Unpolarized TMD extractions

Alessandro Bacchetta

Funded by

European Research Council

Questions

- Can we really trust the formalism? In which regions?
- How "wide" is the distribution? What's the shape?
- Is there an x dependence of the width?
- Are valence quarks, sea quarks, gluons different?

Status of TMD phenomenology

Data, theory, fits: we start being in a position to validate the formalism

Quark unpol. TMD: measurements

Z production@ LHC Z production@ Tevatron

10⁻¹

 10^{0}

10⁻²

SIDIS@

 10^{-3}

 10^{-4}

TMD evolution

Width of TMDs changes of one order of magnitude: can we explain this in detail? (TMD evolution)

Quark unpol. TMD: extractions

	Framework	HERMES	COMPASS	DY	Z production	N of points
KN 2006 <u>hep-ph/0506225</u>	NLL/NLO	×	×	>	~	98
Pavia 2013 <u>arXiv:1309.3507</u>	No evo	~	×	×	×	1538
Torino 2014 <u>arXiv:1312.6261</u>	No evo	(separately)	(separately)	×	×	576 (H) 6284 (C)
DEMS 2014 <u>arXiv:1407.3311</u>	NNLL/NLO	×	*	>	 	223
EIKV 2014 <u>arXiv:1401.5078</u>	NLL/LO	1 (x,Q²) bin	1 (x,Q²) bin	>	>	500 (?)
Pavia 2016 <u>arXiv: 1703. 10157</u>	NLL/LO	~	~	 	~	8059
SV 2017 <u>arXiv:1706.01473</u>	NNLL/ NNLO	×	×	~	~	309

First global fit of TMDs

SIDIS $\langle Q^2 \rangle$ =3. GeV² $\langle Q^2 \rangle = 4.8 \text{ GeV}^2$ (2)=4.3 GeV² (x)=0.022 ⟨x⟩=0.033 , ⟨x⟩=0.055 Norm. multiplicity 10 (Q2)=3. GeV2 (Q2)=4.8 GeV2 (Q2)=3. GeV2 (x)=0.022 (x)=0.033 (x)=0.055 8 Norm. multiplicity 10 (Q2)=2. GeV2 (Q2)=2. GeV2 (Q2)=2. GeV2 (x)=0.022 (x)=0.033 (x)=0.055 8 Norm. multiplicity 0.3 0.6 0.9 0.3 0.6 0.9 0.3 0.6 0.9 P_{hT}[GeV] P_{hT}[GeV] P_{hT}[GeV]

Pavia 2016 results in a nutshell

Total number of data points: 8059

Total number of free parameters: 11 (4 for TMD PDFs, 6 for TMD FFs, 1 for TMD evolution)

Total χ^2 /dof = 1.55±0.05

Comparison with SV 2017 results

Total number of data points: 309

Total number of free parameters: 2 or 3 (2 for TMD PDFs, 1 for TMD evolution)

Total χ^2 /dof = 1.79 - 1.84

Mean transverse momentum squared

CAVEAT: intrinsic transverse momentum depends on TMD evolution "scheme" and its parameters. Not the best quantity to consider.

Something about the technical details

Factorization

- Factorization has to do with perturbative QCD more than with the nonperturbative side.
- In TMDs, there are several intriguing technical details related to regularisation of divergences of all kinds (infrared, ultraviolet, rapidity), much more sophisticated than collinear factorization.
- We are one of the "communities" that is most deeply involved into the study of perturbative QCD. Any "expert" in QCD acknowledges the relevance of these studies.

DY structure functions and TMDs

SIDIS structure functions and TMDs

TMD evolution: Fourier transform

$$f_1^a(x,k_{\perp};\mu^2) = \frac{1}{2\pi} \int d^2 b_{\perp} e^{-ib_{\perp} \cdot k_{\perp}} \widetilde{f}_1^a(x,b_{\perp};\mu^2)$$

for simplicity, here I am using one scale, but in reality there are two independent ones

see, e.g., Rogers, Aybat, PRD 83 (11) Collins, "Foundations of Perturbative QCD" (11) Collins, Soper, Sterman, NPB250 (85)

Perturbative ingredients

$$\widetilde{f}_{1}^{a}(x,b_{T};\mu^{2}) = \sum_{i} (\widetilde{C}_{a/i} \otimes f_{1}^{i})(x,b_{*};\mu_{b})e^{\widetilde{S}(b_{*};\mu_{b},\mu)}e^{g_{K}(b_{T})\ln\frac{\mu}{\mu_{0}}}\widehat{f}_{\mathrm{NP}}^{a}(x,b_{T})$$

$$A_{1}(\mathcal{O}(\alpha_{S}^{1})) \qquad A_{2}(\mathcal{O}(\alpha_{S}^{2})) \qquad A_{3}(\mathcal{O}(\alpha_{S}^{3})) \qquad \dots$$

$$B_{1}(\mathcal{O}(\alpha_{S}^{1})) \qquad B_{2}(\mathcal{O}(\alpha_{S}^{2})) \qquad \dots$$

Pavia 2016 perturbative ingredients

$$\begin{split} \widetilde{f}_{1}^{a}(x,b_{T};\mu^{2}) &= \sum_{i} (\widetilde{C}_{a/i} \otimes f_{1}^{i})(x,b_{*};\mu_{b}) e^{\widetilde{S}(b_{*};\mu_{b},\mu)} e^{g_{K}(b_{T}) \ln \frac{\mu}{\mu_{0}}} \widehat{f}_{\mathrm{NP}}^{a}(x,b_{T}) \\ & \mathsf{NLL} \\ & \mathsf{NLL} \\ & \mathsf{A}_{1}(\mathcal{O}(\alpha_{S}^{1})) & A_{2}(\mathcal{O}(\alpha_{S}^{2})) & A_{3}(\mathcal{O}(\alpha_{S}^{3})) & \dots \\ & \mathsf{A}_{3}(\mathcal{O}(\alpha_{S}^{3})) & \dots \\ & \mathsf{A}_{$$

17

SV 2017 perturbative ingredients

$\widetilde{f}_1^a(x, b_T; \mu^2) = \sum_i \left(\widetilde{C}_i \right)$	$e^{2}(x^{2}) = \sum_{i} \left(\tilde{C}_{a/i} \otimes f_{1}^{i} \right)(x, b_{*}; \mu_{b}) e^{\tilde{S}(b_{*}; \mu_{b}, \mu)} e^{g_{K}(b_{T}) \ln \frac{\mu}{\mu_{0}}} \hat{f}_{\mathrm{NP}}^{a}(x, b_{T})$						
Ů		NLL	NNLL				
$\land \land \land$	$A_1(\mathcal{O}(\alpha_S^1))$	$A_2(\mathcal{O}(\alpha_S^2))$	$A_3(\mathcal{O}(\alpha_S^3))$				
	~	$B_1(\mathcal{O}(\alpha_S^1))$	$B_2(\mathcal{O}(\alpha_S^2))$				
\rightarrow	$C_0(\mathcal{O}(\alpha_S^0))$	$C_1(\mathcal{O}(\alpha_S^1))$	$C_2(\mathcal{O}(\alpha_S^2))$				
	$H_0\big(\mathcal{O}(lpha_S^0)\big)$	$H_1(\mathcal{O}(\alpha_S^1))$	$H_2(\mathcal{O}(\alpha_S^2))$	 NNI 0			
	LO	$Y_1(\mathcal{O}(\alpha_S^1))$	$Y_2(\mathcal{O}(\alpha_S^2))$				

18

μ and b_* prescriptions

Complex-b prescription

 ζ prescription

Laenen, Sterman, Vogelsang, PRL 84 (OO)

SV 2017, see talk by A. Vladimirov

Nonperturbative ingredients 1

Nonperturbative ingredients 2

Low-b_T modifications

$$\log \left(Q^2 b_T^2\right) \to \log \left(Q^2 b_T^2 + 1\right)$$
 see, e.g., Bozzi, Catani, De Florian, Grazzini hep-ph/0302104

$$b_*(b_c(b_{\rm T})) = \sqrt{\frac{b_{\rm T}^2 + b_0^2/(C_5^2Q^2)}{1 + b_{\rm T}^2/b_{\rm max}^2 + b_0^2/(C_5^2Q^2b_{\rm max}^2)}} \qquad b_{\rm min} \equiv b_*(b_c(0)) = \frac{b_0}{C_5Q}\sqrt{\frac{1}{1 + b_0^2/(C_5^2Q^2b_{\rm max}^2)}}$$

Collins et al.
arXiv: 1605.00671

- The justification is to recover the integrated result ("unitarity constraint")
- Modification at low b_{T} is allowed because resummed calculation is anyway unreliable there

Pavia 2016 "choices"

$$\widetilde{f}_{1}^{a}(x,b_{T};\mu^{2}) = \sum_{i} \left(\widetilde{C}_{a/i} \otimes f_{1}^{i} \right) (x,\overline{b}_{*};\mu_{b}) e^{\widetilde{S}(\overline{b}_{*};\mu_{b},\mu)} e^{g_{K}(b_{T}) \ln \frac{\mu}{\mu_{0}}} \widehat{f}_{\mathrm{NP}}^{a}(x,b_{T})$$

$$g_K = -g_2 \frac{b_T^2}{2} \qquad \qquad \mu_0 = 1 \,\text{GeV}$$

$$\mu_b = 2e^{-\gamma_E}/b_* \qquad \bar{b}_* \equiv b_{\max} \left(\frac{1 - e^{-b_T^4/b_{\max}^4}}{1 - e^{-b_T^4/b_{\min}^4}}\right)^{1/4} \qquad b_{\max} = 2e^{-\gamma_E}$$
$$b_{\min} = \frac{2e^{-\gamma_E}}{Q}$$

These are all choices that should be at some point checked/challenged

Effects of \overline{b}_{\ast} prescription

$$\mu_b = 2e^{-\gamma_E}/b_* \qquad \bar{b}_* \equiv b_{\max} \left(\frac{1 - e^{-b_T^4/b_{\max}^4}}{1 - e^{-b_T^4/b_{\min}^4}}\right)^{1/4} \qquad b_{\max} = 2e^{-\gamma_E}$$

No significant effect at high Q, but large effect at low Q (inhibits perturbative contribution)

Functional form of TMDs at 1 GeV

 $\langle \mathbf{k}_{\perp,a}^2 \rangle(x) = \langle \hat{\mathbf{k}}_{\perp,a}^2 \rangle \, \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}} \,,$

where $\langle \hat{k}_{\perp,a}^2 \rangle \equiv \langle k_{\perp,a}^2 \rangle (\hat{x})$, and $\hat{x} = 0.1$.

Fragmentation function is similar Including TMD PDFs and FFs, in total: 11 free parameters (4 for TMD PDFs, 6 for TMD FFs, 1 for TMD evolution)

Data selection

 $Q^2 > 1.4 \text{ GeV}^2$ 0.2 < z < 0.7 $P_{hT}, q_T < \text{Min}[0.2 \ Q, 0.7 \ Qz] + 0.5 \text{ GeV}$ Total number of data points: 8059 Total $\chi^2/\text{dof} = 1.55$

We checked also

 $P_{hT} < Min[0.2Q, 0.5Qz] + 0.3 \,GeV$

Total number of data points: 3380 Total χ^2 /dof = 0.96 $P_{hT} < 0.2 \, Qz$

Total number of data points: 477 Total χ^2 /dof = 1.02

Data selection SV 2017

Something about the results

COMPASS selected bins

HERMES, selected bins

$$\chi^2$$
 / dof = 4.83

The worst of all channels...

However normalizing the theory curves to the first bin, without changing the parameters of the fit, χ^2 /dof becomes good

 χ^2/dof

4.8

32

Drell-Yan data

Z-boson data

Most of the χ^2 due to normalization, not to shape

SV2017 and perturbative accuracy

Mean transverse momentum squared

CAVEAT: intrinsic transverse momentum depends on TMD evolution "scheme" and its parameters

Mean transverse momentum squared

same color coding as previous slide

at Q =1 GeV

In TMD distribution functions

In TMD fragmentation functions

38

Do we know the shape?

x-dependence of a single replica. Most of them are similar.

Shape of four selected replicas. Still huge uncertainties.

Nonperturbative evolution parameters

TMD evolution is not uniquely determined by pQCD calculations. Nonperturbative input is needed to determine evolution precisely. Different schemes may behave differently.

	g ₂ (GeV ²)	b _{max} (GeV ⁻¹)
BLNY 2003	0.68 ± 0.02	0.5
KN 2006	0.184 ± 0.018	1.5
EIKV 2014	0.18	1.5
Pavia 2016	0.12 ± 0.01	1.123
SV 2017	0.006 ± 0.006	1

Faster evolution: transverse momentum increases faster due to gluon radiation

Slower evolution: the effect of gluon radiation is weaker

Unpolarized TMDs open issues

- Different choices in implementation of TMD evolution: is there a better one?
- Limits of applicability of TMD factorization
- General problems with normalizations theory/experiment
- Flavor dependence and more flexible functional forms
- Matching with high-transverse momentum calculation with collinear PDFs
- More data needed to test formalism, particularly in the EIC region
- Improvements in the knowledge of fragmentation functions essential