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Introduction to GPDs Representations of GPDs Covariant extention of GPDs Conclusion

Definition of GPDs
• Quark GPD (twist-2, spin-0 hadron): (Müller et al., 1994; Radyushkin, 1996; Ji, 1997)

Hq (x , ξ, t) = 1
2

∫
dz−

2π e i x P+z−
〈

P + ∆
2
∣∣q̄ (−z) γ+q (z)

∣∣P − ∆
2

〉∣∣∣
z+=0, z⊥=0

.

(1)
with:

t = ∆2 , ξ = − ∆+

2P+ .

• Similar matrix element for gluons.
• More GPDs for spin- 12 hadrons.
• Experimental programs at JLab,

COMPASS.

• Impact parameter space GPD (at ξ = 0): (Burkardt, 2000)

q
(
x , ~b⊥

)
=
∫

d2 ~∆⊥
(2π)2

e−i ~b⊥· ~∆⊥ Hq
(

x , 0,− ~∆⊥
2
)
. (2)
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Theoretical constraints on GPDs
Main properties:

• Physical region: (x , ξ) ∈ [−1, 1]2.

I DGLAP: |x | > |ξ|.
I ERBL: |x | < |ξ|.

• Link to PDFs and Form Factors:∫
dx Hq (x , ξ, t) = F q (t) , (3)

Hq (x , 0, 0) = θ (x) q (x)− θ (−x) q̄ (−x) . (4)
• Polynomiality: ∫ 1

−1
dx xm H (x , ξ, t) = Polynomial in ξ . (5)

I From Lorentz invariance.

• Positivity (in DGLAP): (Pire et al., 1999; Radyushkin, 1999)

|Hq (x , ξ, t)| ≤

√
q
(

x − ξ
1− ξ

)
q
(

x + ξ

1 + ξ

)
. (6)

I Cauchy-Schwarz theorem in Hilbert space.
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Accessing GPDs
• Exclusive processes:

DVCS TCS DVMP

• Observables are convolutions of:

I a soft part, i.e. the GPD, with long distance interactions encoded
(non-perturbative QCD).

I a hard-scattering kernel, calculated with perturbative QCD (short distance
interactions).
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Overlap of Light-cone wave functions
• A given hadronic state is decomposed in a Fock basis: (Brodsky et al., 1981)

|H; P, λ〉 =
∑
N,β

∫
[dx ]N

[
d2k⊥

]
N

Ψλ
N,β (x1, k⊥1, ...) |N, β; k1, ..., kN〉 , (10)

where the Ψλ
N,β are the Light-cone wave-functions (LCWF).

• For example, for the pion:∣∣π+〉 = ψπud̄

∣∣ud̄
〉

+ ψπud̄g

∣∣ud̄g
〉

+ ... (11)
• GPD as an overlap of LCWFs: (Diehl et al., 2001; Diehl, 2003)

Hq (x , ξ, t) =
∑
N,β

√
1− ξ

2−N√
1 + ξ

2−N∑
a

δa,q (12)

×
∫

[dx̄ ]N
[
d2k̄⊥

]
N
δ (x − x̄a) Ψ∗N,β

(
x̂
′
1 , k̂
′
⊥1, ...

)
ΨN,β

(
x̃1, k̃⊥1, ...

)
,

in the DGLAP region ξ < x < 1 (pion case).
• Similar result in ERBL (−ξ < x < ξ), but with N and N + 2...
• GPD is a scalar product of LCWFs:

I Cauchy-Schwarz theorem ⇒ Positivity fulfilled!
I Polynomiality not manifest...
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Inversion

Problem
Find h (β, α) on square {|α|+ |β| ≤ 1} such that

H (x , ξ)|DGLAP ∝
∫

dβ dα h (β, α) δ (x − β − αξ) .
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• Domains β < 0 and β > 0 are uncorrelated in the DGLAP region.
• Divide and conquer:

I Better numerical stability.
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Discretization
• Expansion of the DD into basis functions {vj}:

h (β, α) =
∑

j

hj vj (β, α) , (15)

I Piece-wise constant, piece-wise linear, etc.
I n columns of the matrix.

• Sampling:

I Random couples (x , ξ) −→ m ≥ n lines of the matrix.

• Linear problem: A X = B where Bi = H (xi , ξi ) and Aij = Rvj (xi , ξi ).
• Regularization necessary: discrete ill-posed problem.

I Trade-off between noise and convergence.
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I Trade-off between noise and convergence.
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Introduction to GPDs Representations of GPDs Covariant extention of GPDs Conclusion

Some examples (Dyson-Schwinger model)

Figure: Extension of GPDs for the pion DSE model of Refs. (Mezrag, 2015; Mezrag
et al., 2016). Comparison to the analytical result. Left: Plot for fixed ξ values
0, 0.5 and 1, at t = 0 GeV2. Right: Plot for fixed t values 0, −0.25 and −0.5 GeV2, at
ξ = 0.5.
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Introduction to GPDs Representations of GPDs Covariant extention of GPDs Conclusion

Some examples (Spectator model)

Figure: Extension of GPD E for the nucleon model of Ref. (Hwang and Mueller, 2008).
Comparison to the analytical result of the authors. Left: Plot for fixed ξ values
0, 0.5 and 1, at t = 0 GeV2. Right: Plot for fixed t values 0, −0.25 and −0.5 GeV2, at
ξ = 0.5.
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Introduction to GPDs Representations of GPDs Covariant extention of GPDs Conclusion

Some examples (gaussian model)

Figure: Extension of GPD for a gaussian pion model (in the vein of AdS/QCD). Left:
Plot for fixed ξ values 0, 0.5 and 1, at t = 0 GeV2. Right: Plot for fixed t values
0, −0.25 and −0.5 GeV2, at ξ = 0.5.

Nabil Chouika Covariant extension of GPDs INT, Seattle, 31/08/17 16 / 22



Introduction to GPDs Representations of GPDs Covariant extention of GPDs Conclusion

Some examples (Regge behavior)

Figure: Extension of GPD for a nucleon toy model with Regge behavior. Plot for fixed ξ
values 0, 0.5 and 1.

• Integrable singularity for the GPD at x ∼ 0: H (x , ξ) ∝ 1√
x .

• Equivalent to an integrable singularity for the DD at β ∼ 0: h (β, α) ∝ 1√
β
.

I We solve for
√
β h (β, α) instead of h (β, α)!
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Introduction to GPDs Representations of GPDs Covariant extention of GPDs Conclusion

Summary

• Generalized Parton Distributions

I encode information about the 3D structure of a hadron.
I are accessible with exclusive processes in experiments: JLab,

COMPASS, etc.
• Systematic procedure for GPD modeling from first principles:

I LCWFs −→
Overlap

GPD in DGLAP −→
Inverse Radon Transform

DD −→
RT

GPD.
I Both polynomiality and positivity!
I Compromise with respect to noise and

convergence.

• Unified phenomonelogy of GPDs and
TMDs at the level of LCWFs?

• Thank you!

I Any questions?

Nabil Chouika Covariant extension of GPDs INT, Seattle, 31/08/17 18 / 22



Introduction to GPDs Representations of GPDs Covariant extention of GPDs Conclusion

Summary

• Generalized Parton Distributions
I encode information about the 3D structure of a hadron.

I are accessible with exclusive processes in experiments: JLab,
COMPASS, etc.

• Systematic procedure for GPD modeling from first principles:

I LCWFs −→
Overlap

GPD in DGLAP −→
Inverse Radon Transform

DD −→
RT

GPD.
I Both polynomiality and positivity!
I Compromise with respect to noise and

convergence.

• Unified phenomonelogy of GPDs and
TMDs at the level of LCWFs?

• Thank you!

I Any questions?

Nabil Chouika Covariant extension of GPDs INT, Seattle, 31/08/17 18 / 22



Introduction to GPDs Representations of GPDs Covariant extention of GPDs Conclusion

Summary

• Generalized Parton Distributions
I encode information about the 3D structure of a hadron.
I are accessible with exclusive processes in experiments: JLab,

COMPASS, etc.

• Systematic procedure for GPD modeling from first principles:

I LCWFs −→
Overlap

GPD in DGLAP −→
Inverse Radon Transform

DD −→
RT

GPD.
I Both polynomiality and positivity!
I Compromise with respect to noise and

convergence.

• Unified phenomonelogy of GPDs and
TMDs at the level of LCWFs?

• Thank you!

I Any questions?

Nabil Chouika Covariant extension of GPDs INT, Seattle, 31/08/17 18 / 22



Introduction to GPDs Representations of GPDs Covariant extention of GPDs Conclusion

Summary

• Generalized Parton Distributions
I encode information about the 3D structure of a hadron.
I are accessible with exclusive processes in experiments: JLab,

COMPASS, etc.
• Systematic procedure for GPD modeling from first principles:

I LCWFs −→
Overlap

GPD in DGLAP −→
Inverse Radon Transform

DD −→
RT

GPD.
I Both polynomiality and positivity!
I Compromise with respect to noise and

convergence.
• Unified phenomonelogy of GPDs and
TMDs at the level of LCWFs?

• Thank you!

I Any questions?

Nabil Chouika Covariant extension of GPDs INT, Seattle, 31/08/17 18 / 22



Introduction to GPDs Representations of GPDs Covariant extention of GPDs Conclusion

Summary

• Generalized Parton Distributions
I encode information about the 3D structure of a hadron.
I are accessible with exclusive processes in experiments: JLab,

COMPASS, etc.
• Systematic procedure for GPD modeling from first principles:

I LCWFs −→
Overlap

GPD in DGLAP −→
Inverse Radon Transform

DD −→
RT

GPD.

I Both polynomiality and positivity!
I Compromise with respect to noise and

convergence.
• Unified phenomonelogy of GPDs and
TMDs at the level of LCWFs?

• Thank you!

I Any questions?

Nabil Chouika Covariant extension of GPDs INT, Seattle, 31/08/17 18 / 22



Introduction to GPDs Representations of GPDs Covariant extention of GPDs Conclusion

Summary

• Generalized Parton Distributions
I encode information about the 3D structure of a hadron.
I are accessible with exclusive processes in experiments: JLab,

COMPASS, etc.
• Systematic procedure for GPD modeling from first principles:

I LCWFs −→
Overlap

GPD in DGLAP −→
Inverse Radon Transform

DD −→
RT

GPD.
I Both polynomiality and positivity!

I Compromise with respect to noise and
convergence.

• Unified phenomonelogy of GPDs and
TMDs at the level of LCWFs?

• Thank you!

I Any questions?

Nabil Chouika Covariant extension of GPDs INT, Seattle, 31/08/17 18 / 22



Introduction to GPDs Representations of GPDs Covariant extention of GPDs Conclusion

Summary

• Generalized Parton Distributions
I encode information about the 3D structure of a hadron.
I are accessible with exclusive processes in experiments: JLab,

COMPASS, etc.
• Systematic procedure for GPD modeling from first principles:

I LCWFs −→
Overlap

GPD in DGLAP −→
Inverse Radon Transform

DD −→
RT

GPD.
I Both polynomiality and positivity!
I Compromise with respect to noise and

convergence.

• Unified phenomonelogy of GPDs and
TMDs at the level of LCWFs?

• Thank you!

I Any questions?

Nabil Chouika Covariant extension of GPDs INT, Seattle, 31/08/17 18 / 22



Introduction to GPDs Representations of GPDs Covariant extention of GPDs Conclusion

Summary

• Generalized Parton Distributions
I encode information about the 3D structure of a hadron.
I are accessible with exclusive processes in experiments: JLab,

COMPASS, etc.
• Systematic procedure for GPD modeling from first principles:

I LCWFs −→
Overlap

GPD in DGLAP −→
Inverse Radon Transform

DD −→
RT

GPD.
I Both polynomiality and positivity!
I Compromise with respect to noise and

convergence.
• Unified phenomonelogy of GPDs and
TMDs at the level of LCWFs?

• Thank you!

I Any questions?

Nabil Chouika Covariant extension of GPDs INT, Seattle, 31/08/17 18 / 22



Introduction to GPDs Representations of GPDs Covariant extention of GPDs Conclusion

Summary

• Generalized Parton Distributions
I encode information about the 3D structure of a hadron.
I are accessible with exclusive processes in experiments: JLab,

COMPASS, etc.
• Systematic procedure for GPD modeling from first principles:

I LCWFs −→
Overlap

GPD in DGLAP −→
Inverse Radon Transform

DD −→
RT

GPD.
I Both polynomiality and positivity!
I Compromise with respect to noise and

convergence.
• Unified phenomonelogy of GPDs and
TMDs at the level of LCWFs?

• Thank you!

I Any questions?

Nabil Chouika Covariant extension of GPDs INT, Seattle, 31/08/17 18 / 22



Introduction to GPDs Representations of GPDs Covariant extention of GPDs Conclusion

Summary

• Generalized Parton Distributions
I encode information about the 3D structure of a hadron.
I are accessible with exclusive processes in experiments: JLab,

COMPASS, etc.
• Systematic procedure for GPD modeling from first principles:

I LCWFs −→
Overlap

GPD in DGLAP −→
Inverse Radon Transform

DD −→
RT

GPD.
I Both polynomiality and positivity!
I Compromise with respect to noise and

convergence.
• Unified phenomonelogy of GPDs and
TMDs at the level of LCWFs?

• Thank you!
I Any questions?

Nabil Chouika Covariant extension of GPDs INT, Seattle, 31/08/17 18 / 22



Additional slides Bibliography

Ill-posed problems and Regularization
• Ill-posed problems?

I For example the inversion of a Fredholm equation of the first kind:∫
K (x , y) f (y) dy = g (x) . (16)

I The inverse is not continuous: an arbitrarily small variation ∆g of the rhs can lead
to an arbitrarily large variation ∆f of the solution.

• The corresponding discrete problem needs to be regularized.
I E.g Tikhonov regularization: min

{
‖AX − B‖2 + ε ‖X‖2

}
.

Theoretical “L-curve”: curve parameterized
by the regularization factor.
(fig. taken from Ref. (Hansen, 2007))

L-curve with the iteration number as
regularization factor.
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D-term considerations
• Polynomiality property: ∫ 1

−1

dx xmH (x, ξ, t) =

m+1∑
k=0

k even

c(m)
k (t)ξk

. (17)

• Recast polynomiality property for H − D:∫ 1

−1

dx xm
(

H (x, ξ, t)− D
(

x
ξ
, t
))

=

m∑
k=0

k even

c(m)
k (t)ξk

, (18)

where D
(

x
ξ
, t
)

is the so-called D-term with support on −ξ < x < ξ.
• H − D is a Radon Transform:

H (x, ξ, t)− D
(

x
ξ
, t
)

=

∫
Ω

dβ dα hPW (β, α) δ (x − β − αξ) . (19)

I The DGLAP region gives no information on the D-term.
• With other DD representations, we can generate intrinsic D-terms, e.g. Pobylitsa representation:

H (x, ξ, t) = (1− x)

∫
Ω

dβ dα hP (β, α) δ (x − β − αξ) . (20)

I Still freedom of extra D-term.
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