The proton spin and PDFs from lattice QCD

Martha Constantinou

Temple University

INT Program Spatial and Momentum Tomography of Hadrons and Nuclei September 25, 2017

In collaboration with

- ★ C. Alexandrou^{1,2}
- ★ K. Cichy³
- ★ K. Hadjiyiannakou²
- ★ D. Howarth⁴
- ★ K. Jansen⁵
- ★ Ch. Kallidonis²
- ★ G. Koutsou²
- ★ C. Lauer⁴
- ★ H. Panagopoulos¹
- ★ A. Scapellato¹
- ★ F. Steffens⁵
- ★ A. Vaquero²
- ★ Ch. Wiese⁵

1. Univ. of Cyprus, 2. Cyprus Institute,

3. Adam Mickiewicz University, 4. Temple Univ. 5. DESY Zeuthen

LAYOUT OF THE TALK

A. Motivation

B. Introduction to LQCD

C. MainStream Hadron Structure

- 1. Axial charge
- 2. Quark momentum fraction
- 3. Gluon momentum fraction
- 4. Proton Spin

D. Novel directions in Hadron Structure

- 1. quasi-PDFs in Lattice QCD
- 2. Perturbative Renormalization
- 3. Non-perturbative Renormalization

E. Discussion

Motivation

▲□▶▲□▶▲三▶▲三▶ 三 つへの

Probing Nucleon Structure

Parton Distribution Functions

- ★ powerful tool to describe the structure of a nucleon
- ★ necessary for the analysis of Deep inelastic scattering (DIS) data
- Parametrization of off-forward matrix of a bilocal quark operator (light-like)

$$F_{\Gamma}(x,\xi,q^2) = \frac{1}{2} \int \frac{d\lambda}{2\pi} e^{ix\lambda} \langle p' | \bar{\psi}(-\lambda n/2) \mathcal{O} \underbrace{\mathcal{P}e^{ig \int_{-\lambda/2}^{\lambda/2} d\alpha n \cdot A(n\alpha)}}_{\text{gauge invariance}} \psi(\lambda n/2) | p \rangle$$

$$q=p'-p,$$
 $ar{P}=(p'+p)/2,$ n : light-cone vector ($ar{P}.n=1$), $\xi=-n\cdot\Delta/2$

PDFs on the Lattice

★ first principle calculations of PDFs are necessary★ On the lattice: long history of moments of PDFs

$$f^n = \int_{-1}^1 dx \, x^n f(x)$$

★ rely on OPE to reconstruct the PDFs (difficult task):

- signal-to-noise is bad for higher moments
- n > 3: operator mixing (unavoidable!)

★ Alternative investigation of PDFs ?

Types:

- Unpolarized (vector current)
- Polarized (axial current)
- Transversity (tensor current)

PDFs on the Lattice

Novel direct approach: [X.Ji, arXiv:1305.1539]

- ★ compute quasi-PDF on the lattice
- ★ contact with physical PDFs in two steps:
 - 1. Renormalization of quasi-PDFs in Lattice Regularization
 - 2. Matching procedure (LaMET)

PDFs on the Lattice

Novel direct approach: [X.Ji, arXiv:1305.1539]

- ★ compute quasi-PDF on the lattice
- ★ contact with physical PDFs in two steps:
 - 1. Renormalization of quasi-PDFs in Lattice Regularization
 - 2. Matching procedure (LaMET)

Exploratory studies are maturing:

[X. Xiong et al., arXiv:1310.7471], [H-W. Lin et al., arXiv:1402.1462], [Y. Ma et al., arXiv:1404.6860],
[Y-Q. Ma et al., arXiv:1412.2668], [C.Alexandrou et al., arXiv:1504.07455], [H.-N. Li et al., arXiv:1602.07575],
[J-W. Chen et al., arXiv:1603.06664], [J-W. Chen et al., arXiv:1609.08102], [T. Ishikawa et al., arXiv:1609.02018],
[C.Alexandrou et al., arXiv:1610.03689], [C. Monahan et al., arXiv:1612.01584], [A. Radyushkin et al., arXiv:1702.01726],
[C. Carlson et al., arXiv:1702.05775], [R. Briceno et al., arXiv:1703.06072], [M. Constantinou et al., arXiv:1705.11193],
[C. Alexandrou et al., arXiv:1706.00265], [J-W Chen et al., arXiv:1706.01295], [X. Ji et al., arXiv:1706.08962],
[T. Ishikawa et al., arXiv:1707.03107], [J. Green et al., arXiv:1707.07152]

Introduction to LQCD

▲□▶▲@▶▲≧▶▲≧▶ ≧ めんの

Lattice formulation of QCD

★ Space-time discretization on a finite-sized 4-D lattice

- Quark fields on lattice points
- Gluons on links

Lattice formulation of QCD

★ Space-time discretization on a finite-sized 4-D lattice

- Quark fields on lattice points
- Gluons on links

Technical Aspects

- ★ Parameters (define cost of simulations):
 - quark masses (aim at physical values)
 - lattice spacing (ideally fine lattices)
 - lattice size (need large volumes)

★ Discretization not unique:

- Wilson, Clover, Twisted Mass,
- Staggered, Overlap, Domain Wall

1 Cut-off Effects: finite lattice spacing

2 Finite Volume Effects

- 3 Contamination from other hadron states
- 4 Not simulating the physical world

5 Renormalization and mixing

1 Cut-off Effects: finite lattice spacing

- Continuum limit $a \rightarrow 0$
- Simulations with fine lattices (a < 0.1 fm)
- Improve actions, algorithmic improvements
- 2 Finite Volume Effects

- **3** Contamination from other hadron states
- 4 Not simulating the physical world

5 Renormalization and mixing

1 Cut-off Effects: finite lattice spacing

- Continuum limit $a \rightarrow 0$
- Simulations with fine lattices (a < 0.1 fm)
- Improve actions, algorithmic improvements

2 Finite Volume Effects

- Infinite volume limit $L \to \infty$
- Simulating hadrons in large volumes (Rule of thumb: $L m_{\pi} > 3.5$)
- 3 Contamination from other hadron states
- 4 Not simulating the physical world

5 Renormalization and mixing

(日)

10

1 Cut-off Effects: finite lattice spacing

- Continuum limit $a \rightarrow 0$
- Simulations with fine lattices (a < 0.1 fm)
- Improve actions, algorithmic improvements

2 Finite Volume Effects

- Infinite volume limit $L \to \infty$
- Simulating hadrons in large volumes (Rule of thumb: $L m_{\pi} > 3.5$)
- 3 Contamination from other hadron states
 - Various methods for extracting information from lattice data
- 4 Not simulating the physical world

5 Renormalization and mixing

1 Cut-off Effects: finite lattice spacing

- Continuum limit $a \rightarrow 0$
- Simulations with fine lattices (a < 0.1 fm)
- Improve actions, algorithmic improvements

2 Finite Volume Effects

- Infinite volume limit $L \to \infty$
- Simulating hadrons in large volumes (Rule of thumb: $L m_{\pi} > 3.5$)
- 3 Contamination from other hadron states
 - Various methods for extracting information from lattice data
- 4 Not simulating the physical world
 - Chiral extrapolation
 - Simulations at physical parameters are now feasible
- 5 Renormalization and mixing

1 Cut-off Effects: finite lattice spacing

- Continuum limit $a \rightarrow 0$
- Simulations with fine lattices (a < 0.1 fm)
- Improve actions, algorithmic improvements

2 Finite Volume Effects

- Infinite volume limit $L \to \infty$
- Simulating hadrons in large volumes (Rule of thumb: $L m_{\pi} > 3.5$)
- 3 Contamination from other hadron states
 - Various methods for extracting information from lattice data
- 4 Not simulating the physical world
 - Chiral extrapolation
 - Simulations at physical parameters are now feasible
- 5 Renormalization and mixing
 - Subtraction of lattice artifacts, utilize perturbation theory

Lattice Parameters (in this work)

[C. Alexandrou et al. (ETMC), arXiv:1611.09163]

[C. Alexandrou et al. (ETMC), arXiv:1611.03802]

Ensemble at the physical point:

- \star N_f=2 Twisted Mass fermions with a clover term
- ★ Lattice size: 48³×96, 64³×128 (NEW)
- **\star** Lattice spacing: $a{\sim}0.094$
- \star m_{π}~130 MeV

Lattice Parameters (in this work)

[C. Alexandrou et al. (ETMC), arXiv:1611.09163]

[C. Alexandrou et al. (ETMC), arXiv:1611.03802]

Ensemble at the physical point:

- \star N_f=2 Twisted Mass fermions with a clover term
- ★ Lattice size: 48³×96, 64³×128 (NEW)
- **\star** Lattice spacing: $a{\sim}0.094$
- $\star~\mathrm{m_{\pi}{\sim}130}$ MeV

MainStream HS

С

Proton Spin

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Axial Charge (connected)

Quark Momentum Fraction (connected)

Excited states and volume effects non-negligible

Disconnected contributions

Taking into account the disconnected contributions is crucial

Gluon Momentum Fraction

Direct Calculation

$$\mathcal{O}^g_{\mu\nu} = -\mathrm{Tr}\left[G_{\mu\rho}G_{\nu\rho}\right]$$

Gluon Momentum Fraction

Direct Calculation

 $\mathcal{O}^g_{\mu\nu} = -\mathrm{Tr}\left[G_{\mu\rho}G_{\nu\rho}\right]$

Challenges

- ★ Disconnected diagram:
 - Small signal-to-noise ratio
 - Requires special techniques

★ Renormalization

- Mixing with operator for $\langle x
 angle_{u+d}$
- Mixing with other Operators

Unavoidable

Vanish in physical matrix elements

Gluon Momentum Fraction

Direct Calculation

 $\mathcal{O}^g_{\mu\nu} = -\mathrm{Tr}\left[G_{\mu\rho}G_{\nu\rho}\right]$

Challenges

- ★ Disconnected diagram:
 - Small signal-to-noise ratio
 - Requires special techniques

★ Renormalization

- Mixing with operator for \$\langle x \rangle_{u+d}\$
- Mixing with other Operators

 $\langle x \rangle_g^R = Z_{gg} \langle x \rangle_g^B + Z_{gq} \sum_q \langle x \rangle_q^B$

Unavoidable

Vanish in physical matrix elements

$$\sum_{q} \langle x \rangle_{q}^{R} = Z_{qq} \sum_{q} \langle x \rangle_{q}^{B} + Z_{qg} \langle x \rangle_{g}^{B}$$

Pert. Theory: computation of mixing coefficients

Lattice Results

 $N_f=2$ TM fermions, $m_{\pi}=130$ MeV

Upon disentangling the gluon momentum fraction from the quark:

 $\langle x \rangle_g^R = 0.267(22)(19)(24)$

[C. Alexandrou et al. (ETMC), 1611.06901]

Proton Spin: Can we put the puzzle together?

Spin Structure from First Principles

Spin Sum Rule:

$$\frac{1}{2} = \sum_q J^q + J^G = \sum_q \left(L^q + \frac{1}{2} \Delta \Sigma^q \right) + J^G$$

 L_q : Quark orbital angular momentum $\Delta \Sigma_q$: intrinsic spin

J^G: Gluon part

Proton Spin: Can we put the puzzle together?

Spin Structure from First Principles

Spin Sum Rule:

$$\frac{1}{2} = \sum_q J^q + J^G = \sum_q \left(L^q + \frac{1}{2} \Delta \Sigma^q \right) + J^G$$

 L_q : Quark orbital angular momentum $\Delta \Sigma_q$: intrinsic spin J^G : Gluon part

Extraction from LQCD:

$$J^{q} = \frac{1}{2} \left(A^{q}_{20} + B^{q}_{20} \right) \,, \quad L^{q} = J^{q} - \Sigma^{q} \,, \quad \Sigma^{q} = g^{q}_{A}$$

★ Individual quark contributions: disconnected insertion contributes

Collected Results

 \bigstar Satisfaction of spin and momentum sum rule is not forced $$\Downarrow$

important check of results and the systematic uncertainties

D

Novel directions in HS

quasi-PDFs

▲□▶▲@▶▲≧▶▲≧▶ ≧ のQ@

Access of PDFs on a Euclidean Lattice

★ quasi-PDF purely spatial for nucleons with finite momentum

$$\tilde{q}(x,\mu^2,P_3) = \int \frac{dz}{4\pi} e^{-i x P_3 z} \langle N(P_3) | \bar{\Psi}(z) \gamma^z \mathcal{A}(z,0) \Psi(0) | N(P_3) \rangle_{\mu^2}$$

• $\mathcal{A}(z, 0)$: Wilson line from $0 \to z$ • z: distance in any spatial direction (momentum boost in z direction)

★ At finite but feasibly large momenta on the lattice:

a large momentum EFT can relate Euclidean \tilde{q} to PDFs through a factorization theorem

use of Perturbation Theory for the matching

Prior 2017

Bare Nucleon Matrix Elements

[C. Alexandrou et al. (ETMC), arXiv:1504.07455, arXiv:1610.03689]

Momentum smearing allows to reach higher momenta

Bare Nucleon Matrix Elements

Twisted Mass Fermions & clover term, $m_{\pi}=130 \text{MeV} P_3=6\pi/L$

2017 and After

Based on:

- M. Constantinou, H. Panagopoulos, Phys. Rev. D, in Press, [arXiv:1705.11193]
- C. Alexandrou, et al., Nucl. Phys. B (Frontier Article), in Press, [arXiv:1706.00265]

Based on:

- M. Constantinou, H. Panagopoulos, Phys. Rev. D, in Press, [arXiv:1705.11193]
- C. Alexandrou, et al., Nucl. Phys. B (Frontier Article), in Press, [arXiv:1706.00265]

How can Perturbation Theory help?

Based on:

- M. Constantinou, H. Panagopoulos, Phys. Rev. D, in Press, [arXiv:1705.11193]
- C. Alexandrou, et al., Nucl. Phys. B (Frontier Article), in Press, [arXiv:1706.00265]

How can Perturbation Theory help?

- Computation of conversion factor between various renormalization schemes
- ★ Explore renormalization pattern in Lattice Pert. Theory

Based on:

- M. Constantinou, H. Panagopoulos, Phys. Rev. D, in Press, [arXiv:1705.11193]
- C. Alexandrou, et al., Nucl. Phys. B (Frontier Article), in Press, [arXiv:1706.00265]

How can Perturbation Theory help?

- Computation of conversion factor between various renormalization schemes
- ★ Explore renormalization pattern in Lattice Pert. Theory

Mixing was revealed... unexpectedly !

Mixing pattern (Identified in PT)

Depends on the relation between the current & Wilson line direction

Non-perturbative Renormalization

★ Rl' scheme

- \star Use 1-loop conversion factor to convert to the $\overline{\mathrm{MS}}$ at 2 GeV
- ★ Vertex function has the same divergence as the nucleon matrix element

No mixing

Helicity & transversity

$$Z_{\mathcal{O}}(z) = \frac{Z_q}{\mathcal{V}_{\mathcal{O}}(z)}$$

$$\mathcal{V}_{\mathcal{O}} = \frac{\mathrm{Tr}}{12} \left[\mathcal{V}(p) \left(\mathcal{V}^{\mathrm{Born}}(p) \right)^{-1} \right] \Big|_{p = \bar{\mu}}$$

 $\star Z_q$: fermion field renormalization

 $\star Z_{\mathcal{O}}$ includes the linear divergence

$\begin{aligned} & \textbf{Mixing} \\ & \textbf{Unpolarized} \\ & \begin{pmatrix} \mathcal{O}_V^R(P_3,z) \\ \mathcal{O}_S^R(P_3,z) \end{pmatrix} = \hat{Z}(z) \cdot \begin{pmatrix} \mathcal{O}_V(P_3,z) \\ \mathcal{O}_S(P_3,z) \end{pmatrix} \\ & Z_q^{-1} \hat{Z}(z) \hat{\mathcal{V}}(p,z) \Big|_{p=\bar{\mu}} = \hat{1} \\ & h_V^R(P_3,z) = Z_{VV}(z) h_V(P_3,z) \\ & + Z_{VS}(z) h_S(P_3,z) \end{aligned}$

Numerical Results

(Perturbatively)

- **\star** Twisted Mass fermions, m_{π} =375MeV, 32³ × 64, HYP smearing
- **\star** Conversion & Evolution to $\overline{\mathrm{MS}}$ (2GeV)

Numerical Results

- \star Twisted Mass fermions, m_{π} =375MeV, 32³ × 64, HYP smearing
- **\star** Conversion & Evolution to $\overline{\mathrm{MS}}$ (2GeV)

(Perturbatively)

Systematics need to be addresses (Upper bounds in arXiv:1706.00265) :

Effect	$\operatorname{Re}\left[Z_{\Delta h}^{\overline{\mathrm{MS}}} ight]$	$\mathrm{Im}[Z^{\overline{\mathrm{MS}}}_{\Delta h}]$
Lattice artifacts	2-5%	$\lesssim 10$ %
Conversion truncation	$\lesssim 2\%$	$\lesssim 100$ %

▲□▶▲圖▶▲≧▶▲≧▶ ≧ 釣�?

- ★ Addressing open questions, e.g. spin:
 - quarks: $\sim 80\%$ of spin and 75% of momentum
 - gluons: $\sim 20\%$ of spin and 25% of momentum

Lattice QCD:

- ★ Addressing open questions, e.g. spin:
 - quarks: $\sim 80\%$ of spin and 75% of momentum
 - gluons: $\sim 20\%$ of spin and 25% of momentum

★ Large effort on addressing the systematics

- ★ Addressing open questions, e.g. spin:
 - quarks: $\sim 80\%$ of spin and 75% of momentum
 - gluons: $\sim 20\%$ of spin and 25% of momentum
- ★ Large effort on addressing the systematics
- ★ Calculation of more complicated quantities, e.g. quasi-PDF:

- ★ Addressing open questions, e.g. spin:
 - quarks: $\sim 80\%$ of spin and 75% of momentum
 - gluons: $\sim 20\%$ of spin and 25% of momentum
- ★ Large effort on addressing the systematics
- ★ Calculation of more complicated quantities, e.g. quasi-PDF:
 - Progress
 - Simulations at the physical point
 - Understanding renormalization (multiplicative and mixing)
 - Subtraction of lattice artifacts using perturbative results

- ★ Addressing open questions, e.g. spin:
 - quarks: $\sim 80\%$ of spin and 75% of momentum
 - gluons: $\sim 20\%$ of spin and 25% of momentum
- ★ Large effort on addressing the systematics
- ★ Calculation of more complicated quantities, e.g. quasi-PDF:
 - Progress
 - Simulations at the physical point
 - Understanding renormalization (multiplicative and mixing)
 - Subtraction of lattice artifacts using perturbative results
 - More things to be done
 - Mixing elimination non-perturbatively
 - Conversion factor to 2 loops
 - Investigation of operators that avoid mixing

Lattice QCD:

- ★ Addressing open questions, e.g. spin:
 - quarks: $\sim 80\%$ of spin and 75% of momentum
 - gluons: $\sim 20\%$ of spin and 25% of momentum
- ★ Large effort on addressing the systematics
- ★ Calculation of more complicated quantities, e.g. quasi-PDF:
 - Progress
 - Simulations at the physical point
 - Understanding renormalization (multiplicative and mixing)
 - Subtraction of lattice artifacts using perturbative results

32

- More things to be done
 - Mixing elimination non-perturbatively
 - Conversion factor to 2 loops
 - Investigation of operators that avoid mixing

BACKUP SLIDES

Refining Renormalization

★ Improvement Technique:

- Computation of 1-loop lattice artifacts to 𝔅(g² a[∞])
- Subtraction of lattice artifacts from non-perturbative estimated
- ★ Application to the quasi-PDFs: PRELIMINARY

Quark Orbital Angular Momentum

(□▶∢@▶∢≧▶∢≧▶ ≧ ∽<mark>35</mark>