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* GPDs encode the non perturbative structure of the nucleon

D. Muiller et al. Fortsch.Phys. 42 (1994) 101, X.-D. Ji Phys.Rev.Lett. 78 (1997) 610,
A. Radyushkin Phys.Lett. B380 (1996) 417

— 4 GPDs are needed to describe the nucleon, they depend on x, € and t
* Can be flavored decomposed and extended to gluon

— The GPDs H and E can be directly linked to the angular momentum

— GPDs can be translated into a tomographic image of the proton
M. Burkardt Phys.Rev. D62 (2000) 071503

* GPDs can be extracted from exclusive processes
— Factorization has been demonstrated

— However, these processes have small cross sections

1
— Deep Virtual Compton Scattering (DVCS) Fre(t,t) =P [ lda; [ﬁ F a:_:-f] F(z,¢,1),
* Simplest process that interfere with Bethe-Heitler to give B
larger cross sections and spin asymmetries Fim(6:t) = F&60) FF(=6,4.2).
— Deep Virtual Meson Production (DVMP) o/ \—s /) \—s o/ \—s )\
* Possible with many final states but more complicated A
. . => = = <« | > = ||—> <
* These exclusive processes only give access
+ + - -
to CFFs
< < <« <« «— < <« <«
— The 4 complex CFFs intervene as 8 free parameters
used to measure the original GPDs iy N Nl N N8
A. Belitsky et al. Nucl.Phys. B629 (2002) 323-392 H E H E ,




JIPN DVCS Data and Promises
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* We made many measurements in the past two decades B =
<o |nt.-Twist2

— Both of DVCS and DVMP, in many experiments B = Betne-Heter
]
* DESY (HERA & HERMES), JLab (Hall A & CLAS) and soon CERN EO-US*
(COMPASS) E S

* See talk of S. Niccolai on the CLAS program

* These were often motivated based on two main arguments  °

— Measure the Ji sum rule to resolve the proton spin crisis gZZ?: ! T
— Make the tomography of the nucleon ii: , % st
* This week topical focus 5 oot
* This talk will be about -
— Delivering on the tomography of the nucleon B T

— Extending these studies to the nulceus 3



d‘PN Extracting the 3D Map
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a Aoy ocsing Im {F{;Q +{(F+ 5) (H + %BE) — kogg + }
L % " )
| Aoz o (A+ Beoso) Re{F1?{+§(F1+F2) (?{Jr%BE) +}
R Aoy, xsing Imfk(FyH - RE) +..)
i e — * We performed a fit of all available data from HERMES and JLab

R R — R. Dupré, M. Guidal, M. Vanderhaeghen, Phys.Rev. D95 (2017) no.1, 011501
— R. Dupré, M. Guidal, S. Niccolai, M. Vanderhaeghen, Eur. Phys. J. A (2017) 53: 171

With all the experimental effort the problem remains under-constrained

Y
[ ]

a(f,)

— We need more observables to have a fully constrained fit
“r — In the mean time, we need some form of model input

— We chose to use very lose bounds on the sub-leading CFF
* We use * 5x the VGG model predictions

o
T
[}

An illustration of this is the target asymmetry measurement effect on the Im(FI)

— Which incidentally have a strong impact on Im(H) as well!

However these data are not available for all kinematics

— Moreover, we need more observables to constrain E and E

TR, . . . . (... — Transversely polarized target, double spin asymmetries, charge asymmetries...
a(Hp )
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* In some cases the fit gives problematic results

— Explored with many independent pseudo-data sets and fit starting points

— We often find highly asymmetric error bars
* However, they do not reflect properly the 2 profile
* They are due to very flat x2valley

— We also sometimes find double solutions

— Both of these features are problematic to properly use these results

* We found that the central value of the error bars works best
— This is natural since subleading CFFs are in fact not constrained and the minimum x2in

their range is most of the time not significant
* Taking the central value is equivalent to taking them at a value of 0

— It was confirmed by simulation that central values give better results
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d‘pN Extraction of Im(H)
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x=0.1262 [
Q*=1.1125 [

* Applying the local fit method to dﬂ -
all the JLab data

— JLab Hall A (o, Ao)
— CLAS (o, Ag, ITSA, DSA)

* Gives enough coverage to
explore the t and x; (— &)

dependence of Im(H)

— Can be fitted with an exponential
form to extract the nucleon
tomography

Him (€, t) = A(€)eP "

* Results are generally slightly
below the VGG model

— Confirms that our limits based on
VGG are very conservative
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* The A and B parameters of the fit contain all the physics

— They are linked to density and transverse size of the nucleon

03 ¢
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DUAL

10"

* Fitted using educated guess

— Asymptotic behavior expectations are similar to PDFs

— In the future with larger amount of data, models can be directly
tested at this level or used to perform global fits

* The tomography of the nucleon

— We are not there yet! We need a € dependent correction to go
from the singlet to the non-singlet distribution

— We note that at low x the correction is small and similarly

described by several models



IPN Proton Tomography
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* We then obtain the tomography of the proton

— Represented is the mean square charge radius of the
proton for slices of x

— Error bars reflect the unknown CFFs

* To flatten this distribution, one would need a non
constrained CFF with very strong opposite behavior

* We observe the nucleon size shrinking with x

— On a limited range, most of the phase space is
extrapolated



4IPN Access to other GPDs
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* Target spin asymmetries give first insight in Im(H)
— Also reduce error bars significantly on Im(H)
— We need more of these to efficiently reduce the error bars
— This will hopefully be achieved with JLab 12 and other future programs
* See S. Niccolai talk on Tuesday
* Other theoretical inputs are possible from QCD
— Dispersion relations can help access the real parts of the CFFs

— Global fits based on models can reduce the number of free parameters
* At the cost of model dependencies



d‘PN Other Compton Scatterings
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* Time-like Compton scattering (TCS)

— Offers similar information as DVCS with smaller cross sections

— Test the universality of the GPDs

— Can experimentally facilitate the use of transversely polarized targets
* Double DVCS

— Measure the off-diagonal (x # &) value of the GPDs

— Unique measurement to test model extrapolations in this domain
* Impact of these measurements is under investigation

— See M. Boer talk on Friday

10



J‘PN Neutron DVCS
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* Why the neutron? JF s
- —— Cano & Pire calculation [34]
— Gives access to flavor decomposition of the GPDs s of |
— GPD H is suppressed giving a better access to the GPD E _% 0
* Important GPD for the Ji sum rule oF
* Hall A results aF
. . 3¢
— Measurement was performed by subtracting proton to the deuterium ~ _E
— Asymmetries are found to be in line with expectations . 1—
— But they are small and the subtraction is tricky 12y :: :
M. Mazouz et al. Phys.Rev.Lett. 99 (2007) 242501 / C. Desnault, PhD Thesis (Univ. Paris-Sud) £ - %_ - - AHLT calculation [36] 1 B
° CLA512 perspecﬁves .3;_ —— VGG calculation [37]
. .. . -4 5
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* Exclusive m° production

Deep Virtual Meson Production

— Comes for free with DVCS to which it is the main source of background

— Dominated by its transverse component

* Expected to give an insight into transverse GPDs
I. Bedlinskiy et al. (CLAS Coll.) Phys.Rev.Lett. 109 (2012) 112001, M. Defurne et al. (2016) arXiv: 1608.01003

* Other mesons

— 1+ production can also be interpreted in term of GPDs after subtracting

contribution of single pion production

K. Park et al. (CLAS Coll.) Eur.Phys.J). A49 (2013) 16

— Several studies performed in CLAS but vector mesons appears not to be in
the handbag diagram regime at JLab 6 GeV

* |In the future

— Higher energies will ease the data interpretation in term of GPDs

— We will use vector mesons to access the gluon GPDs

— Phi at CLAS12 and J/Psi at the future EIC
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* We are now able to go all the way from data to the tomography
— Thanks to the large amount of data produced in JLab in the past decade
* Including the important polarized target results
* Incremental progress will come with

— More data, from many observables, on a large phase space
* We expect from JLab12 much more precision and coverage

* We hope for many more observables as well (transversely polarized targets, Double
DVCS, charge asymmetries...)

— Theoretical progress to include meson production observables to the fits
* Global fits can also help
— To include constraints from dispersion relations and correct behavior at the limits

— Necessary to get to the second big promise of GPDs, the Ji sum rule

13



4dIPN Nuclear GPDs
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* New view on nuclear effects

— GPDs offer a completely new point of view to understand the partonic structure of nuclei

* Experimental access to completely new nuclear physics
— Non nucleonic degrees of freedom of the nuclei
— Measurement of the pressure and forces in the nuclei

— The EMC effect remain today a mystery, hadron tomography can help localize it in the nuclei
R. Dupré & S. Scopetta Eur.Phys.J. A52 (2016) no.é, 159

* Nuclei allow to play with the spin
— The use of helium 4 greatly simplifies the problem with only 1 GPD
* The measurement of Beam Spin Asymmetry is enough to describe this nuclei

— Use of helium 3 and deuterium can help to understand the neutron and explore more complex spin
dynamics in hadrons



J‘PN Experimental Apparatus
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CEBAF

Large
Acceptance
Spectrometer

DC: Drift Chamber
CC: Cerenkov Counter
SC: Scintillation Counter
EC: Electromagnetic Calorimeter

* Experimental challenges

— Detecting very forward photons

— Detecting very low energy alphas (7 MeV)
* Radial Time Projection Chamber

— Small TPC placed around the target
* Inner Calorimeter

— Very forward electromagnetic calorimeter

15



dIPN The Coherent DVCS
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* Coherent DVCS on helium

— Shows very strong beam spin asymmetry
— Expected factor ~2 increase from PWIA prediction 4= T
* Interpretation W N - B
— The very strong signal proves that we are indeed ﬂa‘ — okﬁm\'&u

probing the nuclei as a whole
— We see an even stronger signal than expected 6



d‘PN Extraction of the CFF

INSTITUT DE PHYSIQUE NUCLEAIRE

— More precise measurement will be needed to extract the -5
real part

ORSAY
* Simple extraction 1sE- — 0(0)*10% — 01,(9)*1
— Spin-0 — 1 GPD — 2 CFF 10f- —a¢) a5(¢)"10
— Their different contributions in phi allows to separate their 5_ —//X\’_\
contributions o_/
— The different contributions are exactly calculable within F
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The Generalized EMC Ratio
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Generalized EMC ratio

— Coherent/proton

* The expected form factor slope is present
V. Guzey and M. Strikman Phys. Rev. C 68, 015204

— Incoherent/proton

* Suppressed compared to the binding model from
S. Liuti and S.K. Taneja Phys.Rev. C72 (2005) 032201
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MIPN  The ALERT Detector for CLAS12
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* A Low Energy Recoil Tracker Z f/e
— Replace the CLAS12 silicon vertex tracker (SVT) and Q\% %
the micromegas detectors : [0 ™ . s coen—|
* Hyperbolic drift chamber — e = f--
— Stereo angles give the z-axis resolution ®/ % new . e -

™

— We tested electronic options
— first prototype tested with DREAM Front-End Board

Clear space
surrounded by a
Kapton wall

Outerwall —___

* Scintillators for TOF and total energy measurement

— GEANT4 simulations have been performed to estimate energy loss in

. Target
different layers

— Path of photons have been estimated to optimize tile sizes Dt char

* Work in Progress

Scintillators array
covered by a light
proof layer

— Some technical choices are not final

* We present a conservative version that we are confident we can
build without problems

* We are working with prototypes to optimize different
parameters (exact gas mixture, wire materials and thickness...)

G. Charles et al. Nucl. Instrum. Meth., A855 (2017) 154
— Integration of electronics and other elements

* We use the same electronics (DREAM), but with less channels,
than the CLAS12 Micromegas, so we do not expect this to be a
major challenge

Soldering tests with a 2mm wire gap 19
on a curved surface
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Expected Detector Performances
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Capabilities for very low momentum detection
— Aslow as 70 MeV/c for protons and 240 MeV/c for “He
— Detection at large angles in forward and backward directions (25° from the beam)

— Main limitations are due to recoils stopped in the target and are simulated with
GEANT4

— Target has 6 mm radius with 25 um kapton walls and 3 atm pressure

Capabilities to handle high rates
— Small distance between wires leads to short drift time <250 ns (5 ps in a similar RTPC)
* Based on MAGBOLTZ calculation
— This translates into 20x less accidental hits
— Allows to be integrated in the trigger for significantly reduced DAQ rate
Improved PID
— Like in the RTPC we get dE/dx
— We have more resolution on the curvature due to the large pad size in previous RTPCs

— We have new informations: TOF, total energy deposit...
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* We will perform the tomography of the helium-4 nucleus both in term of quarks and gluons
— It will be a complete measurement of the leading order GPDs of helium
— It is a unique opportunity to compare the quark and gluon distributions in the nucleus
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* In fifteen years of experiments at JLab, we have
accumulated a wide array of data

— DVCS in particular can already be interpreted directly
in term of GPDs and 3D structure of the nucleon
— DVMP appears more complicated but opens
perspectives on transverse GPDs and gluon GPDs
* We can now extract the tomography of the
nucleon from these data
— Errors can be reduced by including more observables

* Cross-sections, beam spin asymmetries, target
asymmetries...

* Transverse target, positron beam...

— Already the x dependence of the charge radius is
visible
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* This will be completed in the near future
— In the sea region by COMPASS
— In the valence region by JLab 12
— We can also go very low in the sea region at an EIC
* How wide the proton will get at low x?
* This framework can be used to understand more
complex hadron

— GPDs have a word to say about the partonic structure
of the nuclei

— Give access to unique opportunities

* First experimental results

— A first measurement of both coherent and incoherent
DVCS on a nucleus has been made in CLAS

— More is to come at JLab with the ALERT detector
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