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Probing Nucleon Structure

CJ15 PDFs

[A. Accardi et al., arXiv:1602.03154]

Parton Distribution Functions

⋆ powerful tool to describe the structure of a nucleon

⋆ necessary for the analysis of Deep inelastic scattering (DIS) data

⋆ Parametrization of off-forward matrix of a bilocal quark operator

(light-like)

FΓ(x, ξ, q
2) = 1

2

∫
dλ
2π
eixλ〈p′|ψ̄(−λn/2)O Pe

ig
λ/2∫

−λ/2

dαn·A(nα)

︸ ︷︷ ︸

gauge invariance

ψ(λn/2)|p〉

q = p′ − p, P̄ = (p′ + p)/2, n: light-cone vector (P̄ .n = 1), ξ = −n · ∆/2
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PDFs on the Lattice

⋆ first principle calculations of PDFs are necessary

⋆ On the lattice: long history of moments of PDFs

fn =
∫ 1

−1
dxxnf(x)

⋆ rely on OPE to reconstruct the PDFs (difficult task):

• signal-to-noise is bad for higher moments

• n > 3: operator mixing (unavoidable!)

⋆ Alternative investigation of PDFs ?

Types:

• Unpolarized (vector current)

• Polarized (axial current)

• Transversity (tensor current)
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PDFs on the Lattice

Novel direct approach: [X.Ji, arXiv:1305.1539]

⋆ compute quasi-PDF on the lattice

⋆ contact with physical PDFs in two steps:

1. Renormalization of quasi-PDFs in Lattice Regularization

2. Matching procedure (LaMET)
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PDFs on the Lattice

Novel direct approach: [X.Ji, arXiv:1305.1539]

⋆ compute quasi-PDF on the lattice

⋆ contact with physical PDFs in two steps:

1. Renormalization of quasi-PDFs in Lattice Regularization

2. Matching procedure (LaMET)

Exploratory studies are maturing:

[X. Xiong et al., arXiv:1310.7471], [H-W. Lin et al., arXiv:1402.1462], [Y. Ma et al., arXiv:1404.6860],

[Y.-Q. Ma et al., arXiv:1412.2688], [C.Alexandrou et al., arXiv:1504.07455], [H.-N. Li et al., arXiv:1602.07575],

[J.-W. Chen et al., arXiv:1603.06664], [J.-W. Chen et al., arXiv:1609.08102], [T. Ishikawa et al., arXiv:1609.02018],

[C.Alexandrou et al., arXiv:1610.03689], [C. Monahan et al., arXiv:1612.01584], [A. Radyushkin et al., arXiv:1702.01726],

[C. Carlson et al., arXiv:1702.05775], [R. Briceno et al., arXiv:1703.06072], [M. Constantinou et al., arXiv:1705.11193],

[C. Alexandrou et al., arXiv:1706.00265], [J-W Chen et al., arXiv:1706.01295], [X. Ji et al., arXiv:1706.08962],

[T. Ishikawa et al., arXiv:1707.03107], [J. Green et al., arXiv:1707.07152]
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Introduction to LQCD
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Lattice formulation of QCD

⋆ Space-time discretization on a finite-sized 4-D lattice

• Quark fields on lattice points

• Gluons on links
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Lattice formulation of QCD

⋆ Space-time discretization on a finite-sized 4-D lattice

• Quark fields on lattice points

• Gluons on links

Technical Aspects

⋆ Parameters (define cost of simulations):

• quark masses (aim at physical values)

• lattice spacing (ideally fine lattices)

• lattice size (need large volumes)

⋆ Discretization not unique:

• Wilson, Clover, Twisted Mass,

• Staggered, Overlap, Domain Wall
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Systematic uncertainties: Challenges & Progress

1 Cut-off Effects: finite lattice spacing

2 Finite Volume Effects

3 Contamination from other hadron states

4 Not simulating the physical world

5 Renormalization and mixing
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Systematic uncertainties: Challenges & Progress

1 Cut-off Effects: finite lattice spacing

• Continuum limit a→ 0

• Simulations with fine lattices (a < 0.1 fm)

• Improve actions, algorithmic improvements

2 Finite Volume Effects

• Infinite volume limit L→ ∞

• Simulating hadrons in large volumes (Rule of thumb: Lmπ > 3.5)

3 Contamination from other hadron states

• Various methods for extracting information from lattice data

4 Not simulating the physical world

• Chiral extrapolation

• Simulations at physical parameters are now feasible

5 Renormalization and mixing

• Subtraction of lattice artifacts, utilize perturbation theory

← L →



11

Lattice Parameters (in this work)

[C. Alexandrou et al. (ETMC), arXiv:1611.09163] [C. Alexandrou et al. (ETMC), arXiv:1611.03802]

Ensemble at the physical point:

⋆ Nf=2 Twisted Mass fermions with a clover term

⋆ Lattice size: 483×96 , 643×128 (NEW)

⋆ Lattice spacing: a∼0.094

⋆ mπ∼130 MeV
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Lattice Parameters (in this work)

[C. Alexandrou et al. (ETMC), arXiv:1611.09163] [C. Alexandrou et al. (ETMC), arXiv:1611.03802]

Ensemble at the physical point:

⋆ Nf=2 Twisted Mass fermions with a clover term

⋆ Lattice size: 483×96 , 643×128 (NEW)

⋆ Lattice spacing: a∼0.094

⋆ mπ∼130 MeV

Measurements

Connected Disconnected

L=48 L=64 L=48

Statistics: 9,280 4,400 480,000

Tsink: 10, 12, 14 12, 14, 16 10, 12, 14, 16, 18



C

MainStream HS

Proton Spin
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Axial Charge (connected)

Excited States Volume effects

Mild excited states and volume effects

u-d
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Quark Momentum Fraction (connected)

MS(2GeV)

Excited States Volume effects

Excited states and volume effects non-negligible

u-d
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Disconnected contributions

⋆ Taking into account the disconnected contributions is crucial

u+d

strange
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Gluon Momentum Fraction
Direct Calculation

Og
µν = −Tr [GµρGνρ]
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Gluon Momentum Fraction
Direct Calculation

Og
µν = −Tr [GµρGνρ]

Challenges

⋆ Disconnected diagram:

• Small signal-to-noise ratio

• Requires special techniques

⋆ Renormalization

• Mixing with operator for 〈x〉u+d Unavoidable

• Mixing with other Operators Vanish in physical matrix elements
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Gluon Momentum Fraction
Direct Calculation

Og
µν = −Tr [GµρGνρ]

Challenges

⋆ Disconnected diagram:

• Small signal-to-noise ratio

• Requires special techniques

⋆ Renormalization

• Mixing with operator for 〈x〉u+d Unavoidable

• Mixing with other Operators Vanish in physical matrix elements

〈x〉Rg = Zgg〈x〉Bg + Zgq

∑

q〈x〉
B
q

∑

q〈x〉
R
q = Zqq

∑

q〈x〉
B
q + Zqg〈x〉Bg

Pert. Theory: computation of mixing coefficients
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Lattice Results
Nf=2 TM fermions, mπ=130MeV

Smearing improves signal

Upon disentangling the gluon momentum fraction from the quark:

〈x〉Rg = 0.267(22)(19)(24)

[C. Alexandrou et al. (ETMC), 1611.06901]
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Proton Spin: Can we put the puzzle together?

Spin Structure from First Principles

Spin Sum Rule:

1
2 =

∑

q J
q + JG =

∑

q

(

Lq + 1
2∆Σq

)

+ JG

Lq: Quark orbital angular momentum

∆Σq: intrinsic spin

JG: Gluon part
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Proton Spin: Can we put the puzzle together?

Spin Structure from First Principles

Spin Sum Rule:

1
2 =

∑

q J
q + JG =

∑

q

(

Lq + 1
2∆Σq

)

+ JG

Lq: Quark orbital angular momentum

∆Σq: intrinsic spin

JG: Gluon part

Extraction from LQCD:

Jq = 1
2 (A

q
20 +B

q
20) , Lq = Jq − Σq , Σq = g

q
A

⋆ Individual quark contributions: disconnected insertion contributes
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Collected Results

⋆ Satisfaction of spin and momentum sum rule is not forced

⇓

⋆ important check of results and the systematic uncertainties

Proton spin Total momentum



D

Novel directions in HS

quasi-PDFs
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Access of PDFs on a Euclidean Lattice

⋆ quasi-PDF purely spatial for nucleons with finite momentum

q̃(x, µ2, P3) =
∫

dz
4π
e−i x P3 z 〈N(P3)|Ψ̄(z) γz A(z, 0)Ψ(0)|N(P3)〉µ2

• A(z, 0): Wilson line from 0 → z • z: distance in any spatial direction (momentum boost in z direction)

⋆ At finite but feasibly large momenta on the lattice:

a large momentum EFT can relate Euclidean q̃ to PDFs through a factorization theorem

⋆ use of Perturbation Theory for the matching



Prior 2017
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Bare Nucleon Matrix Elements
[C. Alexandrou et al. (ETMC), arXiv:1504.07455, arXiv:1610.03689]

Twisted Mass Fermions, mπ=375MeV, P3=6π/L

Unpolarized Polarized Transversity

⋆ Momentum smearing allows to reach higher momenta

Real

Imaginary
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Bare Nucleon Matrix Elements
Twisted Mass Fermions & clover term, mπ=130MeV P3=6π/L

Unpolarized Polarized Transversity
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⋆ Currently increasing momentum to P3=8π/L, 12π/L

Preliminary
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Renormalization... Finally!
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Renormalization... Finally!

Based on:

M. Constantinou, H. Panagopoulos, Phys. Rev. D, in Press, [arXiv:1705.11193]

C. Alexandrou, et al., Nucl. Phys. B (Frontier Article), in Press, [arXiv:1706.00265]
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Renormalization... Finally!

Based on:

M. Constantinou, H. Panagopoulos, Phys. Rev. D, in Press, [arXiv:1705.11193]

C. Alexandrou, et al., Nucl. Phys. B (Frontier Article), in Press, [arXiv:1706.00265]

How can Perturbation Theory help?

⋆ Computation of conversion factor between various renormalization

schemes

⋆ Explore renormalization pattern in Lattice Pert. Theory

Mixing was revealed... unexpectedly !
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Mixing pattern (Identified in PT)

Depends on the relation between the current & Wilson line direction

V S

mixing with

V

no mixing

A

no mixing

A T
mixing with

: Wilson line direction

: Current insertion direction
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Non-perturbative Renormalization

⋆ RI′ scheme

⋆ Use 1-loop conversion factor to convert to the MS at 2 GeV

⋆ Vertex function has the same divergence as the nucleon matrix

element

No mixing

Helicity & transversity

ZO(z) =
Zq

VO(z)

VO =
Tr

12

[

V(p)
(

VBorn(p)
)−1

]

∣

∣

∣

p=µ̄

⋆ Zq: fermion field renormalization

⋆ ZO includes the linear divergence

Mixing

Unpolarized

(OR
V (P3, z)

OR
S (P3, z)

)

= Ẑ(z) ·
(OV (P3, z)

OS(P3, z)

)

Z−1
q Ẑ(z) V̂(p, z)

∣

∣

∣

p=µ̄
= 1̂

hR
V (P3, z) = ZV V (z) hV (P3, z)

+ ZV S(z) hS(P3, z)
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Numerical Results

⋆ Twisted Mass fermions, mπ=375MeV, 323 × 64, HYP smearing

⋆ Conversion &Evolution to MS(2GeV) (Perturbatively)
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Numerical Results

⋆ Twisted Mass fermions, mπ=375MeV, 323 × 64, HYP smearing

⋆ Conversion &Evolution to MS(2GeV) (Perturbatively)
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⋆ Systematics need to be addresses (Upper bounds in arXiv:1706.00265) :

Effect Re [ZMS
∆h ] Im [ZMS

∆h ]

Lattice artifacts 2-5% . 10%

Conversion truncation . 2% . 100%
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Renormalized PDFs @ Pz = 6π/L
Unpolarized
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)(
x
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x
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matched PDF from ZV renorm. ME
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ABM11 u-d
MSTW u-d

Polarized
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∆(
u
-d

)(
x
)

x

matched PDF from fully renorm. ME
matched PDF from ZA renorm. ME

JAM15 u-d
DSSV08 u-d

Mixing not included

Twisted Mass fermions:

Mixing with Pseudoscalar
(O(a))

⋆ Results are promising

• Renormalization brings lattice data
closer to the phenomenological
estimates

• Need to reach higher momenta
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DISCUSSION
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THANK YOU
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Refining Renormalization

⋆ Improvement Technique:

• Computation of 1-loop lattice artifacts to O(g2 a∞)

• Subtraction of lattice artifacts from non-perturbative estimated

⋆ Application to the quasi-PDFs: PRELIMINARY
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Quark Orbital Angular Momentum
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