}p^{\nu}} + \dots \quad \text{running}$$
coupling
$$\frac{1}{p^{-1}(p^2)(p^2\delta^{\mu\nu} - p^{\mu}p^{\nu})} = \frac{1}{p^2\delta^{\mu\nu} - p^{\mu}p^{\nu}} + \dots \quad \text{anomalous}$$
magnetic moment}
$$\frac{1}{F_1\gamma^{\mu} - \frac{F_2}{2m}\sigma^{\mu\nu}Q^{\nu} + \dots} = \frac{1}{\gamma^{\mu}} + \frac{1}{p^{-1}} + \dots \quad \text{anomalous}$$
magnetic moment}

Quantum "effective action":

 $\int \mathcal{D}[\psi, \bar{\psi}, A] e^{-S} = e^{-\Gamma}$ \rightarrow 'w' λ 'w 'o'

QED

QED's classical action:

Perturbation theory: expand Green functions in powers of the coupling

 $\int \mathcal{D}[\psi, \bar{\psi}, A] e^{-S} = e^{-\Gamma}$ \rightarrow \mathcal{O}_{L}^{-1} \mathcal{O}_{L}^{-1}

QCD

QCD's classical action:

$$S = \int d^4x \left[\bar{\psi} \left(\partial \!\!\!/ + igA + m \right) \psi + \frac{1}{4} F^a_{\mu\nu} F^{\mu\nu}_a \right] \\ = \boxed{ \underbrace{ - \frac{1}{2}}_{0}}_{0} \frac{\partial}{\partial \mu} \underbrace{ - \frac{1}{2}}_{0} \underbrace{$$

Perturbation theory: expand Green functions in powers of the coupling

Quantum "effective action":

$$\int \mathcal{D}[\psi,\bar{\psi},A] e^{-S} = e^{-\Gamma}$$

$$-\mathbf{O}^{-1} - \mathbf{O}^{-1} \quad \mathbf{O}$$

QCD

QCD's classical action:

$$S = \int d^4x \left[\bar{\psi} \left(\partial \!\!\!/ + igA + m \right) \psi + \frac{1}{4} F^a_{\mu\nu} F^{\mu\nu}_a \right] \\ = \left[\underbrace{-}^{-1} \cdots \stackrel{-1}{\longrightarrow} \underbrace{-}^{1}_{\theta} \underbrace{-}^{\theta}_{\theta} \underbrace{-}$$

Perturbation theory: expand Green functions in powers of the coupling

Quantum "effective action":

⇒ need nonperturbative methods!

Bethe-Salpeter equations

• Example pion: quark-antiquark bound state ⇔ Goldstone boson of DCSB

Homogeneous BSE becomes

$$f_i(q^2, z) = \int d^4q' K_{ij}(q^2, {q'}^2, z, z', q \cdot q') f_j({q'}^2, z')$$

Eigenvalue spectrum of BS kernel:

$$K_{ij\,qq'\,zz'}\,f^{(n)}_{jq'z'}=\lambda_n(P^2)\,f^{(n)}_{iqz}\qquad\lambda_n\overset{\scriptscriptstyle p^2\longrightarrow -m_{\pi}^2}{\longrightarrow}\ 1$$

$$\frac{\pi}{\lambda_n} \frac{\pi}{4} \frac$$

Bethe-Salpeter equations

• Example pion: quark-antiquark bound state ⇔ Goldstone boson of DCSB

$$\int f(f_1 + f_2 \not P + f_3 q \cdot P \not q + f_4 [q, \not P]) \otimes \text{Color} \otimes \text{Flavor}$$

$$\text{most general Dirac-Lorentz structure,}$$

$$\text{Lorentz-invariant dressing functions:}$$

$$f_i = f_i(q^2, q \cdot P, P^2 = -m^2) \qquad \Rightarrow \qquad \text{pion is made of } \mathbf{s} \text{ waves and } \mathbf{p} \text{ waves!}$$

$$\text{(relative momentum ~ orbital angular momentum)}$$

2.0

Homogeneous BSE becomes

$$f_i(q^2, z) = \int d^4q' K_{ij}(q^2, {q'}^2, z, z', q \cdot q') f_j({q'}^2, z')$$

Eigenvalue spectrum of BS kernel:

π

20

15

10

 Eigenvectors = BS amplitudes

Mesons

Pion is Goldstone
 boson: m_π² ~ m_q

· Light meson spectrum beyond rainbow-ladder

Williams, Fischer, Heupel, PRD 93 (2016)

GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, PPNP 91 (2016)

- Charmonium spectrum Fischer, Kubrak, Williams, EPJ A 51 (2015)
- · Pion transition form factor

GE, Fischer, Weil, Williams, 1704.05774 [hep-ph]

Light baryons

Tetraquarks in charm region?

 Four quarks dynamically rearrange themselves into dq-dq, molecule, hadroquarkonium; strengths determined by four-body BSE:

イロト イポト イヨト イヨト

nPI effective action

nPI effective actions provide **symmetry-preserving closed truncations.** 3PI at 3-loop: **all two- and three-point functions are dressed;** 4, 5, ... do not appear.

Self-energy:

Vertex:

Vacuum polarization:

nPI effective action

nPI effective actions provide **symmetry-preserving closed truncations.** 3PI at 3-loop: **all two- and three-point functions are dressed;** 4, 5, ... do not appear.

see: Sanchis-Alepuz & Williams, J. Phys. Conf. Ser. 631 (2015), arXiv:1503.05896 and refs therein

So we arrive at a closed system of equations:

 Crossed ladder cannot be added by hand, requires vertex correction!

nPI effective action

nPI effective actions provide **symmetry-preserving closed truncations.** 3PI at 3-loop: **all two- and three-point functions are dressed;** 4, 5, ... do not appear.

see: Sanchis-Alepuz & Williams, J. Phys. Conf. Ser. 631 (2015), arXiv:1503.05896 and refs therein

So we arrive at a closed system of equations:

- Crossed ladder cannot be added by hand, requires vertex correction!
- without 3-loop term: rainbow-ladder with tree-level vertex ⇒ 2PI
- but still requires **DSE solutions** for propagators!
- Similar in QCD. nPl truncation guarantees chiral symmetry, massless pion in chiral limit, etc.

A toy model

Scattering amplitude for two **massive scalar particles** (mass m) with **massive exchange particle** (mass μ):

• Bound state pole in t channel

A toy model

Scattering amplitude for two **massive scalar particles** (mass m) with **massive exchange particle** (mass μ):

$$T(p, \Sigma, \Delta) = K(p, \Sigma) + \int_{k} T(p, k, \Delta) D(k_{+}) D(k_{-}) K(k, \Sigma)$$

$$\downarrow d$$

$$\downarrow d$$

$$\downarrow p$$

$$\downarrow$$

Onshell amplitude: Mandelstam plane

- $t = \frac{\Delta^2}{4m^2}$, $\lambda = -\frac{p \cdot \Sigma}{m^2}$
- Born terms for exchange particle produce s- and u-channel poles
- Bound state pole in t channel
- **Poles** in propagators and exchange particle pose **restrictions**:

 $-1 < t < \delta, \quad |\lambda| < 1+t, \quad \delta = \frac{\mu^2}{m^2} - 1$

A toy model

- Born terms for exchange particle produce s- and u-channel poles
- Bound state pole in t channel
- Poles in propagators and exchange particle pose restrictions:

 $-1 < t < \delta, \hspace{1em} |\lambda| < 1+t, \hspace{1em} \delta = \frac{\mu^2}{m^2}-1$

Subtract Born terms to get rid of s- and u-channel poles (\leftrightarrow 1Pl part):

- rise is due to t-channel bound state
- outside blue region: naive integration over poles (wrong)
- scattering amplitude almost independent of λ!

Baryon spectrum

Eigenvalue spectra

GE, Fischer, Sanchis-Alepuz, 1607.05748

• N($\frac{1}{2}^+$) and $\Delta(\frac{3}{2}^+)$ channels hardly affected by ps, v diquarks

- all other channels: sc, av → masses too high sc, av, ps, $v \rightarrow$ masses too low
- not all eigenvalues extrapolate to masses below 2 GeV
- some are complex conjugate (but imaginary parts small), some split into 2 real branches: numerical or truncation artifact?

Gernot Eichmann (IST Lisboa)

Resonances

• Current-mass evolution of Roper:

GE, Fischer, Sanchis-Alepuz, PRD 94 (2016)

• 'Pion cloud' effects difficult to implement at quark-gluon level:

• Branch cuts & widths generated by **meson-baryon interactions:** Roper $\rightarrow N\pi$, etc.

• Lattice: finite volume, DSE (so far): bound states

Resonance dynamics shifts poles into complex plane, but effects on real parts small?

Nucleon em. form factors

Nucleon charge radii:

isovector (p-n) Dirac (F1) radius

Nucleon magnetic moments:

isovector (p-n), isoscalar (p+n)

 Pion-cloud effects missing (⇒ divergence!), agreement with lattice at larger quark masses.

• But: pion-cloud cancels in $\kappa^s \Leftrightarrow$ quark core

Exp: $\kappa^s = -0.12$ Calc: $\kappa^s = -0.12(1)$ GE, PRD 84 (2011)

Nucleon- Δ - γ transition

-10

-12

0.0

OOPS (Sparveris '05) MAMI (Stave '08)

CLAS (Aznaurvan '09

 $Q^2 [GeV^2]$

0.2 0.4 0.6 0.8 1.0 1.2

- small & negative, encode deformation. Reproduced without pion cloud: **OAM** from **p waves!** GE, Nicmorus, PRD 85 (2012)
- First three-body results similar Alkofer, GE, Sanchis-Alepuz, Williams, Hyp. Int. 234 (2015)

Gernot Eichmann (IST Lisboa)

Resonances?

Branch cuts & widths generated by **meson-baryon interactions:** Roper $\rightarrow N\pi$, etc.

Without them: bound states without widths

To generate resonances dynamically at **quark level:** complicated topologies beyond rainbow-ladder

cf. ρ **meson:** bound state vs. resonance below / above $\pi\pi$ threshold

resonance dynamics shifts pole into complex plane, effect on real part small?

Complex eigenvalues?

Excited states: some EVs are complex conjugate?

Typical for **unequal-mass** systems, already in Wick-Cutkosky model Wick 1954, Cutkosky 1954

Connection with "anomalous" states? Ahlig, Alkofer, Ann. Phys. 275 (1999)

K and *G* are Hermitian (even for unequal masses!) but *KG* is not

If $G = G^{\dagger}$ and G > 0: Cholesky decomposition $G = L^{\dagger}L$

 $K \frac{L^{\dagger}L}{L} \phi_{i} = \lambda_{i} \phi_{i}$ $(LKL^{\dagger}) (L\phi_{i}) = \lambda_{i} (L\phi_{i})$

⇒ Hermitian problem with same EVs!

Complex eigenvalues?

Excited states: some EVs are complex conjugate?

Typical for **unequal-mass** systems, already in Wick-Cutkosky model Wick 1954, Cutkosky 1954

Connection with "anomalous" states? Ahlig, Alkofer, Ann. Phys. 275 (1999)

K and *G* are Hermitian (even for unequal masses!) but *KG* is not

If $G = G^{\dagger}$ and G > 0: Cholesky decomposition $G = L^{\dagger}L$

 $K L^{\dagger} L \phi_i = \lambda_i \phi_i$ $(LKL^{\dagger}) (L\phi_i) = \lambda_i (L\phi_i)$

⇒ Hermitian problem with same EVs!

- ⇒ all EVs strictly real
- \Rightarrow level repulsion
- ⇒ "anomalous states" removed?

Complex eigenvalues?

Excited states: some EVs are complex conjugate?

Typical for **unequal-mass** systems, already in Wick-Cutkosky model Wick 1954, Cutkosky 1954

Connection with "anomalous" states? Ahlig, Alkofer, Ann. Phys. 275 (1999)

K and *G* are Hermitian (even for unequal masses!) but *KG* is not

If $G = G^{\dagger}$ and G > 0: Cholesky decomposition $G = L^{\dagger}L$

 $K \frac{L^{\dagger}L}{L} \phi_{i} = \lambda_{i} \phi_{i}$ $(LKL^{\dagger}) (L\phi_{i}) = \lambda_{i} (L\phi_{i})$

⇒ Hermitian problem with same EVs!

- ⇒ all EVs strictly real
- \Rightarrow level repulsion
- ⇒ "anomalous states" removed?

Extracting resonances

Photoproduction of exotic mesons at JLab/GlueX:

What if exotic mesons are **relativistic** $q\bar{q}$ states? \Rightarrow study with DSE/BSE!

Meson electroproduction

$$\tau = \frac{Q^2}{4m^2}\,,\qquad \eta = \frac{K\cdot Q}{m^2}\,,\qquad \lambda = -\frac{P\cdot Q}{m^2} = -\frac{P\cdot K}{m^2}$$

Amplitude depends on 6 Lorentz-invariant "FFs"

$$\mathcal{M}^{\mu}(P, K, Q) = \bar{u}(P_f) \left(\sum_{i=1}^{6} A_i(\tau, \eta, \lambda) M_i^{\mu}(P, K, Q) \right) u(P_i)$$

with appropriate tensor basis: no kinematic singularities GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, PPNP 91 (2016)

Meson electroproduction

Singularity structure of quark propagator prevents direct kinematic access to all relevant regions

Strategies:

- if amplitudes free of kinematic singularities, only physical poles and cuts
 - \Rightarrow extrapolate from unphysical regions (or offshell kinematics)
- clean solution (expensive): use contour deformations

... and more

Scattering amplitudes from quark level:

Muon g-2

• Muon anomalous magnetic moment: total SM prediction deviates from exp. by ~3 σ

$$\int_{p}^{q} = ie \, \bar{u}(p') \left[F_1(q^2) \, \gamma^{\mu} - F_2(q^2) \, \frac{\sigma^{\mu\nu}q_{\nu}}{2m} \right] u(p)$$

• Theory uncertainty dominated by **QCD:** Is QCD contribution under control?

¥

Hadronic light-by-light scattering

$a_{\mu} \ [10^{-10}]$		Jegerlehner, Nyffeler, Phys. Rept. 477 (2009)				
Exp:	11	659 208.9	(6	6.3)	_	
QED:	11	658 471.9	(0	0.0)		
EW:		15.3	(0).2)		
Hadronic:						
 VP (LO+HC 	D)	685.1	(4	1.3)		
• LBL		10.5	(2	2.6)	?	
SM:	11	659 182.8	(4	1.9)	-	
Diff:		26.1	(8	3.0)		

LbL amplitude: ENJL & MD model results

Bijnens 1995, Hakayawa 1995, Knecht 2002, Melnikov 2004, Prades 2009, Jegerlehner 2009, Pauk 2014

Muon g-2

• Muon anomalous magnetic moment: total SM prediction deviates from exp. by ~3 σ

$$\int_{p}^{p} = ie \, \bar{u}(p') \left[F_1(q^2) \, \gamma^{\mu} - F_2(q^2) \, \frac{\sigma^{\mu\nu}q_{\nu}}{2m} \right] u(p)$$

• Theory uncertainty dominated by **QCD:** Is QCD contribution under control?

$a_{\mu} [10^{-10}]$	Jegerlehner, Nyffeler, Phys. Rept. 477 (2009)				
Exp: 11	659 208.9	(6.3)	_		
QED: 11	658 471.9	(0.0)			
EW:	15.3	(0.2)			
Hadronic:					
 VP (LO+HO) 	685.1	(4.3)			
• LBL	10.5	(2.6)	?		
SM: 11	659 182.8	(4.9)	-		
Diff:	26.1	(8.0)			

• LbL amplitude at quark level, derived from gauge invariance: GE, Fischer, PRD 85 (2012), Goecke, Fischer, Williams, PRD 87 (2013)

- no double-counting, gauge invariant!
- need to understand structure of amplitude GE, Fischer, Heupel, PRD 92 (2015)