

INT workshop 2017 - week 5 Seattle, 24-29 September 2017

GLUON TMDS AND POSITIVITY BOUNDS FOR POLARIZED TARGETS

Sabrina Cotogno, T. van Daal, P. J. Mulders arXiv:1709.07827

Probing the hadron structure

 $d\sigma \sim \text{TMD PDFs} \otimes \sigma_{\text{HARD}} \otimes (\text{final-states})$

Probing the hadron structure

$$\Phi_{ij}^{[U]}(x,k_T;n) =$$

$$\Phi_{ij}^{[U]}(x, k_T; n) = \int \frac{d\,\xi \cdot P \, d^2 \xi_T}{(2\pi)^3} \, e^{ik \cdot \xi}$$

$$\Phi_{ij}^{[U]}(x,k_T;n) = \int \frac{d\,\xi \cdot P\,d^2\xi_T}{(2\pi)^3} \,e^{i\,k\cdot\xi} \langle P,S|\overline{\psi}_j(0) \qquad \psi_i(\xi)|P,S\rangle \,\Big|_{\xi\cdot n=0}$$

$$\Phi_{ij}^{[U]}(x,k_T;n) = \int \frac{d\,\xi \cdot P\,d^2\xi_T}{(2\pi)^3} \,e^{i\,k\cdot\xi} \langle P,S|\overline{\psi}_j(0)\,U_{[0,\xi]}\psi_i(\xi)|P,S\rangle \,\Big|_{\xi\cdot n=0}$$

$$\Phi_{ij}^{[U]}(x,k_T;n) = \int \frac{d\,\xi \cdot P\,d^2\xi_T}{(2\pi)^3} \,e^{i\,k\cdot\xi} \langle P,S|\overline{\psi}_j(0)\,U_{[0,\xi]}\psi_i(\xi)|P,S\rangle \,\Big|_{\xi\cdot n=0}$$

$$\Gamma^{[U,U']\,\mu\nu}(x,k_T;n) = \int \frac{d\,\xi \cdot P\,d^2\xi_T}{(2\pi)^3} \,e^{i\,k\cdot\xi} \,\langle P,S|\,F^{n\mu}(0)\,U_{[0,\xi]}\,F^{n\nu}(\xi)\,U'_{[\xi,0]}\,|P,S\rangle\big|_{\xi\cdot n=0}$$

$$\Gamma^{[U,U']\,\mathbf{ij}}(x,k_T;n) = \int \frac{d\,\xi \cdot P\,d^2\xi_T}{(2\pi)^3} \,e^{i\,k\cdot\xi} \,\langle P,S|\,F^{n\,\mathbf{i}}(0)\,U_{[0,\xi]}\,F^{n\,\mathbf{j}}(\xi)\,U'_{[\xi,0]}\,|P,S\rangle\big|_{\xi\cdot n=0}$$

Process dependence!

on the gauge link structure: [Efremov, Radyushkin, Qiu,Sterman,Collins,Brodsky, Hwang, Schmidt,Boer, Mulders Teryaev,... - various works] process dependence, non universality and more: [Belitsky, Ji, Yuan, 2003] [Boer, Mulders,Pijlman, 2003;Bomhof, Mulders, Pijlman, 2006] [Bomhof, Mulders, 2006,Buffing, Mukherjee, Mulders,2012]

Transverse momentum dependent light-front correlationfunction forgluons

Leading twist contribution: µ and v transverse Gauge link structures: staple-like

$$\Gamma^{[U,U']\,\mathbf{ij}}(x,k_T;n) = \int \frac{d\,\xi \cdot P\,d^2\xi_T}{(2\pi)^3} \,e^{i\,k\cdot\xi}\,\langle P,S|\,F^{n\,\mathbf{i}}(0)\,U_{[0,\xi]}\,F^{n\,\mathbf{j}}(\xi)\,U'_{[\xi,0]}\,|P,S\rangle\big|_{\xi\cdot n=0}$$

Process dependence!

on the gauge link structure: [Efremov, Radyushkin, Qiu,Sterman,Collins,Brodsky, Hwang, Schmidt,Boer, Mulders Teryaev,... - various works] process dependence, non universality and more: [Belitsky, Ji, Yuan, 2003] [Boer, Mulders,Pijlman, 2003;Bomhof, Mulders, Pijlman, 2006] [Bomhof, Mulders, 2006,Buffing, Mukherjee, Mulders,2012]

The Wilson loop correlator

$$\Gamma_0^{[\Box]}(\boldsymbol{k}_T) \equiv \int \frac{d^2 \boldsymbol{\xi}_T}{(2\pi)^2} e^{-i\boldsymbol{k}_T \cdot \boldsymbol{\xi}_T} \langle P; S, T | \operatorname{Tr}_c \left(U^{[\Box]} \right) | P; S, T \rangle$$

Wilson loop correlator

The Wilson loop correlator

$$\Gamma_0^{[\Box]}(\boldsymbol{k}_T) \equiv \int \frac{d^2 \boldsymbol{\xi}_T}{(2\pi)^2} e^{-i\boldsymbol{k}_T \cdot \boldsymbol{\xi}_T} \langle P; S, T | \operatorname{Tr}_c \left(U^{[\Box]} \right) | P; S, T \rangle$$

 $U^{[\Box]}$

The correspondence at small-x

$$2\pi L \,\Gamma^{[+,-]ij}(x,\boldsymbol{k}_T) \xrightarrow{x \to 0} k_T^i k_T^j \Gamma_0^{[\Box]}(\boldsymbol{k}_T)$$

Longitudinal dimension of the Wilson loop

$$L \equiv \int d\xi \cdot P = 2\pi \delta(0)$$

Choice for the gauge link structure: dipole type operator.

[Dominguez,Marquet,Xiao,Yuan,2011] [Boer,G.Echevarria,Mulders,Zhou,2015] [Boer, Cotogno, van Daal, Mulders, Signori, Zhou 2016] 7

The correspondence at small-x

$$2\pi L \,\Gamma^{[+,-]ij}(x,\boldsymbol{k}_T) \stackrel{x\to 0}{\longrightarrow} k_T^i k_T^j \Gamma_0^{[\Box]}(\boldsymbol{k}_T)$$

Longitudinal dimension of the Wilson loop

$$L \equiv \int d\xi \cdot P = 2\pi \delta(0)$$

Choice for the gauge link structure: dipole type operator.

• The correspondence is mathematically exact at x=0

[Dominguez, Marquet, Xiao, Yuan, 2011] [Boer, G.Echevarria, Mulders, Zhou, 2015] [Boer, Cotogno, van Daal, Mulders, Signori, Zhou 2016] 7

The correspondence at small-x

$$2\pi L \,\Gamma^{[+,-]ij}(x,\boldsymbol{k}_T) \stackrel{x\to 0}{\longrightarrow} k_T^i k_T^j \Gamma_0^{[\Box]}(\boldsymbol{k}_T)$$

Longitudinal dimension of the Wilson loop

$$L \equiv \int d\xi \cdot P = 2\pi \delta(0)$$

Choice for the gauge link structure: dipole type operator.

- The correspondence is mathematically exact at x=0
- It allows for an estimate of the behavior of the gluon TMDs at small-x (see later)

[Dominguez,Marquet,Xiao,Yuan,2011] [Boer,G.Echevarria,Mulders,Zhou,2015] [Boer, Cotogno, van Daal, Mulders, Signori, Zhou 2016] 7

TARGET SPIN

- Parent hadron momentum P ;
- Parton momentum $k^{\mu} = xP^{\mu} + k^{\mu}_T + (k \cdot P xM^2)n^{\mu}$;
- n, light-like vector satisfying $P \cdot n = 1$;

- Parent hadron momentum P ;
- Parton momentum $k^{\mu} = xP^{\mu} + k^{\mu}_T + (k \cdot P xM^2)n^{\mu};$
- n, light-like vector satisfying $P \cdot n = 1$;

Vector polarization:

• Construction of the space-like spin vector satisfying $P \cdot S = 0$;

- Parent hadron momentum P ;
- Parton momentum $k^{\mu} = xP^{\mu} + k^{\mu}_T + (k \cdot P xM^2)n^{\mu}$;
- n, light-like vector satisfying $P \cdot n = 1$;

Vector polarization:

• Construction of the space-like spin vector satisfying $P \cdot S = 0$;

$$S^{\mu} = S_L \frac{P^{\mu}}{M} + S_T^{\mu} - M S_L n^{\mu}$$

- Parent hadron momentum P ;
- Parton momentum $k^{\mu} = xP^{\mu} + k^{\mu}_T + (k \cdot P xM^2)n^{\mu}$;
- n, light-like vector satisfying $P \cdot n = 1$;

Vector polarization:

• Construction of the space-like spin vector satisfying $P \cdot S = 0$;

$$S^{\mu} = S_L \frac{P^{\mu}}{M} + S_T^{\mu} - MS_L n^{\mu}$$

"Light-cone helicity"
(IMF \rightarrow helicity of the particle)

• Simple interpretation in light-front formalism.

 P^+

 S_L

Tensor polarization (relevant for spin-1 and higher)

• Construction of the symmetric traceless spin tensor satisfying $P_{\mu}T^{\mu\nu} = 0$;

$$T^{\mu\nu} = \frac{1}{2} \left[\frac{2}{3} S_{LL} g_T^{\mu\nu} + \frac{4}{3} S_{LL} \frac{P^{\mu} P^{\nu}}{M^2} + \frac{S_{LT}^{\{\mu} P^{\nu\}}}{M} + S_{TT}^{\mu\nu} - \frac{4}{3} S_{LL} P^{\{\mu} n^{\nu\}} - M S_{LT}^{\{\mu} n^{\nu\}} + \frac{4}{3} M^2 S_{LL} n^{\mu} n^{\nu} \frac{P^{\mu} P^{\nu}}{M^2} \right]$$

• Five more spin components (representing combinations of probability of finding the system in a certain spin state → less simple to visualize)

[Bacchetta,PhD Thesis,2002] [Leader, "Spin in Particle Physics", 2001] 10 GLUONTMDs

Sabrina Cotogno	Sa	brina	Cotogno
-----------------	----	-------	---------

		GLUON POLARI		WILSON LOOP	
		Unpolarized	Circular	Linear	
SPIN	U	f_1		h_1^\perp	e
SET S	L		g_1	h_{1L}^{\perp}	
TARC	Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp	e_T

The functions have dependence:

$$\begin{array}{ccc} f,g,h & e \\ \downarrow & \downarrow \\ f(x,\boldsymbol{k}_T^2) & e(\boldsymbol{k}_T^2) \end{array}$$

1	N'	T2	01	7,	Se	attl	e
---	----	-----------	----	----	----	------	---

		GLUON POLARI	WILSON LOOP		
		Unpolarized	Circular	Linear	
SET SPIN	U	f_1		h_1^\perp	e
	L		g_1	h_{1L}^{\perp}	
TAR	Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp	e_T

The functions have dependence:f, g, he \downarrow \downarrow $f(x, \mathbf{k}_T^2)$ $e(\mathbf{k}_T^2)$

INT2017, Seattle

		GLUON POLARI	WILSON LOOP		
		Unpolarized	Circular	Linear	
SPIN	U	f_1		h_1^\perp	e
GET S	L		g_1	h_{1L}^{\perp}	
TARC	Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp	e_T

The functions have dependence: f, g, he $igvee e(oldsymbol{k}_T^2)$ $f(x, \boldsymbol{k}_T^2)$

 $UU: g_T^{ij}f_1$ $\frac{i\epsilon_{T\alpha}^{\{i}k_{T}^{j\}\alpha}}{S_{T}h_{T}^{\perp}}$ LL: $\frac{g_T^{ij} \epsilon^{k \cdot S_T}}{M}$ TU: f_{1T}^{\perp} $i\epsilon_T^{ij}k_T\cdot S_T$ TC: g_{1T} etc...

INT20	7, Seattle
-------	------------

		GLUON POLARI		WILSON LOOP	
		Unpolarized	Circular	Linear	
SPIN	U	f_1		h_1^\perp	e
SET S	L		g_1	h_{1L}^{\perp}	
TARC	Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp	e_T

The functions have dependence:f, g, he \downarrow \downarrow $f(x, \mathbf{k}_T^2)$ $e(\mathbf{k}_T^2)$

Notice: scales dependence on the TMDs is frozen (more comments later..)

 $UU: g_T^{ij}f_1$ $\frac{i\epsilon_{T\alpha}^{\{i}k_{T}^{j\}\alpha}}{\mathbf{S}_{T}h^{\perp}}$ LL: $rac{g_T^{ij}\epsilon^{k\cdot S_T}}{M}f_{i\epsilon_T^{ij}k_T\cdot S_T}$ TU:TC: g_{1T} etc...

INT2017, Seattle

		GLUON POLARI	WILSON LOOP		
		Unpolarized	Circular	Linear	Wilson loop
	U	f_1		h_1^\perp	e
Z	L		g_1	h_{1L}^{\perp}	
T SPI	Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp	e_T
ARGE	LL	f_{1LL}		h_{1LL}^{\perp}	e_{LL}
F	LT	f_{1LT}	g_{1LT}	h_{1LT}, h_{1LT}^{\perp}	e_{LT}
	TT	f_{1TT}	g_{1TT}	$(\boldsymbol{h_{1TT}} h_{1TT}^{\perp}, h_{1TT}^{\perp\perp})$	e_{TT}

Spin I [Jaffe & Manohar, 1989] [Boer, C, van Daal, Mulders, Signori, Zhou, 2016]

		GLUON POLARI	GLUON POLARIZATION			
		Unpolarized	Circular	Linear	Wilson loop	
r spin	U	f_1		h_1^\perp	e	
	L		g_1	h_{1L}^{\perp}		
	Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp	e_T	
ARGE	LL	f_{1LL}		h_{1LL}^{\perp}	e_{LL}	
F	LT	f_{1LT}	g_{1LT}	h_{1LT}, h_{1LT}^{\perp}	e_{LT}	
	TT	f_{1TT}	g_{1TT}	$(h_{1TT}, h_{1TT}^{\perp}, h_{1TT}^{\perp\perp})$	e_{TT}	

 $LLU: \quad g_T^{ij}S_{LL}f_{1LL}$

 $LTL: \quad \frac{S_{LT}^{\{i}k_{T}^{j\}}}{M}h_{1LT} + \frac{k_{T}^{ij\alpha}}{M^{3}}S_{LT\alpha}h_{1LT}^{\perp}$

 $TTC: i\epsilon^{ij}rac{\epsilon^{eta}_{T\gamma}k^{\gammalpha}_{T}S_{TTlphaeta}}{M^{2}}g_{1TT}$

Spin I [Jaffe & Manohar, 1989] [Boer, C, van Daal, Mulders, Signori, Zhou, 2016]

etc...

		GLUON POLARI	ZATION		WILSON LOOP		
		Unpolarized	Circular	Linear	Wilson loop		
	U	f_1		h_1^\perp	e		
Z	L		g_1	h_{1L}^{\perp}			
T SPI	Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp	e_T		
ARGE	LL	f_{1LL}		h_{1LL}^{\perp}	e_{LL}		
F	LT	f_{1LT}	g_{1LT}	h_{1LT}, h_{1LT}^{\perp}	e_{LT}		
	TT	f_{1TT}	g_{1TT}	h_{1TT} h_{1TT}^{\perp} , $h_{1TT}^{\perp \perp}$	e_{TT}		
	Two Spin I [Jaffe & Manoha [Boer,C,vanDaa	$: g_T^{ij} S_{LL} f$ $\stackrel{ij}{\leftarrow} h_{1LT} + \frac{k_T^{ij\alpha}}{M^3}$ $\stackrel{ij}{\leftarrow} \frac{\epsilon_T^{\beta} k_T^{\gamma\alpha} S_{TTC}}{M^2}$ etc	$\frac{1LL}{S_{LT\alpha}h_{1LT}^{\perp}}$ $\frac{\alpha\beta}{g_{1TT}}$ 13				

IN	Т20	17,	Sea	ttle
----	-----	-----	-----	------

		GLUON POLARI	WILSON LOOP		
		Unpolarized	Circular	Linear	
	U	$e^{(1)}$		e	e
Z	L		—	—	
T SPI	Т	$e_T^{(1)}$		$e_T^{(1)}, -e_T$	e_T
ARGE	LL	$e_{LL}^{(1)}$		e_{LL}	e_{LL}
17	LT	$\frac{1}{2}e_{LT}^{(1)}$	<u> </u>	$\frac{1}{2}e_{LT}^{(1)}, -e_{LT}$	e_{LT}
	TT	$\frac{1}{3}e_{TT}^{(1)}$	_	$e_{TT}^{(2)}, -\frac{2}{3}e_{TT}^{(1)}, e_{TT}$	e_{TT}

1/x is understood in all the entries

$$e^{(n)} = \left(\frac{\boldsymbol{k}_T^2}{2M^2}\right)^n e$$

[Dominguez, Marquet, Xiao, Yuan, 2011] [Boer, G.Echevarria, Mulders, Zhou, 2015] [Boer, Cotogno, van Daal, Mulders, Signori, Zhou 2016]

IN	T20	17,	Sea	ttle
----	-----	-----	-----	------

		GLUON POLARI	WILSON LOOP		
		Unpolarized	Circular	Linear	
	U	$e^{(1)}$		e	e
Z	L		—	—	
T SPI	Т	$e_T^{(1)}$	——————————————————————————————————————	$e_T^{(1)}, -e_T$	e_T
ARGE	LL	$e_{LL}^{(1)}$		e_{LL}	e_{LL}
F	LT	$\frac{1}{2}e_{LT}^{(1)}$	_	$\frac{1}{2}e_{LT}^{(1)}, -e_{LT}$	e_{LT}
	TT	$\frac{1}{3}e_{TT}^{(1)}$	—	$e_{TT}^{(2)}, -\frac{2}{3}e_{TT}^{(1)}, e_{TT}$	e_{TT}

1/x is understood in all the entries

$$e^{(n)} = \left(\frac{\boldsymbol{k}_T^2}{2M^2}\right)^n e$$

[Dominguez, Marquet, Xiao, Yuan, 2011] [Boer, G.Echevarria, Mulders, Zhou, 2015] [Boer, Cotogno, van Daal, Mulders, Signori, Zhou 2016]

The gluon TMD PDFs in the small-x limit:

		GLUON POLARI	WILSON LOOP		
		Unpolarized	Circular	Linear	
	U	$e^{(1)}$		e	e
Z	L		—	—	
T SPI	Т	$e_T^{(1)}$		$e_T^{(1)}, -e_T$	e_T
ARGE	LL	$e_{LL}^{(1)}$		e_{LL}	e_{LL}
F	LT	$\frac{1}{2}e_{LT}^{(1)}$	_	$\frac{1}{2}e_{LT}^{(1)}, -e_{LT}$	e_{LT}
	TT	$\frac{1}{3}e_{TT}^{(1)}$	—	$e_{TT}^{(2)}, -\frac{2}{3}e_{TT}^{(1)}, e_{TT}$	e_{TT}

1/x is understood in all the entries

$$e^{(n)} = \left(rac{k_T^2}{2M^2}
ight)^n e$$

[Dominguez, Marquet, Xiao, Yuan, 2011] [Boer, G.Echevarria, Mulders, Zhou, 2015] [Boer, Cotogno, van Daal, Mulders, Signori, Zhou 2016]

The gluon TMD PDFs in the small-x limit:

• they vanish or become proportional to each other

IN	T20	17,	Sea	ttle
----	-----	-----	-----	------

		GLUON POLARI	WILSON LOOP		
		Unpolarized	Circular	Linear	
	U	$e^{(1)}$		e	e
Z	L		—	—	
T SPI	Т	$e_T^{(1)}$	—	$e_T^{(1)}, -e_T$	e_T
ARGE	LL	$e_{LL}^{(1)}$		e_{LL}	e_{LL}
F	LT	$\frac{1}{2}e_{LT}^{(1)}$	_	$\frac{1}{2}e_{LT}^{(1)}, -e_{LT}$	e_{LT}
	TT	$\frac{1}{3}e_{TT}^{(1)}$	—	$e_{TT}^{(2)}, -\frac{2}{3}e_{TT}^{(1)}, e_{TT}$	e_{TT}

1/x is understood in all the entries

 $e^{(n)} = \left(\frac{\boldsymbol{k}_T^2}{2M^2}\right)^n e$

[Dominguez, Marquet, Xiao, Yuan, 2011] [Boer, G. Echevarria, Mulders, Zhou, 2015] [Boer, Cotogno, van Daal, Mulders, Signori, Zhou 2016]

The gluon TMD PDFs in the small-x limit:

- they vanish or become proportional to each other
- if not vanishing they are proportional to 1/x (modulo neglected logs)

	N	T	20)	7,	Se	att	le
--	---	---	----	---	----	----	-----	----

		GLUON POLARI	WILSON LOOP		
		Unpolarized	Circular	Linear	
	U	$e^{(1)}$		e	e
Z	L		—	—	
T SPI	Т	$e_T^{(1)}$	— —	$e_T^{(1)}, -e_T$	e_T
ARGE	LL	$e_{LL}^{(1)}$		e_{LL}	e_{LL}
F	LT	$\frac{1}{2}e_{LT}^{(1)}$	_	$\frac{1}{2}e_{LT}^{(1)}, -e_{LT}$	e_{LT}
	TT	$\frac{1}{3}e_{TT}^{(1)}$	—	$e_{TT}^{(2)}, -\frac{2}{3}e_{TT}^{(1)}, e_{TT}$	e_{TT}

1/x is understood in all the entries

$$e^{(n)} = \left(\frac{\boldsymbol{k}_T^2}{2M^2}\right)^n e$$

[Dominguez, Marquet, Xiao, Yuan, 2011] [Boer, G.Echevarria, Mulders, Zhou, 2015] [Boer, Cotogno, van Daal, Mulders, Signori, Zhou 2016]

The gluon TMD PDFs in the small-x limit:

- they vanish or become proportional to each other
- if not vanishing they are proportional to 1/x (modulo neglected logs)
- only two structures for unpolarized and transversely polarized nucleons: pomeron & odderon structure
POSITIVITY BOUNDS

Quarks: [Bacchetta,Boglione,Henneman, Mulders,2000] [Bacchetta, Mulders2001] Gluons: [Mulders,Rodrigues,2001] [Meissner, Metz and Goeke,2007]

Single out hadron spin:

$$\rho = \frac{1}{3} \left(I + \frac{3}{2} S^i \Sigma^i + 3 T^{ij} \Sigma^{ij} \right).$$

Quarks: [Bacchetta,Boglione,Henneman, Mulders,2000] [Bacchetta, Mulders2001] Gluons: [Mulders,Rodrigues,2001] [Meissner, Metz and Goeke,2007]

Single out hadron spin:

$$\rho = \frac{1}{3} \left(I + \frac{3}{2} S^i \Sigma^i + 3 T^{ij} \Sigma^{ij} \right).$$

$$\Gamma^{ij} = \sum_{ss'} \rho_{ss'} G^{ij}_{ss'}$$

Gamma: matrix in the gluon polarization space G: matrix in gluon \otimes target spin space Circular polarization bases $|\pm\rangle = \mp \frac{1}{\sqrt{2}}(|x\rangle \pm i|y\rangle);$

Quarks: [Bacchetta,Boglione,Henneman, Mulders,2000] [Bacchetta, Mulders2001] Gluons: [Mulders,Rodrigues,2001] [Meissner, Metz and Goeke,2007]

Single out hadron spin:

$$\rho = \frac{1}{3} \left(I + \frac{3}{2} S^i \Sigma^i + 3 T^{ij} \Sigma^{ij} \right).$$

$$\Gamma^{ij} = \sum_{ss'} \rho_{ss'} G^{ij}_{ss'}$$

Gamma: matrix in the gluon polarization space G: matrix in gluon \otimes target spin space Circular polarization bases $|\pm\rangle = \mp \frac{1}{\sqrt{2}}(|x\rangle \pm i|y\rangle);$

[Meissner, Metz and Goeke, 2007]

Single out hadron spin:

$$\rho = \frac{1}{3} \left(I + \frac{3}{2} S^i \Sigma^i + 3 T^{ij} \Sigma^{ij} \right).$$

$$\Gamma^{ij} = \sum_{ss'} \rho_{ss'} G^{ij}_{ss'}$$

Gamma: matrix in the gluon polarization space G: matrix in gluon \otimes target spin space Circular polarization bases $|\pm\rangle = \mp \frac{1}{\sqrt{2}}(|x\rangle \pm i|y\rangle);$

Quarks:
$$G^{ij} = \begin{pmatrix} G^{++} & G^{+-} \\ G^{-+} & G^{--} \end{pmatrix}$$
[Bacchetta,Boglione,Henneman,
Mulders,2000] $G^{-+} & G^{--} \end{pmatrix}$ [Bacchetta, Mulders2001]Semi-positive definite matrix.[Bacchetta, Mulders2001]Semi-positive definite matrix.[Mulders,Rodrigues,2001]Allows for the interpretation of some functions as densities as densities

6x6 matrix in gluon \otimes target spin space

$$\frac{\kappa_T}{2M^2} |h_1^{\perp} - h_{1LL}^{\perp}| \le f_1 - f_{1LL}$$

$$\frac{\kappa_T^2}{2M^2} |h_1^{\perp} - h_{1LL}^{\perp}| \le f_1 - f_{1LL}$$

$$\frac{\boldsymbol{k}_T^2}{2M^2} \left(h_1^2 + 4h_{1LT}^2 \right) \le \left(f_1 - f_{1LL} \right) \left(f_1 + \frac{f_{1LL}}{2} + g_1 \right)$$

6x6 matrix in gluon⊗target spin space

$$\frac{\boldsymbol{k}_T^2}{2M^2} \left(h_1^2 + 4h_{1LT}^2 \right) \le \left(f_1 - f_{1LL} \right) \left(f_1 + \frac{f_{1LL}}{2} + g_1 \right)$$

... 6 more inequalities from the remaining 2x2 principal minors 17

6x6 matrix in gluon⊗target spin space

 $\frac{\boldsymbol{k}_T^2}{2M^2} |h_1^{\perp} - h_{1LL}^{\perp}| \le f_1 - f_{1LL}$

Bounds can be sharpened!

$$\frac{\boldsymbol{k}_T^2}{2M^2} \left(h_1^2 + 4h_{1LT}^2 \right) \le \left(f_1 - f_{1LL} \right) \left(f_1 + \frac{f_{1LL}}{2} + g_1 \right)$$

... 6 more inequalities from the remaining 2x2 principal minors 17

Positivity bounds on the Wilson loop

$$\Gamma_0^{[\Box]} = \sum_{ss'} \rho_{ss'} G_{0ss'}^{[\Box]} \left(\boldsymbol{k}_T \right)$$

$$G_{0ss'}^{[\Box]}(\boldsymbol{k}_T) = \begin{pmatrix} \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots \end{pmatrix}$$

Explicit form in arXiv:1709.07827

Positivity bounds on the Wilson loop

$$\Gamma_0^{[\Box]} = \sum_{ss'} \rho_{ss'} G_{0ss'}^{[\Box]} \left(\boldsymbol{k}_T \right)$$

$$G_{0ss'}^{[\Box]}(\boldsymbol{k}_T) = \begin{pmatrix} \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots \end{pmatrix} \underset{\text{arXiv: I 709.07827}}{\text{Explicit form in}}$$

Two independent positivity bounds from the diagonalization of the 2x2 principal minors:

$$\frac{k_T^2}{2M^2} \left(e_T^2 + e_{LT}^2 \right) \le \left(e - e_{LL} \right) \left(e + \frac{e_{LL}}{2} \right),$$
$$\frac{k_T^2}{M^2} \left| e_{TT} \right| \le e + \frac{e_{LL}}{2}.$$

Gluon TMDs and Wilson loop correlator: the bounds at small-x

$$\frac{k_T^4}{2M^4} |h_{1TT}^{\perp\perp}| \le f_1 + \frac{f_{1LL}}{2} - g_1$$
$$\frac{k_T^2}{2M^2} |h_1^{\perp} - h_{1LL}^{\perp}| \le f_1 - f_{1LL}$$
$$\frac{k_T^2}{2M^2} \left(h_1^2 + 4h_{1LT}^2\right) \le (f_1 - f_{1LL}) \left(f_1 + \frac{f_{1LL}}{2} + g_1\right)$$

Gluon TMDs and Wilson loop correlator: the bounds at small-x

$$\frac{k_T^4}{2M^4} |h_{1TT}^{\perp\perp}| \le f_1 + \frac{f_{1LL}}{2} - g_1$$
$$\frac{k_T^2}{2M^2} |h_1^{\perp} - h_{1LL}^{\perp}| \le f_1 - f_{1LL}$$
$$\frac{k_T^2}{2M^2} (h_1^2 + 4h_{1LT}^2) \le (f_1 - f_{1LL}) \left(f_1 + \frac{f_{1LL}}{2} + g_1\right)$$
... and 6 more small-x

Gluon TMDs and Wilson loop correlator: the bounds at small-x

The small-x limit on the gluon TMDs bounds gives the bounds on the Wilson loop!

"Mutatis mutandis": the spin-1/2 case

partially done in: [Mulders,Rodrigues,2001] [Meissner, Metz and Goeke,2007]

"Mutatis mutandis": the spin-1/2 case

- 2x2 density matrix parametrized in terms of S and the Pauli matrices
- Matrix representation of the correlator in gluon \otimes target space:
 - 4x4 matrix for the gluon TMD correlation function;
 - 2x2 matrix for the Wilson loop (see 1709.07827).

partially done in: [Mulders,Rodrigues,2001] [Meissner, Metz and Goeke,2007]

"Mutatis mutandis": the spin-1/2 case

- 2x2 density matrix parametrized in terms of S and the Pauli matrices
- Matrix representation of the correlator in gluon
 Starget space:
 - 4x4 matrix for the gluon TMD correlation function;
 - 2x2 matrix for the Wilson loop (see 1709.07827).

partially done in: [Mulders,Rodrigues,2001] [Meissner, Metz and Goeke,2007]

Only few gluon functions survive upon integration over transverse momenta:

Only few gluon functions survive upon integration over transverse momenta: $G_{ss'}^{ij}(x) =$

Only few gluon functions survive upon integration over transverse momenta: $G_{ss'}^{ij}(x) =$

$$f_{1LL} \leq f_1,$$

$$|g_1| \leq f_1 + \frac{f_{1LL}}{2},$$

$$|h_{1TT}| \leq \frac{1}{2} \left(f_1 + \frac{f_{1LL}}{2} + g_1 \right)$$

Only few gluon functions survive upon integration over transverse momenta: $G_{ss'}^{ij}(x) =$

$$f_{1LL} \le f_1,$$

Bounds come from the diagonalization of the full matrix

$$|g_1| \le f_1 + \frac{f_{1LL}}{2},$$
$$|h_{1TT}| \le \frac{1}{2} \left(f_1 + \frac{f_{1LL}}{2} + g_1 \right)$$

Only few gluon functions survive upon integration over transverse momenta: $G_{ss'}^{ij}(x) =$

 $f_{1LL} \le f_1,$

Bounds come from the diagonalization of the full matrix

$$|g_1| \le f_1 + \frac{f_{1LL}}{2},$$
$$|h_{1TT}| \le \frac{1}{2} \left(f_1 + \frac{f_{1LL}}{2} + g_1 \right)$$

Recent lattice calculations on the first moment of this bound [Detmold,Shanahan,2016]²¹

The collinear PDF $h_{1TT}(x)$

[Jaffee, Manohar, 1989]

Volume 223, number 2

PHYSICS LETTERS B

8 June 1989

NUCLEAR GLUONOMETRY *

R.L. JAFFE and Aneesh MANOHAR

Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Received 24 March 1989

We identify a new leading twist structure function in QCD which can be measured in deep elastic scattering from polarized targets (such as nuclei) with spin ≥ 1 . The structure function measures a gluon distribution in the target and vanishes for a bound state of protons and neutrons, thereby providing a clear signature for exotic gluonic components in the target.

The collinear PDF $h_{1TT}(x)$

[Jaffee, Manohar, 1989]

Volume 223, number 2

PHYSICS LETTERS B

8 June 1989

NUCLEAR GLUONOMETRY *

R.L. JAFFE and Aneesh MANOHAR

Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Received 24 March 1989

We identify a new leading twist structure function in QCD which can be measured in deep elastic scattering from polarized targets (such as nuclei) with spin ≥ 1 . The structure function measures a gluon distribution in the target and vanishes for a bound state of protons and neutrons, thereby providing a clear signature for exotic gluonic components in the target.

[Detmold,Shanahan,2016]

The collinear PDF $h_{1TT}(x)$

[Jaffee, Manohar, 1989]

Volume 223, number 2

PHYSICS LETTERS B

8 June 1989

NUCLEAR GLUONOMETRY *

R.L. JAFFE and Aneesh MANOHAR

Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Received 24 March 1989

We identify a new leading twist structure function in QCD which can be measured in deep elastic scattering from polarized targets (such as nuclei) with spin ≥ 1 . The structure function measures a gluon distribution in the target and vanishes for a bound state of protons and neutrons, thereby providing a clear signature for exotic gluonic components in the target.

 $\Delta(x)$ Double helicity flip structure function

 $h_{1TT}(x)$ Probability to find linearly polarized gluons inside a transverse tensor polarized target

[Detmold,Shanahan,2016]

Experimental relevance at present facilities:

Possibilities at LHC:
COMPASS and AFTER@LHC (it allows, in principle, for polarized targets)

Experimental relevance at present facilities:

Spin-I program at JLab:

- Approved tensor polarization program: measurement of the quark structure function b_1 of the deuteron.
- Proposals on tensor polarized experiments using nitrogen targets: extraction of the gluon structure function Δ (encouraged for full submission at JLab by PAC 44)
- Possibilities at LHC:
- COMPASS and AFTER@LHC (it allows, in principle, for polarized targets)

Experimental relevance at present facilities:

Spin-I program at JLab:

- Approved tensor polarization program: measurement of the quark structure function b_1 of the deuteron.
- Proposals on tensor polarized experiments using nitrogen targets: extraction of the gluon structure function Δ (encouraged for full submission at JLab by PAC 44)
- Possibilities at LHC:
- COMPASS and AFTER@LHC (it allows, in principle, for polarized targets)

In the future...

Electron Ion Collider EIC

• Would allow to thoroughly study many gluon observables.

REMARKS ON POSITIVITY BOUNDS
Model-independent inequalities;

- Model-independent inequalities;
- Rigorous test of QCD;

- Model-independent inequalities;
- Rigorous test of QCD;
- Allow for an estimate of the magnitude of the functions.

- Model-independent inequalities;
- Rigorous test of QCD;
- Allow for an estimate of the magnitude of the functions.

- Model-independent inequalities;
- Rigorous test of QCD;
- Allow for an estimate of the magnitude of the functions.

The matrix G is positive semidefinite only for operators in the form $O^{\dagger}(0)O(\xi)$. The simplest gauge link structures for which this holds are [+,+], [-,-], [+,-], and [-,+];

- Model-independent inequalities;
- Rigorous test of QCD;
- Allow for an estimate of the magnitude of the functions.

The matrix G is positive semidefinite only for operators in the form $O^{\dagger}(0)O(\xi)$. The simplest gauge link structures for which this holds are [+,+], [-,-], [+,-], and [-,+];

• QCD evolution effects:

- Model-independent inequalities;
- Rigorous test of QCD;
- Allow for an estimate of the magnitude of the functions.

The matrix G is positive semidefinite only for operators in the form $O^{\dagger}(0)O(\xi)$. The simplest gauge link structures for which this holds are [+,+], [-,-], [+,-], and [-,+];

QCD evolution effects:

Multi-scale evolution: no studies have been performed on the (in)stability of the bounds after evolution.

- Model-independent inequalities;
- Rigorous test of QCD;
- Allow for an estimate of the magnitude of the functions.

The matrix G is positive semidefinite only for operators in the form $O^{\dagger}(0)O(\xi)$. The simplest gauge link structures for which this holds are [+,+], [-,-], [+,-], and [-,+];

QCD evolution effects:

Multi-scale evolution: no studies have been performed on the (in)stability of the bounds after evolution.

- Model-independent inequalities;
- Rigorous test of QCD;
- Allow for an estimate of the magnitude of the functions.

The matrix G is positive semidefinite only for operators in the form $O^{\dagger}(0)O(\xi)$. The simplest gauge link structures for which this holds are [+,+], [-,-], [+,-], and [-,+];

QCD evolution effects:

Multi-scale evolution: no studies have been performed on the (in)stability of the bounds after evolution.

Conclusions

- Gluon TMDs are fundamental tools to understand hadron internal structure (3D distribution of momentum);
- Their knowledge would reveal a lot about the internal dynamics of gluons in hadrons, which is at present almost unknown;
- When hadron polarization is included, the additional degrees of freedom could open up a wide range of new phenomena (signs of different types of parton-hadron correlations);
- "Exotic" gluonic effects within nuclei would also allow to study more thoroughly the binding between the constituents (which are not confined into separate nucleons);
- Positivity bounds can be used as model-independent tools to estimate magnitude of mainly unknown functions.
- Gluon distributions (PDFs and TMDs) are dominant is in the small-x limit: it is important that future facilities access this kinematical region.

For more information see arXiv: 1709.07827

Thank you!

Back up slides

Parametrization of the gluon correlator:

$$\Gamma^{ij[U]}(x,k_T) = \frac{x}{2} \left\{ -g_T^{ij} f_1^{[U]}(x,k_T^2) + \frac{k_T^{ij}}{M^2} h_1^{\perp [U]}(x,k_T^2) \right\}$$

$$\Gamma_L^{ij[U]}(x,k_T) = \frac{x}{2} \left\{ i\epsilon_T^{ij} S_L g_1^{[U]}(x,k_T^2) + \frac{\epsilon_T^{\{i} \alpha k_T^{j\}\alpha}}{M^2} S_L h_{1L}^{\perp [U]}(x,k_T^2) \right\}$$

$$\Gamma_T^{ij[U]}(x,k_T) = \frac{x}{2} \left\{ \frac{g_T^{ij} \epsilon_T^{kS_T}}{M} f_{1T}^{\perp [U]}(x,k_T^2) - \frac{i\epsilon_T^{ij} k_T \cdot S_T}{M} g_{1T}^{[U]}(x,k_T^2) - \frac{\epsilon_T^{\{i\} k_T} \delta_T^{j\}\alpha S_T}{M} h_{1T}(x,k_T^2) - \frac{\epsilon_T^{\{i\} k_T} \delta_T^{j\}\alpha S_T}{2M^3} h_{1T}^{\perp}(x,k_T^2) \right\}$$

$$\begin{split} \Gamma_{LL}^{ij[U]]}(x,k_T) &= \frac{x}{2} \left\{ -g_T^{ij} S_{LL} f_{1LL}^{[U]}(x,k_T^2) + \frac{k_T^2}{M^2} S_{LL} h_{1LL}^{\perp[U]}(x,k_T^2) \right\} \\ \Gamma_{LT}^{ij[U]}(x,k_T) &= \frac{x}{2} \left\{ -g_T^{ij} \frac{k_T \cdot S_{LT}}{M} f_{1LT}^{[U]}(x,k_T^2) + i\epsilon_T^{ij} \frac{\epsilon_T^{S_{LT}k}}{M} g_{1LT}^{[U]}(x,k_T^2) \right. \\ &+ \frac{S_{LT}^{\{i,k\}} h_T^{j\}}}{M} h_{1LT}^{[U]}(x,k_T^2) + \frac{k_T^{ij\alpha} S_{LT\alpha}}{M^3} h_{1LT}^{\perp[U]}(x,k_T^2) \right\} \\ \Gamma_{TT}^{ij[U]}(x,k_T) &= \frac{x}{2} \left\{ -g_T^{ij} \frac{k_T^{\alpha\beta} S_{TT\alpha\beta}}{M^2} f_{1TT}^{[U]}(x,k_T^2) + i\epsilon_T^{ij} \frac{\epsilon_T^{\beta} \gamma k_T^{\alpha\alpha} S_{TT\alpha\beta}}{M^2} g_{1TT}^{[U]}(x,k_T^2) \right. \\ &+ S_{TT}^{ij} h_{1TT}^{[U]}(x,k_T^2) + \frac{S_{TT\alpha\beta}^{\{i,k\}} h_T^{j}}{M^2} h_{1TT}^{\perp[U]}(x,k_T^2) \\ &+ \frac{k_T^{ij\alpha\beta} S_{TT\alpha\beta}}{M^4} h_{1TT}^{\perp\perp[U]}(x,k_T^2) \right\} \end{split}$$

$$2\pi L \Gamma^{[+,-]ij}(0,\boldsymbol{k}_T) = \int \frac{d\xi \cdot P \, d^2 \xi_T}{(2\pi)^3} e^{ik \cdot \xi} \langle P | F^{ni}(0) U^{[+]}_{[0,\xi]} F^{nj}(\xi) U^{[-]}_{[\xi,0]} | P \rangle \Big|_{\xi \cdot n = k \cdot n = 0}$$

$$=k_{T}^{i}k_{T}^{j}\int\frac{d^{2}\xi}{(2\pi)^{2}}e^{ik_{T}\cdot\xi_{T}}\langle P|U^{[\Box]}|P\rangle\bigg|_{\xi\cdot n=0}=k_{T}^{i}k_{T}^{j}\Gamma_{0}^{[\Box]}(\boldsymbol{k}_{T})$$

Choice for the gauge link structure: dipole type operator.

$$2\pi L \Gamma^{[+,-]ij}(0,\boldsymbol{k}_T) = \int \frac{d\xi \cdot P \, d^2 \xi_T}{(2\pi)^3} e^{ik \cdot \xi} \langle P | F^{ni}(0) U^{[+]}_{[0,\xi]} F^{nj}(\xi) U^{[-]}_{[\xi,0]} | P \rangle \Big|_{\xi \cdot n = k \cdot n = 0}$$

$$=k_T^i k_T^j \int \frac{d^2 \xi}{(2\pi)^2} e^{ik_T \cdot \xi_T} \langle P | U^{[\Box]} | P \rangle \Big|_{\xi \cdot n = 0} = k_T^i k_T^j \Gamma_0^{[\Box]}(\boldsymbol{k}_T)$$

Wilson loop correlator

$$2\pi L \Gamma^{[+,-]ij}(0,\boldsymbol{k}_T) = \int \frac{d\xi \cdot P \, d^2 \xi_T}{(2\pi)^3} e^{ik \cdot \xi} \langle P | F^{ni}(0) U^{[+]}_{[0,\xi]} F^{nj}(\xi) U^{[-]}_{[\xi,0]} | P \rangle \Big|_{\xi \cdot n = k \cdot n = 0}$$

$$=k_T^i k_T^j \int \frac{d^2 \xi}{(2\pi)^2} e^{ik_T \cdot \xi_T} \langle P | U^{[\Box]} | P \rangle \Big|_{\xi \cdot n = 0} = k_T^i k_T^j \Gamma_0^{[\Box]}(\boldsymbol{k}_T)$$

$$2\pi L \Gamma^{[+,-]ij}(0,\boldsymbol{k}_T) = \int \frac{d\xi \cdot P \, d^2 \xi_T}{(2\pi)^3} e^{ik \cdot \xi} \langle P | F^{ni}(0) U^{[+]}_{[0,\xi]} F^{nj}(\xi) U^{[-]}_{[\xi,0]} | P \rangle \Big|_{\xi \cdot n = k \cdot n = 0}$$

$$=k_T^i k_T^j \int \frac{d^2 \xi}{(2\pi)^2} e^{ik_T \cdot \xi_T} \langle P | U^{[\Box]} | P \rangle \Big|_{\xi \cdot n = 0} = k_T^i k_T^j \Gamma_0^{[\Box]}(\boldsymbol{k}_T)$$

$$2\pi L \Gamma^{[+,-]ij}(0,\boldsymbol{k}_T) = \int \frac{d\xi \cdot P \, d^2 \xi_T}{(2\pi)^3} e^{ik \cdot \xi} \langle P | F^{ni}(0) U^{[+]}_{[0,\xi]} F^{nj}(\xi) U^{[-]}_{[\xi,0]} | P \rangle \Big|_{\xi \cdot n = k \cdot n = 0}$$

$$=k_{T}^{i}k_{T}^{j}\int\frac{d^{2}\xi}{(2\pi)^{2}}e^{ik_{T}\cdot\xi_{T}}\langle P|U^{[\Box]}|P\rangle\Big|_{\xi\cdot n=0}=k_{T}^{i}k_{T}^{j}\Gamma_{0}^{[\Box]}(\boldsymbol{k}_{T})$$

Sabrina Cotogno

INT2017, Seattle

		PARTON SPIN				
	QUARKS	γ^+	$\gamma^+\gamma_5$	$\gamma^{+}\gamma^{\alpha}\gamma_{5}$		
TARGET SPIN	U	$\begin{pmatrix} f_1 \end{pmatrix}$		$h_{\!\scriptscriptstyle 1}^{\!\scriptscriptstyle \perp}$		
	L		(\mathbf{g}_1)	$h_{_{1L}}^{_{\perp}}$		
	Т	f_{1T}^{\perp}	$\mathcal{G}_{_{1T}}$	$(h_1)h_{1\tau}^{\perp}$		
		·				
	LL	$\left(f_{1LL} \right)$		$h_{_{1}LL}^{_{\perp}}$		
	LT	f_{1LT}	$g_{_{1LT}}$	$(h_{1LT}) h_{1LT}^{L}$		
	TT	f ₁₇₇	\mathcal{G}_{1TT}	$h_{1\pi} h_{1\pi}^{\perp}$		
Hoodbhoy, Jaffe & Manohar, NP B312 (1988) 571: introduction of $f_{1LL} = b_1$						
Bacchetta & M, PRD 62 (2000) 114004; h _{1LT} first introduced as T-odd PDF						
X. Ji, PRD 49 (1994) 114; introduction of $H_{1LT}\equiv\hat{h}_{\bar{1}}$ (PFF)						

		GLUON POLARIZATION					
	GLUONS	$- {oldsymbol{g}}^{lphaeta}_{ au}$	$\epsilon_{\tau}^{lphaeta}$	$p_{T}^{lphaeta},$			
TARGET SPIN	U	(f_1^g)		$h_{l}^{\perp g}$			
	L		(\mathbf{g}_{1}^{g})	$h_{_{1L}}^{_{\perp g}}$			
	Т	$f_{_{1}T}^{\perp g}$	${oldsymbol{\mathcal{G}}_{1T}^g}$	$m{h}^g_1 \ m{h}^{\perp g}_{1T}$			
	LL	(f_{1LL}^{g})		$h^{\scriptscriptstyle ot g}_{\scriptscriptstyle 1LL}$			
	LT	f_{1LT}^{g}	${\cal g}_{_{1LT}}^{\ g}$	$h_{_{1}LT}^{g}$ $h_{_{1}LT}^{_{\perp}g}$			
	Π	f_{1TT}^{g}	$oldsymbol{g}_{1TT}^{\ g}$	$\widehat{(h_{1\pi}^{g})}h_{1\pi}^{\perp g}h_{1\pi}^{\perp g}$			
Jaffe & Manohar, Nuclear gluonometry, PL B223 (1989) 218							
PJM & Rodrigues, PR D63 (2001) 094021							
Meissner, Metz and Goeke, PR D76 (2007) 034002							
D Boer, S Cotogno, T van Daal, PJM, A Signori, Y Zhou, ArXiv 1607.01654							

$$\rho = \frac{1}{3} \left(I + \frac{3}{2} S^{i} \Sigma^{i} + 3 T^{ij} \Sigma^{ij} \right).$$

$$\rho = \left(\begin{array}{c} \frac{S_{L}}{2} + \frac{S_{LL}}{3} + \frac{1}{3} \\ \frac{S_{LTx} + iS_{LTy}}{2\sqrt{2}} + \frac{S_{Tx} + iS_{Ty}}{2\sqrt{2}} \\ \frac{1}{2} \left(S_{TTxx} + iS_{TTxy} \right) \end{array} \right) \xrightarrow{S_{LTx} - iS_{LTy}}{\frac{1}{2\sqrt{2}}} + \frac{S_{Tx} - iS_{Ty}}{2\sqrt{2}} \\ \frac{1}{2\sqrt{2}} \left(\frac{S_{TTxx} + iS_{TTy}}{2\sqrt{2}} + \frac{S_{Tx} - iS_{LTy}}{2\sqrt{2}} + \frac{S_{Tx} + iS_{Ty}}{2\sqrt{2}} \\ \frac{-S_{LTx} - iS_{LTy}}{2\sqrt{2}} + \frac{S_{Tx} + iS_{Ty}}{2\sqrt{2}} \\ \frac{-S_{LTx} - iS_{LTy}}{2\sqrt{2}} + \frac{S_{Tx} + iS_{Ty}}{2\sqrt{2}} \\ \frac{-S_{L}}{2} + \frac{S_{LL}}{3} + \frac{1}{3} \end{array} \right)$$

Positivity bounds: construction of the matrix

$$G = \frac{x}{2} \left(\begin{array}{cc} A & B \\ B^{\dagger} & C \end{array} \right)$$

C is the transformed of A under Parity

$$A = \begin{pmatrix} f_{1} + \frac{f_{1LL}}{2} - g_{1} & \frac{e^{-i\phi_{k}}}{\sqrt{2M}} \left(f_{1LT} + if_{1T}^{\perp} - g_{1T} - ig_{1LT} + h_{1LT} \right) & \frac{e^{-2i\phi_{k}^{2}}}{M^{2}} \left(f_{1TT} + ig_{1TT} - h_{1TT}^{\perp} \right) \\ \frac{e^{i\phi_{k}}}{\sqrt{2M}} \left(f_{1LT} - if_{1T}^{\perp} - g_{1T} + ig_{1LT} + h_{1LT} \right) & f_{1} - f_{1LL} & -\frac{e^{-i\phi_{k}}}{\sqrt{2M}} \left(f_{1LT} - if_{1T}^{\perp} + g_{1T} - ig_{1LT} + h_{1} \right) \\ \frac{e^{2i\phi_{k}^{2}}}{M^{2}} \left(f_{1TT} - ig_{1TT} - h_{1TT}^{\perp} \right) & -\frac{e^{i\phi_{k}}}{\sqrt{2M}} \left(f_{1LT} + if_{1T}^{\perp} + g_{1T} + ig_{1LT} + h_{1LT} \right) & f_{1} + \frac{f_{1LL}}{2} + g_{1} \end{pmatrix}$$

$$B = \begin{pmatrix} -\frac{e^{-2i\phi_{k}^{2}}}{4M^{2}} \left(2h_{1}^{\perp} + h_{1LL}^{\perp} - 2ih_{1L}^{\perp}\right) & \frac{e^{-3i\phi_{k}^{3}}}{2\sqrt{2}M^{3}} \left(h_{1LT}^{\perp} + ih_{1T}^{\perp}\right) & -\frac{e^{-4i\phi_{k}^{4}}}{2M^{4}} h_{1TT}^{\perp} \\ -\frac{e^{-i\phi_{k}}}{\sqrt{2}M} \left(2h_{1LT} - ih_{1}\right) & -\frac{e^{-2i\phi_{k}^{2}}}{2M^{2}} \left(h_{1}^{\perp} - h_{1LL}^{\perp}\right) & -\frac{e^{-3i\phi_{k}^{3}}}{2\sqrt{2}M^{3}} \left(h_{1LT}^{\perp} - ih_{1T}^{\perp}\right) \\ -2h_{1TT} & \frac{e^{-i\phi_{k}}}{\sqrt{2}M} \left(2h_{1LT} + ih_{1}\right) & -\frac{e^{-2i\phi_{k}^{2}}}{4M^{2}} \left(2h_{1}^{\perp} + h_{1LL}^{\perp} + 2ih_{1L}^{\perp}\right) \end{pmatrix}$$

Positivity bounds: construction of the matrix

$$G_{0}^{[\Box]} = \frac{\pi L}{M^{2}} \begin{pmatrix} e + \frac{e_{LL}}{2} & \frac{e^{-i\phi}k}{\sqrt{2}M} (e_{LT} + ie_{T}) & \frac{e^{-2i\phi}k^{2}}{M^{2}} e_{TT} \\ \frac{e^{i\phi}k}{\sqrt{2}M} (e_{LT} - ie_{T}) & e - e_{LL} & -\frac{e^{-i\phi}k}{\sqrt{2}M} (e_{LT} - ie_{T}) \\ \frac{e^{2i\phi}k^{2}}{M^{2}} e_{TT} & -\frac{e^{i\phi}k}{\sqrt{2}M} (e_{LT} + ie_{T}) & e + \frac{e_{LL}}{2} \end{pmatrix}$$