Optical follow-up observation with Subaru/Hyper Suprime-Cam

Nozomu Tominaga

(Konan University)

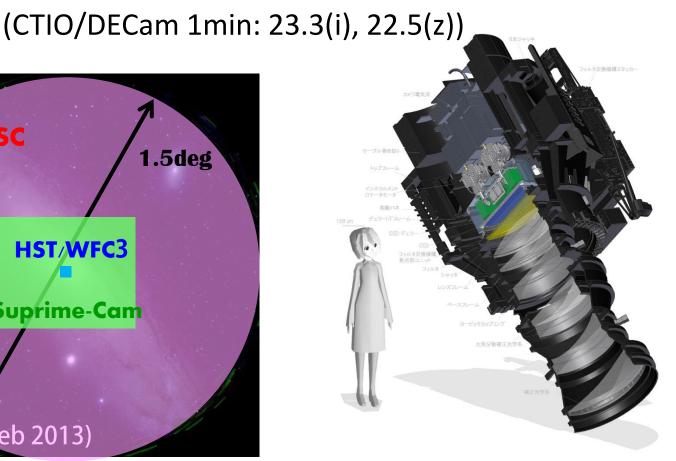
On behalf of J-GEM collaboration

3rd Aug 2017

Outline

- Subaru/Hyper Suprime-Cam
- Japanese collaboration for Gravitational wave ElectroMagnetic follow-up (J-GEM)
- J-GEM follow-up observations of GW alerts
 - GW150914
 - GW151226 (incl. HSC observations)
- Contaminations in 24mag observations

Morokuma, ..., NT et al. 2016 PASJ 68 L9 Yoshida, Utsumi, NT et al. 2017 PASJ 69 9 Utsumi, NT et al. in prep.


Subaru/Hyper Suprime Cam

Hyper Suprime-Cam (HSC)

• Diameter: 8.2m, FoV: 1.77deg², ~900M pixels

• m_{lim} (5σ) w/ 1min: 24.5(i), 23.8(z)

HSC 1.5deg Suprime-Cam HSC blog (Feb 2013)

Etendue of telescopes/cameras

Survey	Diameter [m]	FoV [deg²]	Etendue (A Ω , roughly) [m 2 deg 2]
ROTSE-III	0.45	3.42	0.54
CRTS	0.7	8	3.1
KWFC/KISS	1.05	4	3.5
PTF	1.26	7.8	9.7
Sk Current	tly, Subar	u/HSC i	s the instrument
			rvey power.
SDSS	2.5	1.5	7.4
CFHT/SNLS	3.6	1	10.2
HST/GOODS	2.5	0.003	0.015
DECam	4	3.0	38
Subaru/HSC	8.2	1.75	92
LSST	8.4	9.62	319

Japanese collaboration for Gravitational wave ElectroMagnetic follow-up (J-GEM)

J-GEM (Japanese collaboration for Gravitational-wave Electro-Magnetic follow-up)

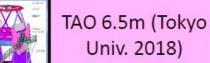
A part of the project "Multi-messenger Observations of GW sources" * collaborating with the KAGRA data analysis team

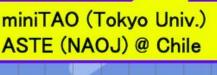
Main features:

5 deg² opt. imaging w/1m 1 deg² NIR imaging w/ 1m opt-NIR spectroscopy w/ 1-8m opt-NIR polarimetry

- 1.5m Kanata telescope
- 2m Navuta telescope
- 50cm MITSuME
- 91cm OAO-WFC of NAOJ
- Yamaguchi 32m radio telescope

50cm telescope (Hiroshima Univ. 2016)


3.8m telescope (Kyoto Univ. 2017)



HSC, Subaru @Hawaii

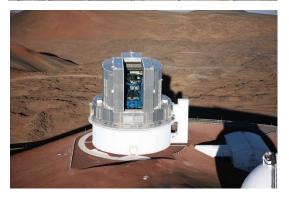
MOA-II, B&C (Nagoya Univ.) @ New Zeeland

@ South Africa

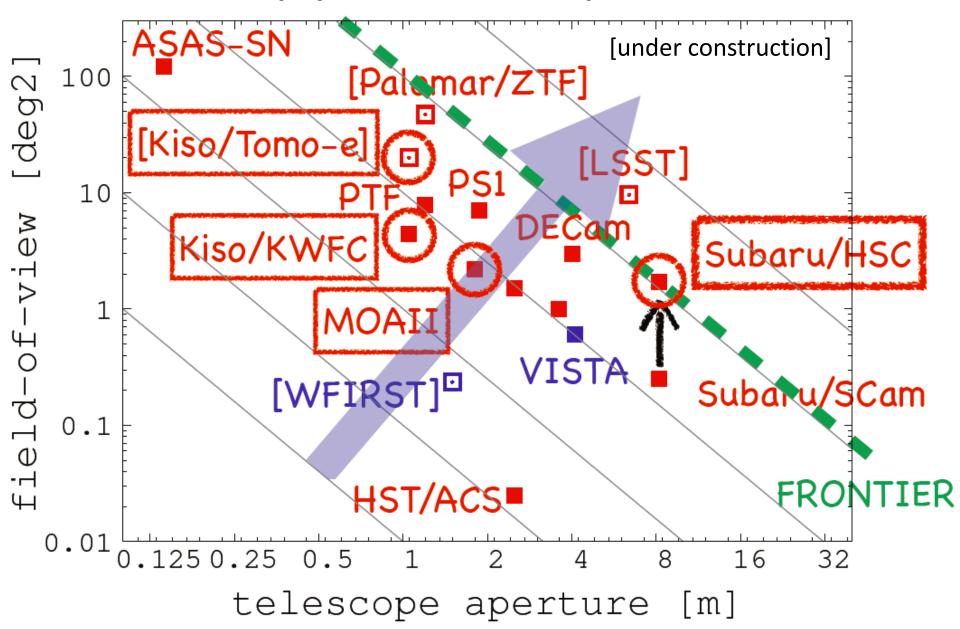
Telescopes/Cameras in J-GEM

Site (telescope)*	Diam. [m]*	Place (long., lat., hgt.)	Instrument [‡]	FoV	Pixel scale	Note
Mt. Johns (B&C 61 cm)	0.61	170°.47 E, 43°.40 S, 1029 m	Tripole5	4.2 × 6.2	017	(1)
Mt. Johns (MOA-II)	1.8	170°.47 E, 43°.40 S, 1029 m	MOA-cam3 [1]	1°31 × 1°64	058	(3)
Akeno (MITSuME) ★	0.5	138°.48 E, 35°.79 N, 900 m	$(g, R_C, I_C \text{ imager})$	$27\rlap.{'}8\times27\rlap.{'}8$	163	(1)
Kiso (Kiso Schimidt)	1.05	137:63 E, 35:79 N, 1130 m	KWFC [2]	2°.2 × 2°.2	0."946	(3)
Nishi-Harima (Nayuta) 🛨	2.0	134°34 E, 35°03 N, 449 m	MINT	10.'9 × 10.'9	0."32	(1)
Okayama, OAO (Kyoto 3.8 m ^[a])	3.8	133°60 E, 34°58 N, 343 m	KOOLS-IFU	$14'' \phi$	1."14	(2)
Okayama, OAO (OAO 188 cm)	1.88	133°59 E, 34°58 N, 371 m	KOOLS-IFU	30″ φ	2"34	(2)
Okayama, OAO (OAO 91 cm)	0.9	133°59 E, 34°58 N, 364 m	OAO-WFC [3]	28.4×28.4	167	(1)
Okayama, OAO (MITSuME)	0.5	133°59 E, 34°58 N, 358 m	(g, R _C , I _C imager) [4],[5]	26.9×26.9	1."52	(1)
Higashi-Hiroshima (Kanata)	1.5	132°.78 E, 34°.38 N, 511 m	HOWPol [6]	$15' \phi$	0."30	(1)
Higashi-Hiroshima (Kanata)	1.5	132°.78 E, 34°.38 N, 511 m	HONIR [7],[8]	$10' \times 10'$	0."30	(1)
Yamaguchi (Yamaguchi ^[b])	32×2	131°56 E, 34°22 N, 166 m	6-8 GHz Receiver	_	4'-5'	(1)
Tibet (HinOTORI ^[a]) ★	0.5	80°.03 E, 32°.31 N, 5130 m	$(u, R_C, I_C \text{ imager})$	$24' \times 24'$	068	(1)
Sutherland, SAAO (IRSF)	1.4	20°81 E, 32°38 S, 1761 m	SIRIUS [9],[10]	7.7×7.7	0."45	(1)
Pampa la Bola (ASTE ^[c])	10	67°.70 W, 22°.97 S, 4862 m	ASTECAM [11]	$8.'1 \phi$	20"-30"	(1)
Chajnantor, TAO (miniTAO)	1.04	67:74 W, 22:99 S, 5640 m	ANIR [12]	5.1×5.1	0."298	(1)
Mauna Kea, MKO (Subaru) 🛨	8.2	155°.48 W, 19°.83 N, 4139 m	HSC [13]	1°.5 φ	0168	(3)

(1) Optical, (2) Optical wide-field(>1deg²), (3) NIR, and (4) Radio


3 wide-field cameras

- Kiso/KWFC (North)
 - 1.05m/4.3deg²
- → Tomo-e (CMOS, 20deg², in 2018)
 - MOA-II/MOA-Cam (South)
 - 1.8m/2.2deg²


- Subaru/HSC (North)
 - 8.2m/1.77deg²

Survey power in optical/NIR

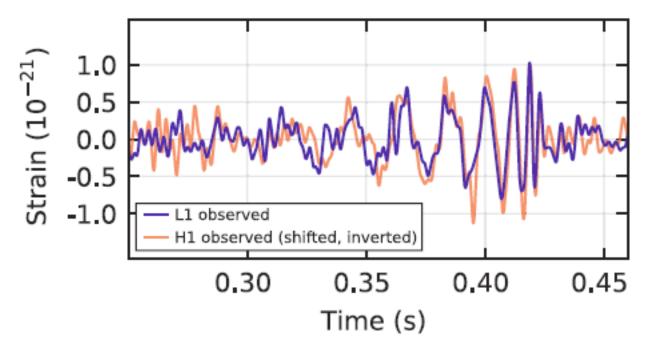
J-GEM follow-up observations of GW alerts

First detection: GW150914

PRL 116, 061102 (2016)

Selected for a Viewpoint in *Physics*PHYSICAL REVIEW LETTERS

week ending 12 FEBRUARY 2016



Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott *et al.**

(LIGO Scientific Collaboration and Virgo Collaboration)

(Received 21 January 2016; published 11 February 2016)

 $36^{+5}_{-4} \rm M_{\odot}$ and $29^{+4}_{-4} \rm M_{\odot}$ BHs merged at $410^{+160}_{-180} \rm Mpc$

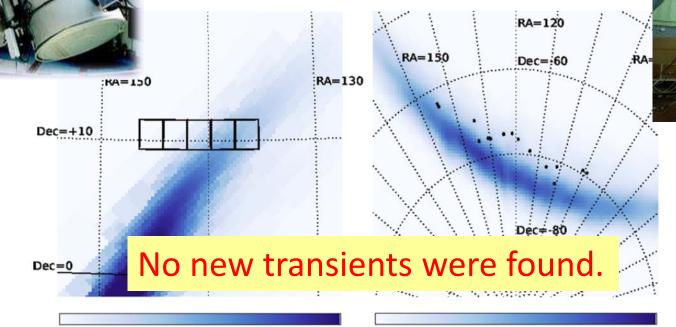
"J-GEM follow-up observations to search for an optical counterpart of the first gravitational wave source GW150914"

PASJ, 68, L9 (2016)

Morokuma, T., Tanaka, M., Asakura, Y., ..., NT et al.

J-GEM follow-ups of GW150914

Kiso/KWFC (North)

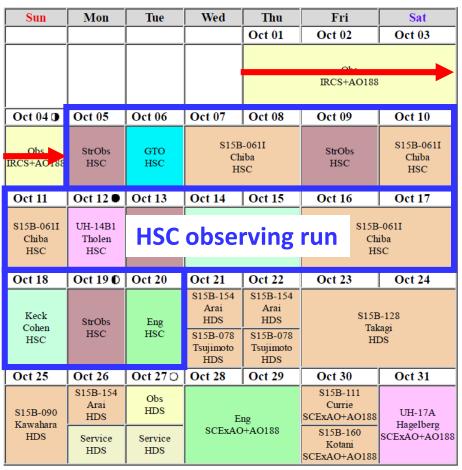

Morokuma, ..., NT + 16

t_{obs}=4.4 days Wide-field (24deg², i~19)

survey

• B&C/Tripole5 (South)

t_{obs}=6.3-12 days observation of targeted nearby 18 gals.



Subaru/HSC was not available

Schedule for September 2015

	Sc	hed	lul	le i	for	O	ct	to	ber	2	01		5
--	----	-----	-----	------	-----	---	----	----	-----	---	----	--	---

Sun	Mon	Tue	Wed	Thu	Fri	Sat
		Sep 01	Sep 02	Sep 03	Sep 04	Sep 05 ()
		SCEx#	Obs AO+AO188	Obs FOCAS	Service FOCAS	UH-18B1 Stockton FOCAS
Sep 06	Sep 07	Sep 08	Sep 09	Sep 10	Sep 11	Sep 12 ●
UH-18B1 Stockton FOCAS	Service FOCAS	S15B-055 Maeda FOCAS	Uchi	3-017 yama Cam	Gemini Dawson S-Cam	S15B-050 Utsumi S-Cam
Sep 13	Sep 14	Sep 15	Sep 16	Sep 17	Sep 18	Sep 19
W1E00		Alert UH-09A		Obs	S15A-002 Imanishi IRCS+AO188	S15A-105 Helminiak IRCS+AC18
W1509 レヘベ	1	S-Cam		IRCS+AO188	S15B-136 Saitoh IRCS+AO188	Service IRCS+AO18
Se 20 0	Sep 21	Sep 22	Sep 23	Sep 24	Sep 25	Sep 26
Obs IRCS+AO188	S15B-139	Service	Eng Kyoto3D∏+AO188	S15B-045	0	bs
Eng IRCS+AO188	COMICS	FOCAS	Obs Kyoto3D∏+AO188	Kyoto3DII+AO188	Kyoto3D	П+АО188
Sep 27 O	Sep 28	Sep 29	Sep 30			
Oha	Eng	Camilaa	Obs			
	COMICS	IRCS+AO188	IRCS+AO188			

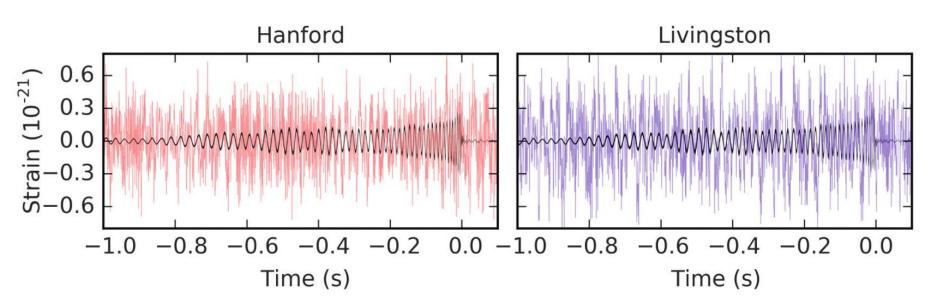
HSC is only available at >+21days after GW150914. The visibility of GW150914 from Mauna Kea was poor.

Second detection: GW151226

PRL 116, 241103 (2016)

PHYSICAL REVIEW LETTERS

week ending 17 JUNE 2016

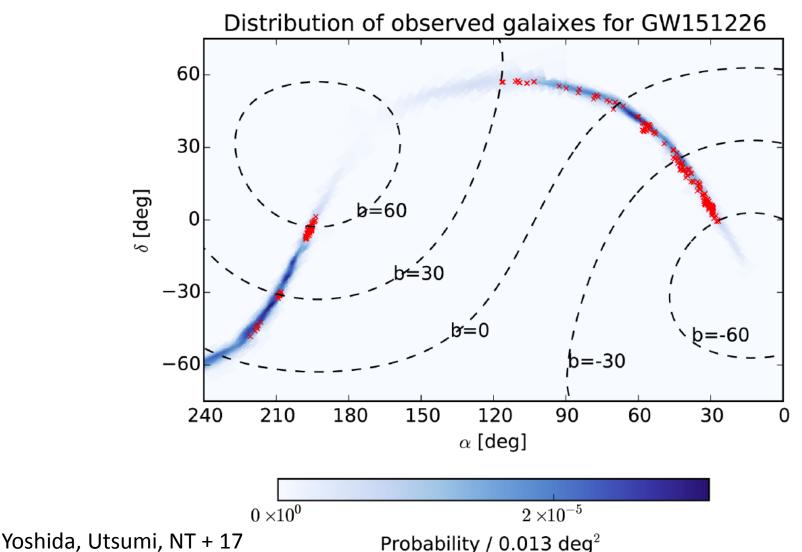


GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence

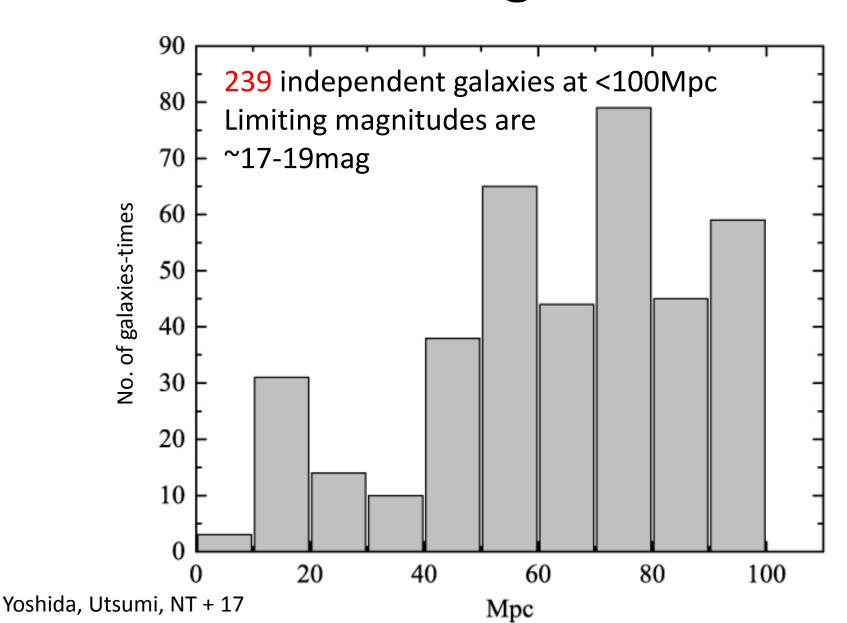
B. P. Abbott *et al.**

(LIGO Scientific Collaboration and Virgo Collaboration)

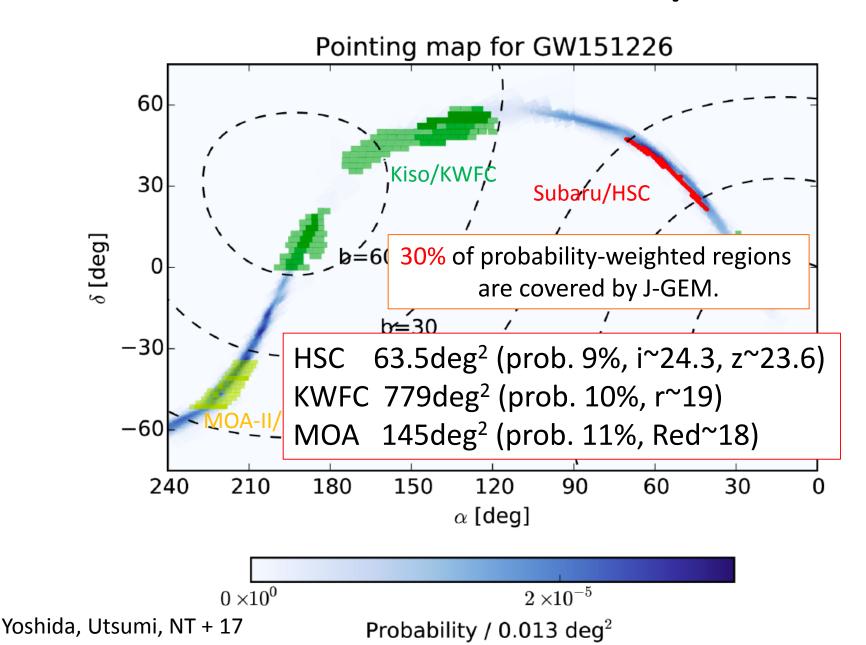
(Received 31 May 2016; published 15 June 2016)

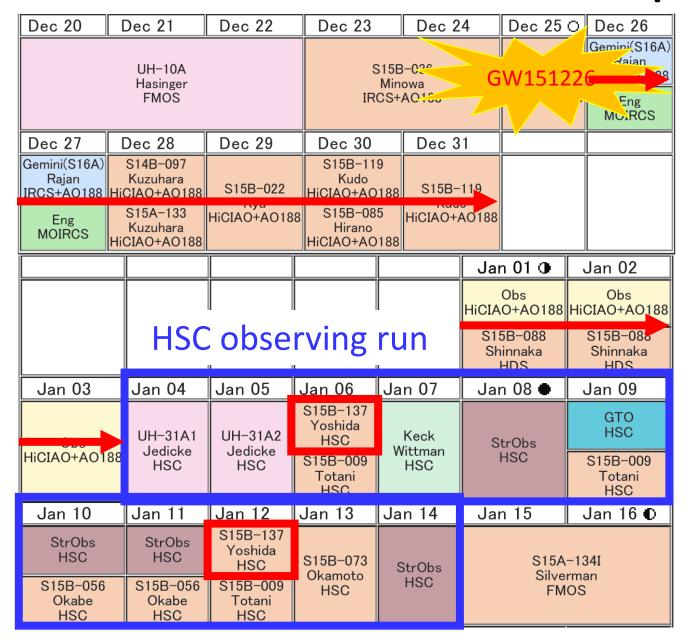

 $14.2^{+8.3}_{-3.7} M_{\odot}$ and $7.5^{+2.3}_{-2.3} M_{\odot}$ BHs merged at $440^{+180}_{-190} Mpc$

"J-GEM follow-up observations of the gravitational wave source GW151226" PASJ, 69, 9 (2017)

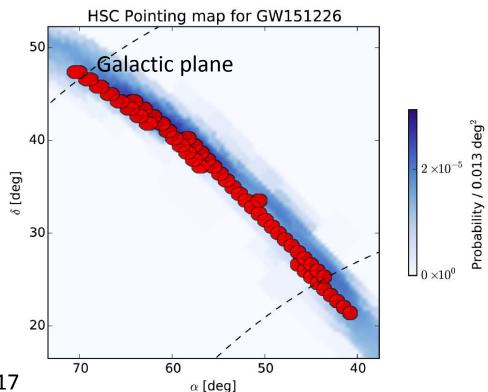

Yoshida, M., Utsumi, Y., NT, et al.

J-GEM nearby galaxies observation


Nayuta/MINT, Kanata/HONIR, OAO91cm/OAO-WFC, TIT-OAO50cm/MITSuME, IRSF/SIRIUS

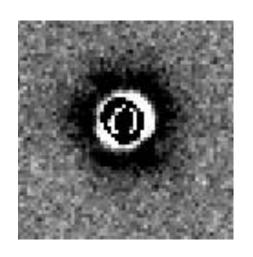

Observed galaxies

Wide-field survey

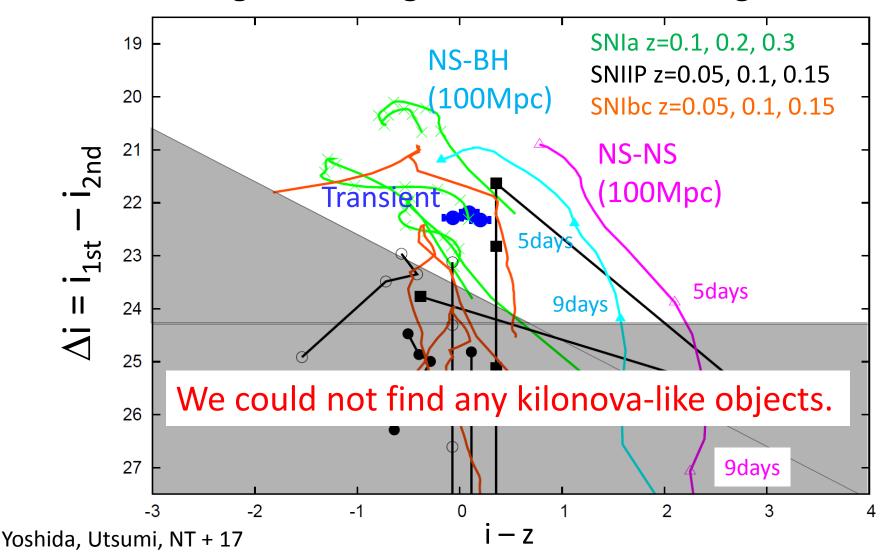


Schedule of Subaru telescope

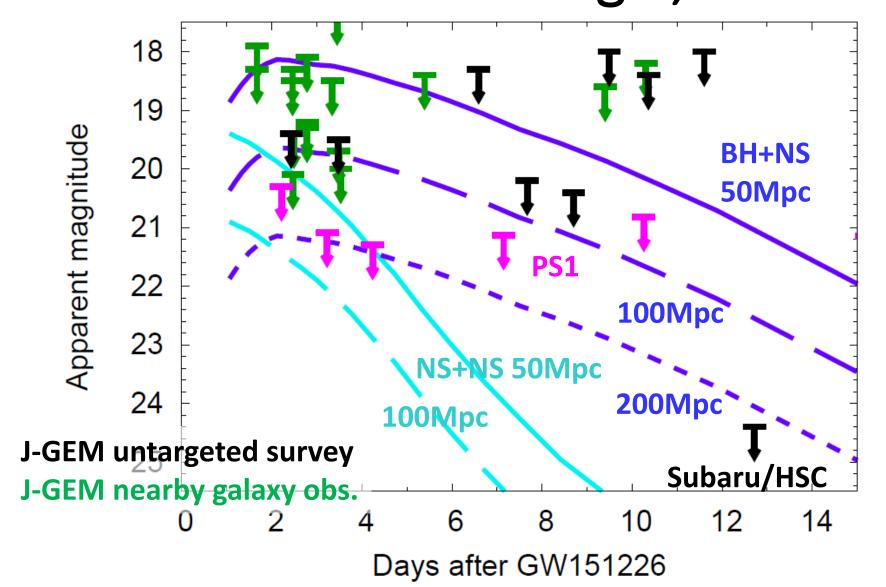
Observation summary -Subaru/HSC-


- Date: Jan 7 (+12days), 13, and Feb 6, 2016 (half nights)
- Filter: i, z ~50sec exp. (34sec overhead)
- Survey fields: 50 pointing ~ 60deg²
- Limiting magnitude: i~24.3 and z~23.6

Yoshida, Utsumi, NT + 17


Candidate detection

- Reference frame: Feb 6, 2016
- Science frames: Jan 7, 13, 2016
- Detection criteria to exclude bogus and cosmic rays
 - Significance
 - |S/N(PSF)| > 5 in the difference images
 - S/N(1.5") > 5 in the pre-differenced image
 - Shape
 - Elongation/Elongation_{PSF} > 0.8
 - $0.8 < FWHM/FWHM_{PSF} < 1.3$
 - PSF subtracted residual < 3 sigma in the difference image
 - Number of detection
 - >=2 detections



Candidates from Subaru/HSC

Color-magnitude diagram in difference magnitudes

If GW151226 was a nearby NS-NS or BH-NS merger,

"A Challenge to the Optical Counterpart of the Gravitational Wave with Hyper Suprime-Cam: GW151226" in preparation

Utsumi, Y., NT, Tanaka, M., et al.

Summary

- Subaru/HSC is the best instrument for optical widefield follow-up observation (24mag, ~60deg², half night, 2color) but unfortunately not always available.
- J-GEM follow-up observations were performed for GW150914 and GW151226. Especially, GW151226 was followed by Subaru/HSC.
- Majority of contaminations in 24mag images are supernovae, Galactic variable stars, and AGNs.
- Time variability, color evolution, association with a nearby galaxy, and properties of a object in the reference are keys to identify kilonovae from other transients.