Measurements of TMD effects and related issues

Andrea Bressan University of Trieste and INF

SPATIAL AND MOMENTUM TOMOGRAPHY OF HADRONS AND NUCLEI (INT-17-3), 25-29/09/2017 -- SEATTLE (WA)

Transverse structure of the Nucleon

Accessing TMD PDFs and FFs

SIDIS access to TMDs

Factorisation (Collins & Soper, Ji, Ma, Yuan, Qiu & Vogelsang, Collins & Metz...)

The CM Energy vs Luminosity Landscape

HIAF-EIC = Chinese version of Electron-Ion Collider ("A dilution-free mini-COMPASS")

- JLEIC = EIC@Jlab
- eRHIC = EIC@BNL
- LHeC = ep/eA collider @ CERN

HERA

Spatial and Momentum Tomography

7

Kinematic coverage

SIDIS Experiment must/should:

- Have large/flat acceptances on all the relevant variables x, Q^2, z, P_{hT}, ϕ
- Use different targets (p, d, n) and identify hadrons to allow flavor separation
- Be at different energies to cover PDFs from the valence region down to small-x
- Large luminosity to allow multidimensional results needed by the complexity of TMDs
- The polarized lepton-nucleon collider will be a mandatory tool to reach the level of ordinary PDF

Multiplicity distributions

• Unpolarized hadron multiplicity distributions are the basic material for studying the mechanisms of P_{hT} generation and the applicability of TMD factorization.

• It is important to have differential distributions in kinematic variables x, Q^2 , z besides P_{hT}

• Not only low P_{hT} . Tails at $P_{hT} > 1$ GeV carries important perturbative & non-perturbative information

- The cross section dependence from P_{hT} results from:
 - intrinsic k_{\perp} of the quarks
 - p_{\perp} generated in the quark fragmentation
 - A Gaussian ansatz for k_{\perp} and p_{\perp} leads to $\langle P_{hT}^2 \rangle = z^2 \langle k_{\perp}^2 \rangle + \langle p_{\perp}^2 \rangle$

- The azimuthal modulations in the unpolarised cross sections comes from:
 - Intrinsic k_{\perp} of the quarks
 - The Boer-Mulders PDF
- Difficult measurements were one has to correct for the apparatus acceptance
- COMPASS and HERMES have
 - results on ${}^{6}LiD$ ($\sim d$) and d and on p (Hermes only)
 - No COMPASS measurements on p since on NH_3 ($\sim p$) nuclear effects may be important
- \Rightarrow COMPASS-II, measurements on LH₂ in parallel with DVCS

INT 26/09/2017

 $\langle Q^2 \rangle = 9.78 \; (\text{GeV}/c) \; \langle x \rangle = 0.149$

Is correlation having an impact?

The asymmetries

• The asymmetries are:

$$A_{U(L),T}^{w(\phi_{h},\phi_{S})}(x,z,p_{T};Q^{2}) = \frac{F_{U(L),T}^{w(\phi_{h},\phi_{S})}}{F_{UU,T} + \varepsilon F_{UU,L}}$$

• When we perform 1D measurements

$$\begin{split} A_{U(L),T}^{w(\phi_{h},\phi_{S})}(x) \\ &= \frac{\int_{Q_{min}^{2}}^{Q_{max}^{2}} dQ^{2} \int_{Z_{min}}^{Z_{max}} dz \int_{P_{hT,min}}^{P_{hT,max}} d^{2} \vec{P}_{hT} F_{U(L),T}^{w(\phi_{h},\phi_{S})}}{\int_{Q_{min}^{2}}^{Q_{max}^{2}} dQ^{2} \int_{Z_{min}}^{Z_{max}} dz \int_{P_{hT,min}}^{P_{hT,max}} d^{2} \vec{P}_{hT} \left(F_{UU,T} + \varepsilon F_{UU,L}\right)} \end{split}$$

The semi inclusive cross-section for $\ell p \to \ell' h X$ is given by $d\sigma^{\ell p \to \ell' h X} = \sum_q f_q(x, Q^2) \otimes d\sigma^{\ell q \to \ell' q} \otimes D_q^h(z, Q^2)$. The cross section for the partonic process is simply given by $d\sigma^{\ell q \to \ell' q} = \hat{s}^2 + \hat{u}^2$

In collinear PM $d\sigma^{\ell q \to \ell' q} = \hat{s}^2 + \hat{u}^2 = x[1 + (1 - y)^2]$, i.e. no ϕ_h dependence.

 k_{\perp} has only components outside the lepton scattering plane:

Taking into account the parton transverse momentum in the kinematics leads to:

$$\hat{s} = sx \left[1 - \frac{2k_{\perp}}{Q} \sqrt{1 - y} \cos \phi_h \right] + \sigma \left(\frac{k_{\perp}^2}{Q} \right) \ \hat{u} = sx(1 - y) \left[1 - \frac{2k_{\perp}}{Q\sqrt{1 - y}} \cos \phi_h \right] + \sigma \left(\frac{k_{\perp}^2}{Q} \right)$$
Resulting in the $\cos \phi_h$ and $\cos 2\phi_h$ modulations observed in the azimuthal distributions

INT 26/09/2017

The full cross section for the unpolarised case is written as:

$$A_{UU}^{x}(x, z, dP_{hT}^{2}, Q^{2}) = \frac{F_{UU}^{x}}{F_{UU,T} + \varepsilon F_{UU,L}} \qquad \varepsilon = \frac{1 - y - \frac{1}{4}y^{2}\gamma^{2}}{1 - y + \frac{1}{2}y^{2} + \frac{1}{4}y^{2}\gamma^{2}} \quad and \quad \gamma = \frac{2xM}{Q}$$

 $F_{UU} = C[f_1 D_1] = x \sum_q e_q^2 \int d\vec{p}_{\perp} d\vec{k}_{\perp} \,\delta^2 (z\vec{k}_{\perp} + \vec{p}_{\perp} - \vec{P}_{hT}) f_1^q(x, k_{\perp}, Q^2) D_{1,q}^h(z, p_{\perp}, Q^2)$

When looking at the content of the structure functions/modulations in terms of TMD PDFs for the $\cos \phi_h$ and $\cos 2\phi_h$ we can write:

$$F_{UU}^{\cos\phi_h} = -\frac{2M}{Q} C \left[\frac{\hat{h} \cdot \vec{k}_\perp}{M} f_1 D_1 - \frac{p_\perp k_\perp}{M} \frac{\vec{P}_{hT} - z(\hat{h} \cdot \vec{k}_\perp)}{zM_h M} h_1^\perp H_1^\perp \right] + \text{twists} > 3$$

$$F_{UU}^{\cos 2\phi_h} = C \left[\frac{\left(\hat{h} \cdot \vec{k}_{\perp}\right) \left(\hat{h} \cdot \vec{p}_{\perp}\right) - \vec{p}_{\perp} \cdot \vec{k}_{\perp}}{MM_h} h_1^{\perp} H_1^{\perp} \right] + \text{twists} > 3$$

In the $\cos 2\phi_h$ Cahn effects enters only at twist4

$$F_{\text{Cahn}}^{\cos 2\phi_h} \approx \frac{2}{Q^2} C\left[\left\{2\left(\hat{h}\cdot\vec{k}_{\perp}\right)^2 - k_{\perp}^2\right\}f_1 D_1\right]$$

Experimental status

• Azimuthal modulations in $\ell p \rightarrow \ell' h X$ measured by

- Prokudin, A. Kotzinian, and C. Turk
- Large modulations up to 40% for $\cos \phi$, while $\cos 2\phi$ is smaller, about 5%

Boer-Mulders in $\cos 2\phi$

$\cos\phi$ modulation

Boer-Mulders in $\cos 2\phi$ and in $\cos \phi$

Sivers asymmetry on deuteron and proton for Gluons

PLB 772 (2017) 854

INT 26/09/2017

COMPASS

Sivers asymmetry on proton. DY range

Sivers asymmetry on proton. Drell-Yan measurement

CERN-EP/2017-059 hep-ex/1704.00488

Sivers asymmetry on proton. Multidimensional

First ever extraction of TSAs within such a Multi-D $(x: Q^2: z: p_T)$ approach

INT 26/09/2017

Conclusions

- The study of TMDs has entered the phase of multidimensional analysis
- An important step in this direction is the large sample of precise unpolarised data, both as multiplicities and as azimuthal modulations
- In the next years more of such data will be available both from COMPASS and from JLab12
- Waiting for the EIC to extend the accessible phase space, the description of such data is a mandatory task for the theory of TMDs

Thank you

Ennanna

#

M

FEEGH

Hadron correlations

Interplay between Collins and IFF asymmetries

common hadron sample for Collins and 2h analysis

Asymmetries for x > 0.032 vs $\Delta \phi = \phi_{h^+} - \phi_{h^-}$

 $a = \frac{\sigma_{1C}^{h^+h^-}(\Delta\phi)}{\sigma_U(\Delta\phi)}$ $= -\frac{\sigma_{2C}^{h^+h^-}(\Delta\phi)}{\sigma_U(\Delta\phi)}$

ratio of the integrals compatible with $4/\pi$

charged pions (and kaons), HERMES and COMPASS

Statistical correlations

charged pions also available for charged hadrons charged kaons

have to be taken into account

Berger criterion (separation of CFR & TFR)

The typical hadronic correlation length in rapidity is

 $\Delta y_h \simeq 2$

Ζ W = 5 GeV0.001 current jet target jet π K 0.01 $zD_{val}^{\pi}(z)$ 0.02 Ν 0.05 0.10 0.20 0.50 $\Delta \eta = 4$ 1.00 $\eta^{}_{\rm CM}$ -2 2 -0.1 0.1 $^{+1}$ x_F $N^{\pi}(n)$

if the dynamics of quark fragmentation is to be studied independently of "contamination" from target fragmentation, it is necessary that $Y \gtrsim 4$, or, equivalently, that

$$W_X = \left[\frac{Q^2(1-x)}{x}\right]^{1/2} \gtrsim 7.4 \,\mathrm{GeV}.$$
 (17)

If the inequality Eq. (17) is satisfied, it should be possible to measure fragmentation functions $D(z, Q^2)$ over essentially the full range of z, 0 < z < 1. Somewhat smaller values of W_X may be adequate if attention is restricted to the large z region. As Y is increased above 2, or

$$W_X \gtrsim 3 \text{ GeV},$$
 (18)

the quark and target fragmentation regions begin to separate. As long as $Y \gtrsim 2$, the hadrons with the largest values of z are most likely quark fragments. Data¹⁴ from $e^+e^- \rightarrow h X$ show that a distinct function D(z) may have developed for $z \gtrsim 0.5$ at W = 3 GeV. The region extends to $z \simeq 0.2$ for W = 4.8 GeV, and to $z \simeq 0.1$ for W = 7.4 GeV. For z > 0.3, fragmentation functions have been obtained from data¹⁵ on $ep \rightarrow e'\pi^{\pm} X$ at E = 11.5 GeV, with $3 < W_X < 4$ GeV.

- Three basic channels contribute to lepton-nucleus ℓA scattering at different Q^2 and ν
- These are the
 - Elastic scattering ($\nu = Q^2/2M_A$)
 - Quasi elastic scattering $(\nu \sim Q^2/2M_N)$
 - Inelastic scattering ($\nu > Q^2/2M_N + m_\pi$)
- At Born level, Q^2 and ν are fixed by measuring energy and scattering angle of the lepton and the we can distinguish between the three processes.
- In case of the presence of a radiated photon (i.e. at the level of radiative corrections) the fixing of Q^2 and from θ and E' is removed and the photon has to be included in the kinematic calculation.
- This not done brings to wrong values of Q^2 and ν and mixing between processes.

RADIATIVE CORRECTIONS

- The radiative leptonic tensor $S(\ell, \ell', k)$ is
 - Gauge invariant
 - Infrared finite
 - Universal (for 1γ exchange)
 - The kinematic is shifted

 $\tilde{q}^{\mu} = q^{\mu} - k^{\mu}$

The problem for SIDIS

- Photon radiation from the muon lines changes the DIS kinematics on the event by event basis
- The direction of the virtual photon is changed with respect to the one reconstructed from the muons
 - This introduces false asymmetries in the azimuthal distribution of hadrons calculated with respect to the virtual photon direction
 - Smearing of the kinematic distributions (f.i. z and P_{hT})
- Due to the energy unbalance, in the lepton plane the true virtual photon direction is always at larger angles with respect to the reconstructed one
- In SIDIS, having an hadron in the final state, only the inelastic part of the radiative corrections plays a role

Azimuthal asymmetries in SIDIS

Virtual photon D's (Qtrue-Qm)

Radiated Photon: Energy

Radiated Photon: Azimuthal angle in GNS

TMD PDFs

• When we consider the TMD we take into account also the transverse motion of the quark k_{\perp} The field-theoretical expression is quite complicated due to the structure of the gauge link, which now connects two space-time points with a transverse separation

$$f_{q/N}(x, k_{\perp}) = \frac{1}{8\pi} \int dr^{-} \frac{dr_{\perp}^{2}}{(2\pi)^{2}} e^{-iMxr^{-}/2 + ik_{\perp} \cdot r_{\perp}}$$

 $\langle N(P)|\bar{q}(r^{-},r_{\perp})\gamma^{+}W[r^{-},r_{\perp};0]q(0)|N(P)\rangle|_{r^{+}\sim 1/\nu\to 0}$

The Wilson line W is no longer on the light-cone axis and may introduce a process dependence

Parity and Time reversal invariance \Rightarrow

$$\left(f_{1Tq}^{\perp}\right)_{DY} = -\left(f_{1Tq}^{\perp}\right)_{SIDIS}$$

Most critical test to TMD approach to SSA

