INT Program INT–17–3

Spatial and Momentum Tomography of Hadrons and Nuclei

August 28 – September 29, 2017

Phenomenology of TMDs and TMD Evolution: Phenomenology of TMDs and TMD Evolution: perturbative and non-perturbative aspects. perturbative and non-perturbative aspects.

In collaboration with J.O. Gonzalez Hernandez, S. Melis and A. Prokudin and with J. Collins, L. Gamberg, T. Rogers, N. Sato, R. Taghavi

Where do we learn about TMDs ?

Where do we learn about TMDs ?

Where do we learn about TMDs ?

Drell-Yan Processes

Naive TMD approach

Calculating a cross section which describes a hadronic process over the whole $\bm{{\mathsf{q}}}_{_{\mathsf{T}}}$ range is a highly non-trivial task

Let's consider Drell Yan processes (for historical reasons)

Fixed order calculations cannot describe DY data at small q_7 : r. At Born Level the cross section is vanishing At order $\alpha_{\rm s}$ the cross section is divergent...

$$
q_T\to 0
$$

$$
\frac{1}{\sigma_0} \frac{d\sigma}{dq_T^2} = \frac{2C_F}{2\pi q_T^2} \alpha_s \ln\left(\frac{M^2}{q_T^2} - \frac{3}{2}\right)
$$

Naive TMD approach

$$
\frac{d\sigma}{dP_T^2} \propto \frac{\alpha_{em}}{M^2} \sum_q f_{q/h_1}(x_1) \bar{f}_{q/h_2}(x_2) \frac{\exp(-P_T^2/\langle P_T^2 \rangle)}{\pi \langle P_T^2 \rangle}
$$

Considering the same DY process at different energies:

Each data set is Gaussian but with a different width

Drell-Yan phenomenology

Does the q_7 distribution behave like a Gaussian ?

Drell-Yan phenomenology

Resummation / TMD evolution

Fixed order calculations cannot describe correctly DY/SIDIS data at small $q_{{}_{T}}$

$$
\frac{1}{\sigma_0}\frac{d\sigma}{dq_T^2} = \frac{2C_F}{2\pi q_T^2}\alpha_s\ln\left(\frac{M^2}{q_T^2}-\frac{3}{2}\right)
$$

These divergencies are taken care of by TMD evolution/resummation

Resummation / TMD evolution

$$
\frac{1}{\sigma_0} \frac{d\sigma}{dQ^2 dy dq_T^2} = \int \frac{d^2 \mathbf{b}_T e^{i\mathbf{q}_T \cdot \mathbf{b}_T}}{(2\pi)^2} \sum_j e_j^2 W_j(x_1, x_2, b_T, Q) + Y(x_1, x_2, q_T, Q)
$$

Y = $\sigma^{\text{FO}} \cdot \sigma^{\text{ASY}}$

- The W term is designed to work well at low and moderate q_7 , when $q_7 < Q$. (Notice that W is devised to work down to q_{τ} \sim 0, however collinear-factorization works up to q_r > M; therefore, TMD-factorization and collinear-factorization can be simultaneously applied only when q_r >> M).
- The W term becomes unphysical at larger q_{τ} , when $q_{\tau} \ge Q$, where it becomes negative (and large).
- The Y term corrects for the misbehavior of W as $\mathsf{q}_{{}_{\mathsf{T}}}$ gets larger, providing a consistent (and positive) $\mathsf{q}_{_{\mathsf{T}}}$ differential cross section.
- The Y term should provide an effective smooth transition to large $q_{\vert \tau}$, where fixed order perturbative calculations are expected to work.

Resummation / TMD evolution

Example: the CSS resummation scheme:

$$
W_j(x_1, x_2, b_T, Q) = \exp\left[S_j(b_T, Q)\right] \sum_{i,k} C_{ji} \otimes f_i(x \sqrt{C_1^2/b_T^2}) C_{jk} \otimes f_k(x_2, C_1^2/b_T^2)
$$

$$
S_j(b_T, Q) = -\int_{\frac{C_1^2/b_T^2}{\lambda}}^{Q^2} \frac{d\kappa^2}{\kappa^2} \left[A_j(\alpha_s(\kappa)) \ln\left(\frac{Q^2}{\kappa^2}\right) + B_j(\alpha_s(\kappa))\right]
$$

At large b_r the scale μ becomes too small!

$$
\mu = \frac{C_1}{b_T}
$$

Non-trivially connected to the physical region: $Q^2 \gg q_T^2 \simeq \Lambda_{QCD}^2$

All TMD evolution schemes require a model to deal with the non-perturbative region

N Working in **b**₊ space makes phenomenological analyses more difficult, **as we lose intuition and direct connection with "real world experience".** (Experimental data are in **q_T** space).

at small b_r OPE works

Non perturbative region

 \blacksquare This is a perturbative scheme. All the scales must be frozen when reaching the non perturbative region:

$$
b_T \longrightarrow b_* = \frac{b_T}{\sqrt{1 + b_T^2/b_{max}^2}}
$$
 $\mu = \frac{C_1}{b_T} \longrightarrow \mu_b = C_1/b_*$

Then we define a non perturbative function for large b_τ :

$$
\frac{W_j(x_1, x_2, b_T, Q)}{W_j(x_1, x_2, b_*, Q)} = F_{NP}(x_1, x_2, b_T, Q)
$$

$$
W_j(x_1, x_2, b_T, Q) = \sum_{i,k} \exp\left[S_j(b_*, Q)\right] \left[C_{ji} \otimes f_i(x_1, \mu_b)\right] \left[C_{\bar{j}k} \otimes f_k(x_2, \mu_b)\right] F_{NP}(x_1, x_2, b_T, Q)
$$

$$
b_*, \mu_b
$$

$$
C_1 = 2 \exp(-\gamma_E)
$$

Collins, Soper, Sternan, Nucl. Phys. B250, 199 (1985)

For this scheme to work, 4 distinct kinematic regions have to be identified

They should be large enough and well separated

CSS for DY processes

To perform phenomenological studies we need a non perturbative function.

 $F_{NP}(x_1, x_2, b_T, Q)$

Davies-Webber-Stirling (DWS)

$$
\exp\left[-g_1 - g_2 \ln\left(\frac{Q}{2Q_0}\right)\right]b^2;
$$

Ladinsky-Yuan (LY)
$$
\exp\left\{ \left[-g_1 - g_2 \ln \left(\frac{Q}{2Q_0} \right) \right] b^2 - \left[g_1 g_3 \ln(100x_1 x_2) \right] b \right\};
$$

$$
\text{Brock-Landry-}\n\text{Nadolsky-Yuan (BLNY)}\n\qquad\n\exp\left[-g_1 - g_2 \ln\left(\frac{Q}{2Q_0}\right) - g_1 g_3 \ln(100x_1 x_2)\right] b^2
$$

Nadolsky et al., Phys.Rev. D67,073016 (2003)

CSS for DY processes

 $b_{max} = 0.5 \text{ GeV}^{-1}$

*Nadolsky et al., Phys.Rev. D67,073016 (2003)

SIDIS processes

Resummation in SIDIS

As mentioned above

fixed order pQCD calculation fail to describe the SIDIS cross sections at small q_{τ} the cross section tail at large $q_7^{}$ is clearly non-Gaussian.

 P_T (GeV/c)

Anselmino, Boglione, Prokudin, Turk, Eur.Phys.J. A31 (2007) 373-381 Anselmino, Boglione, Gonzalez, Melis, Prokudin, JHEP 1404 (2014) 005 *COMPASS, Adolph et al., Eur. Phys. J. C 73 (2013) 2531 ZEUS Collaboration (M. Derrick), Z. Phys. C 70, 1 (1996)*

19 September 2017 **M. Boglione - International Person Bene** and Communications - INT-18 **Need resummation of large logs and matching Need resummation of large logs and matching perturbative to non-perturbative contributions perturbative to non-perturbative contributions**

Resummation in SIDIS

As mentioned above

fixed order pQCD calculation fail to describe the SIDIS cross sections at small q_{τ} the cross section tail at large $q_7^{}$ is clearly non-Gaussian.

The NLO collinear SIDIS cross section is not correctly normalized ! The NLO collinear SIDIS cross section is not correctly normalized !

Naive TMD approach

Simple <u>phenomenological</u> ansatz can reproduce low q_r data

Naive TMD approach

$$
F_{UU} = \sum_{q} e_q^2 f_{q/p}(x_B) D_{h/q}(z_h) \frac{e^{-P_T^2 / \langle P_T^2 \rangle}}{\pi \langle P_T^2 \rangle}
$$

Anselmino et al. JHEP 1404 (2014) 005

$$
\langle P_T^2 \rangle = \langle p_\perp^2 \rangle + z_h^2 \langle k_\perp^2 \rangle
$$

$$
\langle k_{\perp}^{2} \rangle = 0.60 \pm 0.14 \text{ GeV}^{2}
$$

$$
\langle p_{\perp}^{2} \rangle = 0.20 \pm 0.02 \text{ GeV}^{2}
$$

$$
\chi_{\text{dof}}^{2} = 3.42
$$

Fit over 6000 data points with 2 free parameters !

$$
N_y = A + B y
$$

"The point-to-point systematic uncertainty in the measured multiplicities as a function of p_T^2 is estimated to be 5% of the measured value. The systematic uncertainty in the overall normalization of the p_T^2 -integrated multiplicities depends on z and y and can be as large as 40% ".

Erratum Eur.Phys.J. C75 (2015) 2, 94

Comparison with Jlab 6 data HALL C

M. Anselmino, M. Boglione, O. Gonzalez, S. Melis, A. Prokudin, JHEP 1404 (2014) 005, ArXiv:1312.6261

R. Asaturyan et al., Phys. Rev. C85, 015202 (2012)

Comparison with EMC data

M. Anselmino, M. Boglione, O. Gonzalez, S. Melis, A. Prokudin, JHEP 1404 (2014) 005, ArXiv:1312.6261

J. Ashman et al. (European Muon Collaboration) Z. Phys. C52,361 (1991)

Q 2 dependence of HERMES data...

Resummation of large logarithms

To ensure momentum conservation, write the cross section in the Fourier conjugate space

$$
\delta^2(\boldsymbol{q}_T - \boldsymbol{k}_{1T} - \boldsymbol{k}_{2T} - \dots - \boldsymbol{k}_{nT} + \dots) = \int \frac{d^2 \boldsymbol{b}_T}{(2\pi)^2} e^{-i\boldsymbol{b}_T \cdot (\boldsymbol{q}_T - \boldsymbol{k}_{1T} - \boldsymbol{k}_{2T} - \dots - \boldsymbol{k}_{nT} + \dots)}
$$

$$
\frac{1}{\sigma_0} \frac{d\sigma}{dQ^2 dy dq_T^2} = \left[\int \frac{d^2 \mathbf{b}_T e^{i \mathbf{q}_T \cdot \mathbf{b}_T}}{(2\pi)^2} X_{div}(b_T) \right] + Y_{reg}(q_T)
$$

 $X_{div}(b_T)$ \longrightarrow $W(b_T) = \exp [S(b_T)] \times (\text{PDFs} \text{ and Hard coefficients})$

Fit of HERMES and COMPASS data Attempting "Resummation" in SIDIS ...

For this scheme to work, 4 distinct kinematic regions have to be identified

They should be large enough and well separated

TMD regions

What's wrong ???

SIDIS - Y factor

- The Y factor is very large (even at low q_7)
- However, it could be affected by large theoretical uncertainties

Boglione, Gonzalez, Melis, Prokudin, JHEP 02 (2015) 095

The Y factor cannot be neglected !!!

- New prescription for Y factor, b* and W
- Collins, Gamberg, Prokudin, Rogers, Sato, Wang, Phys. Rev. D 94 (2016) 034014

$$
\sigma^{ASY} = Q^2/q_\tau^2 [A \ Ln(Q^2/q_\tau^2) + B + C]
$$

Other issues related to TMD regions ...

TMD regions are defined in terms of $\mathsf{q}_\mathsf{\tau}$ and not in terms of $\mathsf{P}_\mathsf{\tau}$

This fit gives a very high quality description of a wide amount of data points

However, there are a few issues that are worth mentioning:

 \star The NLL SIDIS cross section is not correctly normalized \rightarrow N \sim 2

★ The Y factor has been neglected

More work required to include Drell-Yan data into the fit

See global fit by Bacchetta, Delcarro, Pisano, Radici Signori JHEP 1706 (2017) 081, which includes SIDIS and DY data.

Normalization and K factor

Aktas et al., H1 Collaboration, Eur. Phys. J. C36 (2004) 441 Daleo, De Florian, Sassot, Braz.J.Phys. 37 (2007) 585-590 Daleo, De Florian, Sassot, Phys.Rev. D71 (2005) 034013

"The rather large size of the K-factor can be understood as a consequence of the opening of a new dominant ('leading-order') channel, and not to the 'genuine' increase in the partonic cross section [...]. The dominance of the new channel is due to the size of the gluon distribution at small $\mathsf{x}_{_{\mathrm{B}}}^{}$ and to the fact that the H1 selection cuts highlight the kinematical region dominated by the y + q \rightarrow q + q + \bar{q} partonic process. In particular, without the experimental cuts for the final state hadrons, the gg component represents less than 25% of the total NLO contribution at small $\mathrm{x}_{_{\mathrm{B}}}$."

Daleo, De Florian, Sassot, Braz.J.Phys. 37 (2007) 585-590

Boglione, Collins, Gamberg, Gonzalez, Rogers, Sato Phys. Lett. B766 (2017) 245

Need a quantitative way to identify the region of Need a quantitative way to identify the region of validity of TMD factorization (**current region**) validity of TMD factorization (**current region**)

Kinematics of current region

Factorization implies power counting for the momenta

Collinearity must be small in the current region

These beautiful drawings are courtesy of Osvaldo Gonzalez

of these cuts crucially depends on the choice of the non-perturbative parameters of the model

Kinematics of soft region

(No factorization theorem for this region)

e +e - scattering processes

e +e - scattering processes

- **Recent data on Collins** azimuthal asymmetries from BELLE, BaBar and BES III
- No modern data available (yet) on unpolarized cross sections

Direct observation of the hadron momentum component transverse to the fragmenting

e +e - scattering processes

- Recent data on Collins azimuthal asymmetries from BELLE, BaBar and BES III
- No modern data available (yet) on unpolarized cross sections

Direct observation of the hadron momentum component transverse to the fragmenting

TASSO, MARKII data available for unpolarized $e^+e^- \rightarrow h X$

Unpolarized cross section

$$
\frac{d\sigma^{h}}{dz d^{2}p_{\perp}} = L_{\mu\nu}W^{\mu\nu} = \frac{4\pi\alpha^{2}}{3s} z F_{1}^{h}(z, p_{\perp}; Q^{2})
$$
\n
$$
W^{\mu\nu}_{TMD} \propto \sum_{f} |\mathcal{H}_{f}(Q; \mu)|^{\mu\nu} D_{h/f}(z, p_{\perp}; \mu, \zeta_{D})
$$
\n
$$
D_{h/f}(z, zk_{\perp}; \mu, \zeta_{D}) = \frac{1}{(2\pi)^{2}} \int d^{2}b_{\perp}e^{-ik_{\perp} \cdot b_{\perp}} \tilde{D}_{h/f}(z, b_{\perp}; \mu, \zeta_{D}),
$$
\n
$$
D_{h/f}(z, b_{\perp}; \mu, \zeta_{D}) = \sum_{f} \left[\tilde{C}_{j/f} \otimes d_{h/f}(z; \mu_{b}) / z^{2} \right]
$$
\n
$$
\times \exp\left\{ \int_{\mu_{b}}^{\mu} \frac{d\tilde{\mu}}{\tilde{\mu}} \left[\gamma_{D}(\alpha_{s}(\tilde{\mu}); 1) - \gamma_{K}(\alpha_{s}(\tilde{\mu})) \log \left(\frac{\sqrt{\zeta_{D}}}{\tilde{\mu}} \right) \right] \right\}
$$
\n**Calculable within perturbative QCD**\n
$$
\times \exp\left\{ \frac{R(b_{\perp} \mu_{b}) \log \left(\frac{\sqrt{\zeta_{D}}}{\mu_{b}} \right) \right\}
$$
\n
$$
\times \exp\left\{ \frac{R(b_{\perp} \mu_{b}) \log \left(\sqrt{\frac{\zeta_{D}}{\zeta_{D}} \right)}{\mu_{b}} \right\}
$$
\n**Non-perturbative QCD**

Modeling the cross section

Boglione, Gonzalez-Hernandez, Taghavi, Phys. Lett. B772 (2017) 78-86

Assuming factorization ...

Modeling the cross section

Boglione, Gonzalez-Hernandez, Taghavi, Phys. Lett. B772 (2017) 78-86

hys. Lett. D. . L.
Identify the region where *Identify the region where Engineering* **TMD effects are dominant**

For fully differential cross sections, matching region is Expected to be at

 $p_{\perp} \sim zQ$

Use experimental <z> to make an estimate

$$
p_{\perp} \sim 2 \,\text{GeV}
$$

We start by concentrating on a restricted range:

Fit of TASSO data, using **gaussian** p_⊥dependence

Fit of TASSO data, using **power law** p_⊥ dependence

$$
h(p_{\perp}) = 2(\alpha - 1)M^{2(\alpha - 1)} \frac{1}{(p_{\perp}^{2} + M^{2})^{\alpha}}
$$

$$
\alpha = \alpha_{0} + \tilde{\alpha} \log \left(\frac{Q}{Q_{0}}\right)
$$

Boglione, Gonzalez-Hernandez, Taghavi, Phys. Lett. B772 (2017) 78-86

Fit of TASSO data, using **gaussian** p_⊥dependence

Fit of TASSO data, using **power law** p_⊥ dependence

$$
h(p_{\perp}) = 2(\alpha - 1)M^{2(\alpha - 1)} \frac{1}{(p_{\perp}^{2} + M^{2})^{\alpha}}
$$

$$
\alpha = \alpha_{0} + \tilde{\alpha} \log \left(\frac{Q}{Q_{0}}\right)
$$

Boglione, Gonzalez-Hernandez, Taghavi, Phys. Lett. B772 (2017) 78-86

Fit of TASSO data, using **gaussian** p_⊥dependence

Fit of TASSO data, using **power law** p_⊥ dependence

Interpreting our results ...

TMD

$$
\mathcal{F}^{-1}\left\{\frac{d\sigma^h}{dz d^2 p_\perp}\right\} \propto \exp\left\{\left(\lambda_\Gamma(b_*) + g_K(b_\perp)\right) \log\left(\frac{\mathcal{Q}}{\mathcal{Q}_0}\right)\right\}_{b_\perp \to z b_\perp}
$$

$$
\lambda_{\Gamma}(b_*) \equiv \frac{32}{27} \log \left(\log \frac{2e^{-\gamma_E}}{\Lambda_{QCD} b_*} \right)
$$

MODEL
$$
h(p_{\perp}) = 2(\alpha - 1)M^{2(\alpha - 1)} \frac{1}{(p_{\perp}^{2} + M)^{\alpha}}
$$

$$
\mathcal{F}^{-1}\left\{\frac{1}{\left(p_{\perp}^{2}+M^{2}\right)^{\alpha}}\right\} \xrightarrow{\text{large } b_{\perp}} \frac{1}{2^{\alpha}\pi\Gamma(\alpha)} \left(\frac{b_{\perp}}{M}\right) \sqrt{\frac{\pi}{2}} \frac{e^{-b_{\perp}M}}{\sqrt{b_{\perp}M}} \left[1+O\left(\frac{1}{b_{\perp}M}\right)\right]
$$

Interpreting our results ...

$$
h(p_{\perp}) = 2(\alpha - 1)M^{2(\alpha - 1)} \frac{1}{(p_{\perp}^{2} + M^{2})^{\alpha}}
$$

MODEL TMD scheme

(under the assumption that integration over z does not alter the structural form of the non perturbative exponential)

$$
\mathcal{F}^{-1}\left\{\frac{d\sigma^h}{d^2\mathbf{p}_\perp}\right\} \propto \exp\left\{\tilde{g}(b_\perp)\log\left(\frac{Q}{Q_0}\right)\right\}
$$

$$
b_\perp^{\alpha_0} \exp\left\{\tilde{g}(b_\perp)\log\left(\frac{Q}{Q_0}\right)\right\} \propto b_\perp^{\alpha}
$$

Logarithmic behavior of alpha may be interpreted as a consequence of the Log in the definition of the TMD FF.

$$
\alpha = \alpha_0 + \tilde{\alpha} \log \left(\frac{Q}{Q_0} \right)
$$

$$
g_K(b_\perp) \stackrel{\text{large } b_\perp}{\longrightarrow} \tilde{\alpha} \log(\nu b_\perp)
$$

Interpreting our results ...

$$
h(p_{\perp}) = 2(\alpha - 1)M^{2(\alpha - 1)} \frac{1}{(p_{\perp}^{2} + M^{2})^{\alpha}}
$$

MODEL TMD scheme

(under the assumption that integration over z does not alter the structural form of the non perturbative exponential)

- **There are caveats on this interpretation**: it is consistent with theoretical expectations but it is not unique.
- **Lack of information on z-dependence of the TMD** FF in the TASSO and MARK II measurements (and possible correlations between Q and z of different origin) hinders a more solid conclusion about TMD evolution effects in these data sets.

Logarithmic behavior of alpha may be interpreted as a consequence of the Log in the definition of the TMD FF.

$$
\alpha = \alpha_0 + \tilde{\alpha} \log \left(\frac{Q}{Q_0} \right)
$$

$$
g_K(b_\perp) \stackrel{\text{large } b_\perp}{\longrightarrow} \tilde{\alpha} \log(\nu b_\perp)
$$

- Phenomenological studies of TMD factorization and evolution have come a long way. Many aspects of the interplay between perturbative and non-perturbative contributions are now better understood.
- Some issues remain open and need further investigation, especially as far as phenomenology is concerned:
	- Difficult to work in b_τ space where we loose phenomenological intuition
	- F.T. involves integration of an oscillating function over $\mathsf{b}_{_{\mathsf{T}}}$ up to infinity: upon integration one loses track of what was small b_T and what was large $\mathsf{b}_\mathsf{T}^{\vphantom{\dag}}$
- $\mathsf{P}_{_{\sf T}}$ distributions of SIDIS cross sections over the full $\mathsf{P}_{_{\sf T}}$ range will have to be further investigated.
- Simultaneous fits of SIDIS, Drell-Yan and e⁺e⁻ annihilation data are highly recommended, but they should be performed within a consistent and solid framework where they can be implemented.
- \blacksquare Data selection is crucial in global fitting:
	- ➔ not too many (only data within the ranges where the TMD evolution schemes work should be considered)
	- ➔ not too few (too strict a selection can bias the fit results and neglect important information from experimental data) \rightarrow see our new criteria to select current fragmentation region events !