Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion

Covariant extension of Generalized Parton Distributions

Nabil Chouika

Irfu/DPhN, CEA Saclay - Université Paris-Saclay

Tomography of Hadrons and Nuclei at Jefferson Lab, Institute for Nuclear Theory, Seattle, August 31, 2017

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion
000	00		O
Outline			

Introduction to Generalized Parton Distributions

- Definition and properties
- Experimental access

Representations of Generalized Parton Distributions

- Overlap of Light-cone wave functions
- Double Distributions

3 Covariant extention of Generalized Parton Distributions

- Motivation
- Inversion of Incomplete Radon Transform
- Results

Conclusion

Introduction to GPDs	Representations of GPDs 00	Covariant extention of GPDs	Conclusion O
Outline			

Introduction to Generalized Parton Distributions

- Definition and properties
- Experimental access

Representations of Generalized Parton Distributions

- Overlap of Light-cone wave functions
- Double Distributions

Covariant extention of Generalized Parton Distributions

- Motivation
- Inversion of Incomplete Radon Transform
- Results

Conclusion

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion
●○○	00		0
Definition of GF	PDs		

$$H^{q}(x,\xi,t) = \frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} e^{i \times P^{+}z^{-}} \left\langle P + \frac{\Delta}{2} \left| \bar{q}(-z) \gamma^{+}q(z) \right| P - \frac{\Delta}{2} \right\rangle \Big|_{z^{+}=0, z_{\perp}=0}$$
(1)

with:

$$t=\Delta^2 \ , \ \xi=-rac{\Delta^+}{2\, P^+} \, .$$

三日 のへの

••••	00	000000	0
Definition of	GPDs		

$$H^{q}(x,\xi,t) = \frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} e^{i \times P^{+}z^{-}} \left\langle P + \frac{\Delta}{2} \left| \bar{q}(-z) \gamma^{+}q(z) \right| P - \frac{\Delta}{2} \right\rangle \Big|_{z^{+}=0, z_{\perp}=0}.$$
(1)

 $x+\xi$ $x-\xi$ **GPD** $P-\frac{\Delta}{2}$ $P+\frac{\Delta}{2}$

with:

$$t = \Delta^2 \; , \; \xi = - rac{\Delta^+}{2 \, P^+} \, .$$

• Similar matrix element for gluons.

▶ ∢ ⊒

三日 のへの

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion
●○○	00		O
Definition of	GPDs		

$$H^{q}(x,\xi,t) = \frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} e^{i \times P^{+}z^{-}} \left\langle P + \frac{\Delta}{2} \left| \bar{q}(-z) \gamma^{+}q(z) \right| P - \frac{\Delta}{2} \right\rangle \Big|_{z^{+}=0, z_{\perp}=0}$$
(1)

with:

$$t = \Delta^2 \; , \; \xi = - rac{\Delta^+}{2 \, P^+} \, .$$

- Similar matrix element for gluons.
- More GPDs for spin- $\frac{1}{2}$ hadrons.

= 900

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion
●○○	00		O
Definition of	GPDs		

$$H^{q}(x,\xi,t) = \frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} e^{i \times P^{+}z^{-}} \left\langle P + \frac{\Delta}{2} \left| \bar{q}(-z) \gamma^{+}q(z) \right| P - \frac{\Delta}{2} \right\rangle \Big|_{z^{+}=0, z_{\perp}=0}.$$
(1)

$$t = \Delta^2 \; , \; \; \xi = - rac{\Delta^+}{2 \, P^+} \, .$$

- Similar matrix element for gluons.
- More GPDs for spin- $\frac{1}{2}$ hadrons.
- Experimental programs at JLab, COMPASS.

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion
●○○	00		O
Definition of	GPDs		

$$H^{q}(x,\xi,t) = \frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} e^{i \times P^{+}z^{-}} \left\langle P + \frac{\Delta}{2} \left| \bar{q}(-z) \gamma^{+}q(z) \right| P - \frac{\Delta}{2} \right\rangle \Big|_{z^{+}=0, z_{\perp}=0}$$
(1)

$$t = \Delta^2$$
, $\xi = -rac{\Delta^+}{2P^+}$.

- Similar matrix element for gluons.
- More GPDs for spin- $\frac{1}{2}$ hadrons.
- Experimental programs at JLab, COMPASS.
- Impact parameter space GPD (at $\xi = 0$): (Burkardt, 2000)

$$q\left(x,\vec{b_{\perp}}\right) = \int \frac{\mathrm{d}^{2}\vec{\Delta_{\perp}}}{\left(2\pi\right)^{2}} e^{-i\vec{b_{\perp}}\cdot\vec{\Delta_{\perp}}} H^{q}\left(x,0,-\vec{\Delta_{\perp}}^{2}\right).$$
(2)

4 / 22

Definition of			
Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs 0000000	Conclusion O

$$H^{q}(x,\xi,t) = \frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} e^{i \times P^{+}z^{-}} \left\langle P + \frac{\Delta}{2} \left| \bar{q}(-z) \gamma^{+}q(z) \right| P - \frac{\Delta}{2} \right\rangle \Big|_{z^{+}=0, z_{\perp}=0}.$$
(1)

with:

$$t = \Delta^2$$
, $\xi = -rac{\Delta^+}{2P^+}$.

- Similar matrix element for gluons.
- More GPDs for spin- $\frac{1}{2}$ hadrons.
- Experimental programs at JLab, COMPASS.
- Impact parameter space GPD (at $\xi = 0$): (Burkardt, 2000)

$$q\left(x,\vec{b_{\perp}}\right) = \int \frac{\mathrm{d}^{2}\vec{\Delta_{\perp}}}{\left(2\pi\right)^{2}} e^{-i\vec{b_{\perp}}\cdot\vec{\Delta_{\perp}}} H^{q}\left(x,0,-\vec{\Delta_{\perp}}^{2}\right).$$
(2)

4 / 22

Introduction to GPDs $\circ \bullet \circ$	Representations of GPDs 00	Covariant extention of GPDs	Conclusion O
Theoretical o	onstraints on GPD)c	

Main properties:

• Physical region: $(x,\xi) \in [-1,1]^2$.

三日 のへの

Introduction to GPDs ⊙●○		Representations of 0	GPDs	Covariant extention of GPDs	Conclusion O
- T -1	10 A.				

Theoretical constraints on GPDs

Main properties:

- Physical region: $(x, \xi) \in [-1, 1]^2$.
 - DGLAP: $|x| > |\xi|$.

⇒ ↓ ≡ ↓ ≡ ⊨ √ Q ∩

Image: A matrix

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion
⊙●○	00		O

Theoretical constraints on GPDs

Main properties:

- Physical region: $(x,\xi) \in [-1,1]^2$.
 - DGLAP: $|x| > |\xi|$.
 - ERBL: $|x| < |\xi|$.

Introduction	to	GPDs
000		

Representations of GPDs

•

Covariant extention of GPDs

Conclusion 0

Theoretical constraints on GPDs

Main properties:

- Physical region: $(x,\xi) \in [-1,1]^2$.
 - DGLAP: $|x| > |\xi|$.
 - ERBL: $|x| < |\xi|$.
- Link to PDFs and Form Factors:

$$\int \mathrm{d}x \, H^q(x,\xi,t) = F^q(t) \,, \tag{3}$$

$$H^{q}(x,0,0) = \theta(x) q(x) - \theta(-x) \bar{q}(-x) .$$

$$(4)$$

▶ ∢ ⊒

三日 のへの

Introduction	to	GPDs
000		

Representations of GPDs

٠

Covariant extention of GPDs

Conclusion 0

Theoretical constraints on GPDs

Main properties:

- Physical region: $(x,\xi) \in [-1,1]^2$.
 - DGLAP: $|x| > |\xi|$.
 - ERBL: $|x| < |\xi|$.
- Link to PDFs and Form Factors:

$$\int \mathrm{d}x \, H^q\left(x,\xi,t\right) = F^q\left(t\right) \,, \tag{3}$$

$$H^{q}(x,0,0) = \theta(x) q(x) - \theta(-x) \bar{q}(-x) . \qquad (4)$$

Polynomiality:

$$\int_{-1}^{1} \mathrm{d}x \, x^{m} \, H(x,\xi,t) = \text{Polynomial in } \xi \,. \tag{5}$$

EL SQA

Introduction	to	GPDs
000		

٠

Covariant extention of GPDs

Conclusion 0

Theoretical constraints on GPDs

Main properties:

- Physical region: $(x,\xi) \in [-1,1]^2$.
 - DGLAP: $|x| > |\xi|$.
 - ERBL: $|x| < |\xi|$.
- Link to PDFs and Form Factors:

$$\int \mathrm{d}x \, H^q\left(x,\xi,t\right) = F^q\left(t\right) \,, \tag{3}$$

$$H^{q}(x,0,0) = \theta(x) q(x) - \theta(-x) \overline{q}(-x) .$$

$$(4)$$

• Polynomiality:

$$\int_{-1}^{1} \mathrm{d}x \, x^{m} \, H(x,\xi,t) = \text{Polynomial in } \xi \,. \tag{5}$$

From Lorentz invariance.

I DAG

Introduction	to	GPDs
000		

Representations of GPDs

Covariant extention of GPDs

Conclusion 0

Theoretical constraints on GPDs

Main properties:

- Physical region: $(x,\xi) \in [-1,1]^2$.
 - DGLAP: $|x| > |\xi|$.
 - ERBL: $|x| < |\xi|$.
- Link to PDFs and Form Factors:

$$\int \mathrm{d}x \, H^q\left(x,\xi,t\right) = F^q\left(t\right) \,, \tag{3}$$

$$H^{q}(x,0,0) = \theta(x) q(x) - \theta(-x) \overline{q}(-x) . \qquad (4)$$

• Polynomiality:

$$\int_{-1}^{1} \mathrm{d}x \, x^{m} \, H(x,\xi,t) = \text{Polynomial in } \xi \,. \tag{5}$$

- From Lorentz invariance.
- Positivity (in DGLAP): (Pire et al., 1999; Radyushkin, 1999)

$$|H^{q}(x,\xi,t)| \leq \sqrt{q\left(\frac{x-\xi}{1-\xi}\right)q\left(\frac{x+\xi}{1+\xi}\right)}.$$
(6)

1 - nan

Introduction	to	GPDs
000		

Representations of GPDs

Covariant extention of GPDs

Conclusion 0

Theoretical constraints on GPDs

Main properties:

- Physical region: $(x,\xi) \in [-1,1]^2$.
 - DGLAP: $|x| > |\xi|$.
 - ERBL: $|x| < |\xi|$.
- Link to PDFs and Form Factors:

$$\int \mathrm{d}x \, H^q\left(x,\xi,t\right) = F^q\left(t\right) \,, \tag{3}$$

$$H^{q}(x,0,0) = \theta(x) q(x) - \theta(-x) \bar{q}(-x) .$$

$$(4)$$

• Polynomiality:

$$\int_{-1}^{1} \mathrm{d}x \, x^{m} \, H\left(x,\xi,t\right) = \text{Polynomial in } \xi \,. \tag{5}$$

- From Lorentz invariance.
- Positivity (in DGLAP): (Pire et al., 1999; Radyushkin, 1999)

$$|H^{q}(x,\xi,t)| \leq \sqrt{q\left(\frac{x-\xi}{1-\xi}\right)q\left(\frac{x+\xi}{1+\xi}\right)}.$$
(6)

Cauchy-Schwarz theorem in Hilbert space.

= 200

5 / 22

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion
○○●	00		O
Accessing GPDs			

• Exclusive processes:

三日 のへで

* ヨト * ヨト

Introduction to GPDs ○○●	Representations of GPDs 00	Covariant extention of GPDs	Conclusion O
Accessing GPDs			
F 1 1			

$$\mathcal{F}\left(\xi, t, Q^{2}\right) = \int_{-1}^{1} \mathrm{d}x \, C\left(x, \xi, \alpha_{S}\left(\mu_{F}\right), \frac{Q}{\mu_{F}}\right) F\left(x, \xi, t, \mu_{F}\right). \tag{7}$$

= nar

Introduction to GPDs ○○●	Representations of GPDs 00	Covariant extention of GPDs	Conclusion O
Accessing GPDs			

$$\mathcal{F}\left(\xi, t, Q^{2}\right) = \int_{-1}^{1} \mathrm{d}x \, C\left(x, \xi, \alpha_{S}\left(\mu_{F}\right), \frac{Q}{\mu_{F}}\right) F\left(x, \xi, t, \mu_{F}\right). \tag{7}$$

• Observables are convolutions of:

Introduction to GPDs ○○●	Representations of GPDs 00	Covariant extention of GPDs 0000000	Conclusion O
Accessing GP	Ds		
Exclusive proc			

$$\mathcal{F}\left(\xi,t,Q^{2}\right) = \int_{-1}^{1} \mathrm{d}x \, C\left(x,\xi,\alpha_{S}\left(\mu_{F}\right),\frac{Q}{\mu_{F}}\right) F\left(x,\xi,t,\mu_{F}\right). \tag{9}$$

- Observables are convolutions of:
 - a soft part, i.e. the GPD, with long distance interactions encoded (non-perturbative QCD).

Introduction to GPDs ○○●	Representations of GPDs 00	Covariant extention of GPDs 0000000	Conclusion O
Accessing GP	Ds		
Exclusive proc			

$$\mathcal{F}\left(\xi,t,Q^{2}\right) = \int_{-1}^{1} \mathrm{d}x \, C\left(x,\xi,\alpha_{S}\left(\mu_{F}\right),\frac{Q}{\mu_{F}}\right) F\left(x,\xi,t,\mu_{F}\right). \tag{8}$$

- Observables are convolutions of:
 - a soft part, i.e. the GPD, with long distance interactions encoded (non-perturbative QCD).
 - a hard-scattering kernel, calculated with perturbative QCD (short distance interactions).

Introduction to GPDs 000	Representations of GPDs	Covariant extention of GPDs	Conclusion O
Outline			

Introduction to Generalized Parton Distributions

- Definition and properties
- Experimental access

Representations of Generalized Parton Distributions

- Overlap of Light-cone wave functions
- Double Distributions

Covariant extention of Generalized Parton Distributions

- Motivation
- Inversion of Incomplete Radon Transform
- Results

Conclusion

Introduct 000	oduction to GPDs Representations of GPDs •• ••			Covariant extention of 0000000	GPDs	Conclusion O	
-				-			

• A given hadronic state is decomposed in a Fock basis: (Brodsky et al., 1981)

$$|H; P, \lambda\rangle = \sum_{N,\beta} \int [\mathrm{d}x]_N \left[\mathrm{d}^2 \mathbf{k}_{\perp} \right]_N \Psi_{N,\beta}^{\lambda} \left(x_1, \mathbf{k}_{\perp 1}, \ldots \right) |N, \beta; k_1, \ldots, k_N\rangle , \qquad (10)$$

where the $\Psi_{N,\beta}^{\lambda}$ are the Light-cone wave-functions (LCWF).

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion
	0		

• A given hadronic state is decomposed in a Fock basis: (Brodsky et al., 1981)

$$|H; P, \lambda\rangle = \sum_{N,\beta} \int [\mathrm{d}x]_N \left[\mathrm{d}^2 \mathbf{k}_{\perp} \right]_N \Psi_{N,\beta}^{\lambda} \left(x_1, \mathbf{k}_{\perp 1}, ... \right) |N, \beta; k_1, ..., k_N\rangle , \qquad (10)$$

where the $\Psi_{N,\beta}^{\lambda}$ are the Light-cone wave-functions (LCWF).

• For example, for the pion:

$$\left|\pi^{+}\right\rangle = \psi_{u\bar{d}}^{\pi} \left|u\bar{d}\right\rangle + \psi_{u\bar{d}g}^{\pi} \left|u\bar{d}g\right\rangle + \dots$$
(11)

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion
	0		

• A given hadronic state is decomposed in a Fock basis: (Brodsky et al., 1981)

$$|H; P, \lambda\rangle = \sum_{N,\beta} \int [\mathrm{d}x]_N \left[\mathrm{d}^2 \mathbf{k}_{\perp} \right]_N \Psi_{N,\beta}^{\lambda} \left(x_1, \mathbf{k}_{\perp 1}, ... \right) |N, \beta; k_1, ..., k_N\rangle , \qquad (10)$$

where the $\Psi_{N,\beta}^{\lambda}$ are the *Light-cone wave-functions* (**LCWF**).

• For example, for the pion:

$$\left|\pi^{+}\right\rangle = \psi_{u\bar{d}}^{\pi} \left|u\bar{d}\right\rangle + \psi_{u\bar{d}g}^{\pi} \left|u\bar{d}g\right\rangle + \dots$$
(11)

• GPD as an overlap of LCWFs: (Diehl et al., 2001; Diehl, 2003)

$$H^{q}(x,\xi,t) = \sum_{N,\beta} \sqrt{1-\xi^{2-N}} \sqrt{1+\xi^{2-N}} \sum_{a} \delta_{a,q}$$
(12)

$$\times \int [d\bar{x}]_{N} \left[d^{2}\bar{\mathbf{k}}_{\perp} \right]_{N} \delta(x-\bar{x}_{a}) \Psi^{*}_{N,\beta} \left(\hat{x}_{1}^{'}, \hat{\mathbf{k}}_{\perp 1}^{'}, ... \right) \Psi_{N,\beta} \left(\tilde{x}_{1}, \tilde{\mathbf{k}}_{\perp 1}, ... \right) ,$$

in the DGLAP region $\xi < x < 1$ (pion case).

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion
	0		

• A given hadronic state is decomposed in a Fock basis: (Brodsky et al., 1981)

$$|H; P, \lambda\rangle = \sum_{N,\beta} \int [\mathrm{d}x]_N \left[\mathrm{d}^2 \mathbf{k}_{\perp} \right]_N \Psi_{N,\beta}^{\lambda} \left(x_1, \mathbf{k}_{\perp 1}, ... \right) |N, \beta; k_1, ..., k_N\rangle , \qquad (10)$$

where the $\Psi_{N,\beta}^{\lambda}$ are the Light-cone wave-functions (LCWF).

• For example, for the pion:

$$\left|\pi^{+}\right\rangle = \psi_{u\bar{d}}^{\pi} \left|u\bar{d}\right\rangle + \psi_{u\bar{d}g}^{\pi} \left|u\bar{d}g\right\rangle + \dots$$
(11)

• GPD as an overlap of LCWFs: (Diehl et al., 2001; Diehl, 2003)

$$H^{q}(x,\xi,t) = \sum_{N,\beta} \sqrt{1-\xi}^{2-N} \sqrt{1+\xi}^{2-N} \sum_{a} \delta_{a,q}$$

$$\times \int [d\bar{x}]_{N} \left[d^{2}\bar{\mathbf{k}}_{\perp} \right]_{N} \delta(x-\bar{x}_{a}) \Psi^{*}_{N,\beta} \left(\hat{x}_{1}^{'}, \hat{\mathbf{k}}_{\perp 1}^{'}, \ldots \right) \Psi_{N,\beta} \left(\tilde{x}_{1}, \tilde{\mathbf{k}}_{\perp 1}, \ldots \right) ,$$
(12)

in the DGLAP region $\xi < x < 1$ (pion case).

• Similar result in ERBL $(-\xi < x < \xi)$, but with N and N + 2...

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion
	0		

• A given hadronic state is decomposed in a Fock basis: (Brodsky et al., 1981)

$$|H; P, \lambda\rangle = \sum_{N,\beta} \int [\mathrm{d}x]_N \left[\mathrm{d}^2 \mathbf{k}_{\perp} \right]_N \Psi_{N,\beta}^{\lambda} \left(x_1, \mathbf{k}_{\perp 1}, ... \right) |N, \beta; k_1, ..., k_N\rangle , \qquad (10)$$

where the $\Psi_{N,\beta}^{\lambda}$ are the Light-cone wave-functions (LCWF).

• For example, for the pion:

$$\left|\pi^{+}\right\rangle = \psi_{u\bar{d}}^{\pi} \left|u\bar{d}\right\rangle + \psi_{u\bar{d}g}^{\pi} \left|u\bar{d}g\right\rangle + \dots$$
(11)

• GPD as an overlap of LCWFs: (Diehl et al., 2001; Diehl, 2003)

$$H^{q}(x,\xi,t) = \sum_{N,\beta} \sqrt{1-\xi}^{2-N} \sqrt{1+\xi}^{2-N} \sum_{a} \delta_{a,q}$$

$$\times \int [d\bar{x}]_{N} \left[d^{2}\bar{\mathbf{k}}_{\perp} \right]_{N} \delta(x-\bar{x}_{a}) \Psi^{*}_{N,\beta} \left(\hat{x}_{1}^{'}, \hat{\mathbf{k}}_{\perp 1}^{'}, \ldots \right) \Psi_{N,\beta} \left(\tilde{x}_{1}, \tilde{\mathbf{k}}_{\perp 1}, \ldots \right) ,$$
(12)

in the DGLAP region $\xi < x < 1$ (pion case).

- Similar result in ERBL $(-\xi < x < \xi)$, but with N and N + 2...
- GPD is a scalar product of LCWFs:

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion
	0		

• A given hadronic state is decomposed in a Fock basis: (Brodsky et al., 1981)

$$|H; P, \lambda\rangle = \sum_{N,\beta} \int [\mathrm{d}x]_N \left[\mathrm{d}^2 \mathbf{k}_{\perp} \right]_N \Psi_{N,\beta}^{\lambda} \left(x_1, \mathbf{k}_{\perp 1}, ... \right) |N, \beta; k_1, ..., k_N\rangle , \qquad (10)$$

where the $\Psi_{N,\beta}^{\lambda}$ are the Light-cone wave-functions (LCWF).

• For example, for the pion:

$$\left|\pi^{+}\right\rangle = \psi_{u\bar{d}}^{\pi} \left|u\bar{d}\right\rangle + \psi_{u\bar{d}g}^{\pi} \left|u\bar{d}g\right\rangle + \dots$$
(11)

• GPD as an overlap of LCWFs: (Diehl et al., 2001; Diehl, 2003)

$$H^{q}(x,\xi,t) = \sum_{N,\beta} \sqrt{1-\xi}^{2-N} \sqrt{1+\xi}^{2-N} \sum_{a} \delta_{a,q}$$

$$\times \int [d\bar{x}]_{N} \left[d^{2}\bar{\mathbf{k}}_{\perp} \right]_{N} \delta(x-\bar{x}_{a}) \Psi^{*}_{N,\beta} \left(\hat{x}_{1}^{'}, \hat{\mathbf{k}}_{\perp 1}^{'}, \ldots \right) \Psi_{N,\beta} \left(\tilde{x}_{1}, \tilde{\mathbf{k}}_{\perp 1}, \ldots \right) ,$$
(12)

in the DGLAP region $\xi < x < 1$ (pion case).

- Similar result in ERBL $(-\xi < x < \xi)$, but with N and N + 2...
- GPD is a scalar product of LCWFs:
 - ► Cauchy-Schwarz theorem ⇒ Positivity fulfilled!

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion
	0		

• A given hadronic state is decomposed in a Fock basis: (Brodsky et al., 1981)

$$|H; P, \lambda\rangle = \sum_{N,\beta} \int [\mathrm{d}x]_N \left[\mathrm{d}^2 \mathbf{k}_{\perp} \right]_N \Psi_{N,\beta}^{\lambda} \left(x_1, \mathbf{k}_{\perp 1}, ... \right) |N, \beta; k_1, ..., k_N\rangle , \qquad (10)$$

where the $\Psi_{N,\beta}^{\lambda}$ are the Light-cone wave-functions (LCWF).

• For example, for the pion:

$$\left|\pi^{+}\right\rangle = \psi_{u\bar{d}}^{\pi} \left|u\bar{d}\right\rangle + \psi_{u\bar{d}g}^{\pi} \left|u\bar{d}g\right\rangle + \dots$$
(11)

• GPD as an overlap of LCWFs: (Diehl et al., 2001; Diehl, 2003)

$$\begin{aligned} H^{q}(x,\xi,t) &= \sum_{N,\beta} \sqrt{1-\xi}^{2-N} \sqrt{1+\xi}^{2-N} \sum_{a} \delta_{a,q} \\ &\times \int [\mathrm{d}\bar{x}]_{N} \left[\mathrm{d}^{2}\bar{\mathbf{k}}_{\perp} \right]_{N} \delta(x-\bar{x}_{a}) \Psi^{*}_{N,\beta} \left(\hat{x}_{1}^{'}, \hat{\mathbf{k}}_{\perp 1}^{'}, \ldots \right) \Psi_{N,\beta} \left(\tilde{x}_{1}, \tilde{\mathbf{k}}_{\perp 1}, \ldots \right) , \end{aligned}$$

$$(12)$$

in the DGLAP region $\xi < x < 1$ (pion case).

- Similar result in ERBL ($-\xi < x < \xi$), but with N and N + 2...
- GPD is a scalar product of LCWFs:
 - ► Cauchy-Schwarz theorem ⇒ Positivity fulfilled!
 - Polynomiality not manifest...

Nabil Chouika

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion
000	○●		O
Double Distrib	utions (DDs)		

$$H(x,\xi,t) \propto \int_{\Omega} d\beta \, d\alpha \, h(\beta,\alpha,t) \, \delta(x-\beta-\alpha\xi) \, . \tag{13}$$

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion
000	○●		O
Double Distri	butions (DDs)		

$$H(x,\xi,t) \propto \int_{\Omega} d\beta \, d\alpha \, h(\beta,\alpha,t) \, \delta(x-\beta-\alpha\xi) \, . \tag{13}$$

• DD h is defined on the support $\Omega = \{|\beta| + |\alpha| \le 1\}.$

三日 のへの

▶ ∢ 🖃

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion
000	○●	0000000	O
Double Distri	ibutions (DDs)		

$$H(x,\xi,t) \propto \int_{\Omega} d\beta \, d\alpha \, h(\beta,\alpha,t) \, \delta(x-\beta-\alpha\xi) \, . \tag{13}$$

- DD h is defined on the support $\Omega = \{|\beta| + |\alpha| \le 1\}.$
- **Polynomial** in ξ :

$$\int_{-1}^{1} dx \, x^{m} H(x,\xi,t) \quad \propto \quad \int dx \, x^{m} \int_{\Omega} d\beta \, d\alpha \, h(\beta,\alpha,t) \, \delta(x-\beta-\alpha\xi)$$
$$\propto \quad \int_{\Omega} d\beta \, d\alpha \, (\beta+\xi\alpha)^{m} \, h(\beta,\alpha,t) \, . \tag{14}$$

三日 のへの

< E

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion
000	○●	0000000	O
Double Distri	ibutions (DDs)		

$$H(x,\xi,t) \propto \int_{\Omega} d\beta \, d\alpha \, h(\beta,\alpha,t) \, \delta(x-\beta-\alpha\xi) \, . \tag{13}$$

- DD h is defined on the support $\Omega = \{ |\beta| + |\alpha| \le 1 \}.$
- **Polynomial** in ξ :

$$\int_{-1}^{1} dx \, x^{m} H(x,\xi,t) \quad \propto \quad \int dx \, x^{m} \int_{\Omega} d\beta \, d\alpha \, h(\beta,\alpha,t) \, \delta(x-\beta-\alpha\xi)$$
$$\propto \quad \int_{\Omega} d\beta \, d\alpha \, (\beta+\xi\alpha)^{m} h(\beta,\alpha,t) \, . \tag{14}$$

• Positivity not manifest...

ELE DOG

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion
000	○●		O
Double Distri	butions (DDs)		

$$H(x,\xi,t) \propto \int_{\Omega} d\beta \, d\alpha \, h(\beta,\alpha,t) \, \delta(x-\beta-\alpha\xi) \, . \tag{13}$$

• Radon Transform: (Deans, 1983; Teryaev, 2001)

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion
000	○●	0000000	O
Double Distri	butions (DDs)		

$$H(x,\xi,t) \propto \int_{\Omega} d\beta \, d\alpha \, h(\beta,\alpha,t) \, \delta(x-\beta-\alpha\xi) \, . \tag{13}$$

• Radon Transform: (Deans, 1983; Teryaev, 2001)

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion
000	○●	0000000	O
Double Distri	butions (DDs)		

• DD representation of GPDs:

$$H(x,\xi,t) \propto \int_{\Omega} d\beta \, d\alpha \, h(\beta,\alpha,t) \, \delta(x-\beta-\alpha\xi) \, . \tag{13}$$

Radon Transform: (Deans, 1983; Teryaev, 2001)

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion
000	00		O
Outline			

Introduction to Generalized Parton Distributions

- Definition and properties
- Experimental access

Representations of Generalized Parton Distributions

- Overlap of Light-cone wave functions
- Double Distributions

3) Covariant extention of Generalized Parton Distributions

- Motivation
- Inversion of Incomplete Radon Transform
- Results

Conclusion

000	00	•000000	0
Covariant ext	ension		

• What do we want?

(日)

000	00	O
Covariant ext	ension	

- What do we want?
 - GPD at $\xi = 0$, for nucleon tomography.

3 🖒 🖌 3

三日 のへの

Introduction to GPDs	00	●000000	O
Covariant ext	ension		

- What do we want?
 - GPD at $\xi = 0$, for nucleon tomography.
- What do we have?

三日 のへで

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion
000	00	●○○○○○○	O
Covariant ext	ension		

- Covariant extension
 - What do we want?
 - GPD at $\xi = 0$, for nucleon tomography.
 - What do we have?
 - Experimental access: integrals over x of GPD at $\xi > 0$.

ELE DOG

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion
000	00		O
Covariant ext	ansion		

- Covariant extension
 - What do we want?
 - GPD at $\xi = 0$, for nucleon tomography.
 - What do we have?
 - Experimental access: integrals over x of GPD at $\xi > 0$.
 - Covariant approach?

ELE DOG

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion
000	00		O
Covariant ext	ension		

- What do we want?
 - GPD at $\xi = 0$, for nucleon tomography.
- What do we have?
 - Experimental access: integrals over x of GPD at $\xi > 0$.
- Covariant approach?
 - Positivity?

-

$\hat{\mathbf{C}}$	•		
Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion

- What do we want?
 - GPD at $\xi = 0$, for nucleon tomography.
- What do we have?
 - Experimental access: integrals over x of GPD at $\xi > 0$.
- Covariant approach?
 - Positivity?
 - Loss of symmetries...

Covariant extension of GPDs

ъ

Introducti 000	on to G	SPDs	Representations of GPDs 00	Covariant extention of GPDs ●○○○○○○	Conclusion O
<u> </u>					

Covariant extension

- What do we want?
 - GPD at $\xi = 0$, for nucleon tomography.
- What do we have?
 - Experimental access: integrals over x of GPD at $\xi > 0$.
- Link to first principles through Light cone wave functions:

ELE DOG

Introduction to GPDs	Representations of GPDs	Covariant extention of GPD:
000	00	●○○○○○○

- What do we want?
 - GPD at $\xi = 0$, for nucleon tomography.
- What do we have?
 - Experimental access: integrals over x of GPD at $\xi > 0$.
- Link to first principles through Light cone wave functions:
 - Derive all parton distributions (not just GPDs)!

Introduction to GPDs	Representations of GP

Covariant extention of GPDs ●○○○○○○

- What do we want?
 - GPD at $\xi = 0$, for nucleon tomography.
- What do we have?
 - Experimental access: integrals over x of GPD at ξ > 0.
- Link to first principles through Light cone wave functions:
 - Derive all parton distributions (not just GPDs)!
 - But how to truncate?

Introduction	GPDs	

Covariant extention of GPDs ●○○○○○○

- What do we want?
 - GPD at $\xi = 0$, for nucleon tomography.
- What do we have?
 - Experimental access: integrals over x of GPD at $\xi > 0$.
- Link to first principles through Light cone wave functions:
 - Derive all parton distributions (not just GPDs)!
 - But how to truncate?

Introduction	GPDs	

Covariant extention of GPDs

- What do we want?
 - GPD at $\xi = 0$, for nucleon tomography.
- What do we have?
 - Experimental access: integrals over x of GPD at $\xi > 0$.
- Link to first principles through Light cone wave functions:
 - Derive all parton distributions (not just GPDs)!
 - But how to truncate?

Introduction	GPDs	

Covariant extention of GPDs

- What do we want?
 - GPD at $\xi = 0$, for nucleon tomography.
- What do we have?
 - Experimental access: integrals over x of GPD at $\xi > 0$.
- Link to first principles through Light cone wave functions:
 - Derive all parton distributions (not just GPDs)!
 - But how to truncate?

Introduction	GPDs	

Covariant extention of GPDs

- What do we want?
 - GPD at $\xi = 0$, for nucleon tomography.
- What do we have?
 - Experimental access: integrals over x of GPD at $\xi > 0$.
- Link to first principles through Light cone wave functions:
 - Derive all parton distributions (not just GPDs)!
 - But how to truncate?
- Use Lorentz invariance to extend from DGLAP!

Introduction	GPDs	

Covariant extention of GPDs

- What do we want?
 - GPD at $\xi = 0$, for nucleon tomography.
- What do we have?
 - Experimental access: integrals over x of GPD at $\xi > 0$.
- Link to first principles through Light cone wave functions:
 - Derive all parton distributions (not just GPDs)!
 - But how to truncate?
- Use Lorentz invariance to extend from DGLAP!

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion
000	00	○●○○○○○	O
Inversion			

Problem

Find $h(\beta, \alpha)$ on square $\{|\alpha| + |\beta| \le 1\}$ such that

$$\left| H(x,\xi) \right|_{\mathrm{DGLAP}} \propto \int \mathrm{d}\beta \,\mathrm{d}\alpha \,h(\beta,\alpha) \,\delta\left(x-\beta-\alpha\xi
ight) \,.$$

三日 のへの

A B < A B </p>

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion
000	00	○●○○○○○	O
Inversion			

Problem

Find $h(\beta, \alpha)$ on square $\{|\alpha| + |\beta| \le 1\}$ such that

$$\left|H(x,\xi)\right|_{\mathrm{DGLAP}} \propto \int \mathrm{d}\beta \,\mathrm{d}\alpha \,h(\beta,\alpha) \,\delta\left(x-\beta-\alpha\xi
ight) \,.$$

Introduction to GPDs 000	Representations 00	of GPDs	Covariant extention o	of GPDs	Conclusion O
Inversion					
Quark CDD. I		1	$ \dot{c} \rightarrow h(\theta, z)$	$0 f_{au} \partial < 0$	

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion
000	00	○●○○○○○	O
Inversion			

- Quark GPD: $H(x,\xi) = 0$ for $-1 < x < -|\xi| \Longrightarrow h(\beta,\alpha) = 0$ for $\beta < 0$.
- Domains $\beta < 0$ and $\beta > 0$ are uncorrelated in the DGLAP region.

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion
000	00	○●○○○○○	O
Inversion			

- Quark GPD: $H(x,\xi) = 0$ for $-1 < x < -|\xi| \Longrightarrow h(\beta,\alpha) = 0$ for $\beta < 0$.
- Domains $\beta < 0$ and $\beta > 0$ are uncorrelated in the DGLAP region.

In the second second			
000	00	00000	0
Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion

- Inversion
 - Quark GPD: $H(x,\xi) = 0$ for $-1 < x < -|\xi| \implies h(\beta,\alpha) = 0$ for $\beta < 0$.
 - Domains $\beta < 0$ and $\beta > 0$ are uncorrelated in the DGLAP region.
 - Divide and conquer:
 - Better numerical stability.
 - Lesser complexity: $O(N^p + N^p) \ll O((N + N)^p)$.

Inversion			
000	00	000000	
Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion

- Quark GPD: $H(x,\xi) = 0$ for $-1 < x < -|\xi| \implies h(\beta,\alpha) = 0$ for $\beta < 0$.
- Domains $\beta < 0$ and $\beta > 0$ are uncorrelated in the DGLAP region.
- Divide and conquer:
 - Better numerical stability.
 - Lesser complexity: $O(N^p + N^p) \ll O((N + N)^p)$.
- α -parity of the DD: $h(\beta, -\alpha) = h(\beta, \alpha)$.

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion
000	00	○○●○○○○	O
Discretization			

• Expansion of the DD into basis functions $\{v_j\}$:

$$h(\beta,\alpha) = \sum_{j} h_{j} v_{j}(\beta,\alpha) , \qquad (15)$$

三日 のへの

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion
000	00	00●0000	O
Discretization			

• Expansion of the DD into basis functions $\{v_j\}$:

$$h(\beta,\alpha) = \sum_{j} h_{j} v_{j}(\beta,\alpha) , \qquad (15)$$

Piece-wise constant, piece-wise linear, etc.

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion
000	00		O
Discretization			

- Discretization
 - Expansion of the DD into basis functions {*v_i*}:

$$h(\beta,\alpha) = \sum_{j} h_{j} v_{j}(\beta,\alpha) , \qquad (15)$$

- Piece-wise constant, piece-wise linear, etc.
- n columns of the matrix.

000	00	000000	0

Discretization

• Expansion of the DD into basis functions {*v_j*}:

$$h(\beta,\alpha) = \sum_{j} h_{j} v_{j}(\beta,\alpha) , \qquad (15)$$

- Piece-wise constant, piece-wise linear, etc.
- n columns of the matrix.
- Sampling:

Introduction to GPDs Representations of GPDs Covariant extention of GPDs Conclusion 000 00 00 00 0				
	000	00	Covariant extention of GPDs ○○●○○○○	O O

Discretization

• Expansion of the DD into basis functions {*v_j*}:

$$h(\beta,\alpha) = \sum_{j} h_{j} v_{j}(\beta,\alpha) , \qquad (15)$$

- Piece-wise constant, piece-wise linear, etc.
- n columns of the matrix.
- Sampling:
 - Random couples $(x,\xi) \longrightarrow m \ge n$ lines of the matrix.

ELE NOR

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion O
Discretization			

- Discretization
 - Expansion of the DD into basis functions {*v_j*}:

$$h(\beta,\alpha) = \sum_{j} h_{j} v_{j}(\beta,\alpha) , \qquad (15)$$

- Piece-wise constant, piece-wise linear, etc.
- n columns of the matrix.
- Sampling:
 - Random couples $(x,\xi) \longrightarrow m \ge n$ lines of the matrix.
- Linear problem: AX = B where $B_i = H(x_i, \xi_i)$ and $A_{ij} = \mathcal{R}v_j(x_i, \xi_i)$.

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion
000	00		O
Discretization			

- Discretization
 - Expansion of the DD into basis functions {*v_j*}:

$$h(\beta,\alpha) = \sum_{j} h_{j} v_{j}(\beta,\alpha) , \qquad (15)$$

- Piece-wise constant, piece-wise linear, etc.
- n columns of the matrix.
- Sampling:
 - Random couples $(x,\xi) \longrightarrow m \ge n$ lines of the matrix.
- Linear problem: AX = B where $B_i = H(x_i, \xi_i)$ and $A_{ij} = \mathcal{R}v_j(x_i, \xi_i)$.
- Regularization necessary: discrete ill-posed problem.

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion
000	00		O
Discretization			

- Discretization
 - Expansion of the DD into basis functions {*v_j*}:

$$h(\beta,\alpha) = \sum_{j} h_{j} v_{j}(\beta,\alpha) , \qquad (15)$$

- Piece-wise constant, piece-wise linear, etc.
- n columns of the matrix.
- Sampling:
 - Random couples $(x,\xi) \longrightarrow m \ge n$ lines of the matrix.
- Linear problem: AX = B where $B_i = H(x_i, \xi_i)$ and $A_{ij} = \mathcal{R}v_j(x_i, \xi_i)$.
- Regularization necessary: discrete ill-posed problem.
 - Trade-off between noise and convergence.

Figure: Extension of GPDs for the pion DSE model of Refs. (Mezrag, 2015; Mezrag et al., 2016). Comparison to the analytical result. Left: Plot for fixed ξ values 0, 0.5 and 1, at t = 0 GeV². Right: Plot for fixed t values 0, -0.25 and -0.5 GeV², at $\xi = 0.5.$

ELE DOG

E(x, ξ)

Figure: Extension of GPD E for the nucleon model of Ref. (Hwang and Mueller, 2008). Comparison to the analytical result of the authors. Left: Plot for fixed ξ values 0, 0.5 and 1, at t = 0 GeV². Right: Plot for fixed t values 0, -0.25 and -0.5 GeV², at

-0.75 -0.5 -0.25

0

x

0.25 0.5 0.75

0.8 0.6 لم

0.4

0.2

0

0.25 0.5 0.75 1

-1 -0.75 -0.5 -0.25 0

 $\xi = 0.5.$

15 / 22

JIN NOR

1<u>Х</u>

/Gel:

-0.1 -0.2 -0.3

-0.5 . 1

Representations of GPDs Covariant extention of GPDs 0000000

Some examples (gaussian model)

Figure: Extension of GPD for a gaussian pion model (in the vein of AdS/QCD). Left: Plot for fixed ξ values 0, 0.5 and 1, at t = 0 GeV². Right: Plot for fixed t values 0. -0.25 and -0.5 GeV², at $\xi = 0.5$.

• Integrable singularity for the GPD at $x \sim 0$: $H(x,\xi) \propto \frac{1}{\sqrt{x}}$.

ELE SQC

- Integrable singularity for the GPD at $x \sim 0$: $H(x,\xi) \propto \frac{1}{\sqrt{x}}$.
- Equivalent to an integrable singularity for the DD at $\beta \sim 0$: $h(\beta, \alpha) \propto \frac{1}{\sqrt{\beta}}$.

- Integrable singularity for the GPD at $x \sim 0$: $H(x,\xi) \propto \frac{1}{\sqrt{x}}$.
- Equivalent to an integrable singularity for the DD at $\beta \sim 0$: $h(\beta, \alpha) \propto \frac{1}{\sqrt{\beta}}$.

• We solve for
$$\sqrt{\beta} h(\beta, \alpha)$$
 instead of $h(\beta, \alpha)$!

Introduction to GPDs 000	Representations of GPDs 00	Covariant extention of GPDs	Conclusion
Summary			

• Generalized Parton Distributions

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

三日 のへで

Introduction to GPDs 000	Representations of GPDs 00	Covariant extention of GPDs	Conclusion
Summary			

- Generalized Parton Distributions
 - encode information about the 3D structure of a hadron.

ELE DOG

Introduction to GPDs	Representations of GPDs 00	Covariant extention of GPDs	Conclusion •
Summary			

• Generalized Parton Distributions

y

- encode information about the 3D structure of a hadron.
- are accessible with exclusive processes in experiments: JLab, COMPASS, etc.

ELE DOG

Introduction to GPDs 000	Representations of GPDs 00	Covariant extention of GPDs	Conclusion
Summary			

• Generalized Parton Distributions

y

- encode information about the 3D structure of a hadron.
- are accessible with exclusive processes in experiments: JLab, COMPASS, etc.
- Systematic procedure for GPD modeling from first principles:

Introduction to GPDs 000	Representations of GPDs 00	Covariant extention of GPDs	Conclusion
Summary			

- Generalized Parton Distributions
 - encode information about the 3D structure of a hadron.
 - are accessible with exclusive processes in experiments: JLab, COMPASS, etc.
- Systematic procedure for GPD modeling from first principles:
 - $\blacktriangleright \ \mathsf{LCWFs} \underset{\mathrm{Overlap}}{\longrightarrow} \mathsf{GPD} \text{ in } \mathsf{DGLAP} \underset{\mathrm{Inverse \ Radon \ Transform}}{\longrightarrow} \mathsf{DD} \underset{\mathrm{RT}}{\longrightarrow} \mathsf{GPD}.$

Introduction to GPDs 000	Representations of GPDs 00	Covariant extention of GPDs	Conclusion
Summary			

- Generalized Parton Distributions
 - encode information about the 3D structure of a hadron.
 - are accessible with exclusive processes in experiments: JLab, COMPASS, etc.
- Systematic procedure for GPD modeling from first principles:
 - $\blacktriangleright \ \mathsf{LCWFs} \underset{\mathrm{Overlap}}{\longrightarrow} \mathsf{GPD} \text{ in } \mathsf{DGLAP} \underset{\mathrm{Inverse \ Radon \ Transform}}{\longrightarrow} \mathsf{DD} \underset{\mathrm{RT}}{\longrightarrow} \mathsf{GPD}.$
 - Both polynomiality and positivity!

Introduction to GPDs	Representations of GPDs 00	Covariant extention of GPDs	Conclusion
Summary			

- Generalized Parton Distributions
 - encode information about the 3D structure of a hadron.
 - are accessible with exclusive processes in experiments: JLab, COMPASS, etc.
- Systematic procedure for GPD modeling from first principles:
 - $\blacktriangleright \text{ LCWFs} \underset{\mathrm{Overlap}}{\longrightarrow} \text{GPD in DGLAP} \underset{\mathrm{Inverse Radon Transform}}{\longrightarrow} \text{DD} \underset{\mathrm{RT}}{\longrightarrow} \text{GPD}.$
 - Both polynomiality and positivity!
 - Compromise with respect to noise and convergence.

Introduction to GPDs	Representations of GPDs	Covariant extention of GPDs	Conclusion
000	00		•
Summary			

- Generalized Parton Distributions
 - encode information about the 3D structure of a hadron.
 - are accessible with exclusive processes in experiments: JLab, COMPASS, etc.
- Systematic procedure for GPD modeling from first principles:
 - $\blacktriangleright \ \mathsf{LCWFs} \underset{\mathrm{Overlap}}{\longrightarrow} \mathsf{GPD} \text{ in } \mathsf{DGLAP} \underset{\mathrm{Inverse \ Radon \ Transform}}{\longrightarrow} \mathsf{DD} \underset{\mathrm{RT}}{\longrightarrow} \mathsf{GPD}.$
 - Both polynomiality and positivity!
 - Compromise with respect to noise and convergence.
- Unified phenomonelogy of GPDs and TMDs at the level of LCWFs?

000	00	000000	•
Summary			

- Generalized Parton Distributions
 - encode information about the 3D structure of a hadron.
 - are accessible with exclusive processes in experiments: JLab, COMPASS, etc.
- Systematic procedure for GPD modeling from first principles:
 - $\blacktriangleright \mathsf{LCWFs} \underset{\mathrm{Overlap}}{\longrightarrow} \mathsf{GPD} \mathsf{ in DGLAP} \underset{\mathrm{Inverse Radon Transform}}{\longrightarrow} \mathsf{I}$
 - Both polynomiality and positivity!
 - Compromise with respect to noise and convergence.
- Unified phenomonelogy of GPDs and TMDs at the level of LCWFs?
- Thank you!

000	00	000000	•
Summary			

- Generalized Parton Distributions
 - encode information about the 3D structure of a hadron.
 - are accessible with exclusive processes in experiments: JLab, COMPASS, etc.
- Systematic procedure for GPD modeling from first principles:
 - $\blacktriangleright \mathsf{LCWFs} \underset{\mathrm{Overlap}}{\longrightarrow} \mathsf{GPD} \mathsf{ in } \mathsf{DGLAP} \underset{\mathrm{Inverse Radon Transform}}{\longrightarrow}$
 - Both polynomiality and positivity!
 - Compromise with respect to noise and convergence.
- Unified phenomonelogy of GPDs and TMDs at the level of LCWFs?
- Thank you!
 - Any questions?

Ill-posed problems and Regularization

- Ill-posed problems?
 - For example the inversion of a Fredholm equation of the first kind:

$$\int \mathcal{K}(x,y)f(y)\,\mathrm{d}y = g(x)\,. \tag{16}$$

- The inverse is not continuous: an arbitrarily small variation Δg of the rhs can lead to an arbitrarily large variation Δf of the solution.
- The corresponding discrete problem needs to be regularized.

• E.g Tikhonov regularization: min $\{ \|AX - B\|^2 + \epsilon \|X\|^2 \}$.

Theoretical "L-curve": curve parameterized by the regularization factor.

(fig. taken from Ref. (Hansen, 2007))

Nabil Chouika

Covariant extension of GPDs

L-curve with the iteration number as

regularization factor.

D-term considerations

Polynomiality property:

$$\int_{-1}^{1} \mathrm{d}x \, x^{m} H\left(x, \xi, t\right) = \sum_{\substack{k=0\\k \, even}}^{m+1} c_{k}^{(m)}(t) \xi^{k} \,. \tag{17}$$

Recast polynomiality property for H - D:

$$\int_{-1}^{1} \mathrm{d}x \, x^{m} \left(H\left(x, \xi, t\right) - D\left(\frac{x}{\xi}, t\right) \right) = \sum_{\substack{k=0\\k \text{ even}}}^{m} c_{k}^{(m)}(t) \xi^{k} \,, \tag{18}$$

where $D\left(\frac{x}{\xi}, t\right)$ is the so-called D-term with support on $-\xi < x < \xi$. H - D is a Radon Transform:

$$H(x,\xi,t) - D\left(\frac{x}{\xi},t\right) = \int_{\Omega} d\beta \, d\alpha \, h_{\rm PW}\left(\beta,\alpha\right) \delta\left(x-\beta-\alpha\xi\right) \,. \tag{19}$$

The DGLAP region gives no information on the D-term.

With other DD representations, we can generate intrinsic D-terms, e.g. Pobylitsa representation:

$$H(x,\xi,t) = (1-x) \int_{\Omega} d\beta \, d\alpha \, h_{\rm P}(\beta,\alpha) \, \delta(x-\beta-\alpha\xi) \,.$$
⁽²⁰⁾

Still freedom of extra D-term.

Bibliography I

- D. Müller, D. Robaschik, B. Geyer, F. M. Dittes, and J. Hořejši, "Wave functions, evolution equations and evolution kernels from light ray operators of QCD", *Fortsch. Phys.* **42** (1994) 101–141, arXiv:hep-ph/9812448 [hep-ph].
- A. V. Radyushkin, "Scaling limit of deeply virtual Compton scattering", Phys. Lett. B380 (1996) 417-425, arXiv:hep-ph/9604317 [hep-ph].
- X.-D. Ji, "Deeply virtual Compton scattering", Phys. Rev. D55 (1997) 7114-7125, arXiv:hep-ph/9609381 [hep-ph].
- M. Burkardt, "Impact parameter dependent parton distributions and off forward parton distributions for zeta —> 0", *Phys. Rev.* D62 (2000) 071503, arXiv:hep-ph/0005108 [hep-ph], [Erratum: Phys. Rev.D66,119903(2002)].
- B. Pire, J. Soffer, and O. Teryaev, "Positivity constraints for off forward parton distributions", *Eur. Phys. J.* C8 (1999) 103–106, arXiv:hep-ph/9804284 [hep-ph].
- A. V. Radyushkin, "Double distributions and evolution equations", Phys. Rev. D59 (1999) 014030, arXiv:hep-ph/9805342 [hep-ph].
- A. V. Belitsky, D. Mueller, and A. Kirchner, "Theory of deeply virtual Compton scattering on the nucleon", Nucl. Phys. B629 (2002) 323–392, arXiv:hep-ph/0112108 [hep-ph].
- S. J. Brodsky, T. Huang, and G. P. Lepage, "Hadronic wave functions and high momentum transfer interactions in quantum chromodynamics", *Conf. Proc.* C810816 (1981) 143–199.

Bibliography II

- M. Diehl, T. Feldmann, R. Jakob, and P. Kroll, "The overlap representation of skewed quark and gluon distributions", *Nucl. Phys.* B596 (2001) 33–65, arXiv:hep-ph/0009255 [hep-ph], [Erratum: Nucl. Phys.B605,647(2001)].
- M. Diehl, "Generalized parton distributions", Phys. Rept. 388 (2003) 41–277, arXiv:hep-ph/0307382 [hep-ph].
- S. R. Deans, "The Radon Transform and Some of Its Applications", Wiley-Interscience, 1983.
- O. V. Teryaev, "Crossing and radon tomography for generalized parton distributions", *Phys. Lett.* B510 (2001) 125–132, arXiv:hep-ph/0102303 [hep-ph].
- C. Mezrag, "Generalised Parton Distributions : from phenomenological approaches to Dyson-Schwinger equations", PhD thesis, IRFU, SPhN, Saclay, 2015.
- C. Mezrag, H. Moutarde, and J. Rodriguez-Quintero, "From Bethe–Salpeter Wave functions to Generalised Parton Distributions", *Few Body Syst.* 57 (2016), no. 9, 729–772, arXiv:1602.07722 [nucl-th].
- D. S. Hwang and D. Mueller, "Implication of the overlap representation for modelling generalized parton distributions", *Phys. Lett.* **B660** (2008) 350–359, arXiv:0710.1567 [hep-ph].
- P. C. Hansen, "Regularization Tools version 4.0 for Matlab 7.3", Numerical Algorithms 46 (2007), no. 2, 189–194.

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のなべ