Opacities of and light curves of kilonovae

Masaomi Tanaka (National Astronomical Observatory of Japan)

r-band magnitude @ 100 Mpc

Mej = 0.01 Msun

Atomic and opacity calculations

• Kilonova light curves

Collaboration with

Daiji Kato (National Institute for Fusion Science, Japan), Gediminas Gaigalas, Pavel Rynkun, Laima Radziute (Vilnius University, Lithuania)

"Kilonova/Macronova"

Initial works: Li & Paczynski 98, Kulkarni 05, Metzger+10, Goriely+11, ... **High opacity**: Kasen+13, Barnes & Kasen 13, MT & Hotokezaka 13, ...

			Kasen+13: Sn II, Ce II-III, Nd I-IV, Os II														
open	open s shell		Fontes+17: Ce I-IV, Nd I-IV, Sm I-IV, U I-IV														
(l=1)			Wol	laege	er+17	7: Se,											
1		MT+17. Se I-III Ru I-III Te I-III Nd I-III Er I										open p-shell (l=2)				2	
																не	
3	4											5	6	7	8	9	10
	Be	Be B C N O F								F	Ne						
11	12 open d-shell								13	14	15	16	17	18			
Na	Mg		(I=3) AI Si P S								Ar						
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	SC		V	Cr	Mn	Fe	CO	Ni	Cu	Zn	Ga	Ge	As	Se	B	pear
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	TC	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	2nc	l peak
55	56	57~71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La-Lu	Hf	Ta	W	Re	Os	lr	pşr	ape	ak g		Pb	Bi	Po	At	Rn
87	88	89~103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo
			57	5.8	50	60	61	62	62	61	65	66	67	68	60	70	71
			ג <i>ו</i>	Ср	Pr	Nd	² m	Sm^{02}	FII	Gd	Th	Dv	ΗΛ	Fr	Tm	Yh	
opon f chall		holl	20 80	90			03	9 <u>4</u>	05_	96	07_	98_	90	100	101_	102	103
open i snell (l=4)			Ac	Th	Pa_		Nn	PIL	Am	Cm	Rk_	Cf	Fs_	Fm	Md	No	 r
							·Ρ										

Atomic structure calculations

HULLAC code (relativistic, local radial potential, Bar-Shalom+99)

Se I-III (Z=34, p) Ru I-III (Z=44, d)Te I-III (Z=52, p) Nd I-III (Z=60, f) Er I-III (Z=68, f)

Ion	Configurations	Number of levels	Number of lines
HULLAC			
Se 1	$4s^{2}4p^{4}, 4s^{2}4p^{3}(4d, 4f, 5-8l), 4s4p^{5}, 4s4p^{4}(4d, 4f), As^{2}4p^{2}(4d^{2} AdAf Af^{2}) As4p^{3}(4d^{2} AdAf Af^{2})$	3076	973,168
Se II	$ \mathbf{4s^{2}4p^{3}}, 4s^{2}4p^{2}(4d, 4f, 5-8l), 4s4p^{4}, 4s4p^{3}(4d, 4f), \\ \mathbf{4s^{2}4p^{3}}, 4s^{2}4p^{2}(4d, 4f, 5-8l), 4s^{2}4p^{3}(4d, 4f), \\ \mathbf{4s^{2}4p^{3}}, \\ \mathbf{4s^{2}4p^{3}}$	2181	511,911
Se III	$4s^{-}4p(4a^{-}, 4a4f, 4f^{-}), 4s4p^{-}(4a^{-}, 4a4f, 4f^{-})$ $4s^{2}4p^{2}, 4s^{2}4p(4d, 4f, 5-8l), 4s4p^{3}, 4s4p^{2}(4d, 4f),$	922	92,132
Ru I	$4s^{2}(4d^{2}, 4d4f, 4f^{2}), 4s4p(4d^{2}, 4d4f, 4f^{2})$ $4d^{7}5s, 4d^{6}5s^{6}, 4d^{8}, 4d^{7}(5p, 5d, 6s, 6p),$	1,545	$250,\!476$
Ru II	$4d^{\circ}5s(5p, 5d, 6s)$ $4d^{7}$ $4d^{6}(5s - 5d, 6s, 6n)$	818	76592
Ru III	$4d^6, 4d^5(5s-5d,6s)$	728	49.066
Те і	$5s^2 5p^4, 5s^2 5p^3 (4f, 5d, 5f, 6s - 6f, 7s - 7d, 8s),$	329	14,482
Te II	$5s5p^{\circ}$ $5s^{2}5p^{3}$, $5s^{2}5p^{2}(4f, 5d, 5f, 6s - 6f, 7s - 7d, 8s)$,	253	$9,\!167$
Te III	$5s_{2}^{5}p_{1}^{2}$, $5s_{2}^{2}5p(5d, 6s - 6d, 7s)$, $5s_{2}^{5}p_{3}^{3}$	57	419
Nd I	$4f^{4}6s^{2}, 4f^{4}6s(5d, 6p, 7s), 4f^{4}5d^{2}, 4f^{4}5d6p,$	31,358	70,366,259
Nd II	$4f^{6}5d6s^{2}, 4f^{6}5d^{2}(6s, 6p), 4f^{6}5d6s6p$ $4f^{4}6s, 4f^{4}5d, 4f^{4}6p, 4f^{3}6s(5d, 6p),$	6,888	3,951,882
Nd III	$4f^{3}5d^{2}, 4f^{3}5d6p$ $4f^{4}, 4f^{3}(5d, 6s, 6p), 4f^{2}5d^{2}, 4f^{2}5d(6s, 6p),$	2252	$458,\!161$
Er 1	$\begin{array}{l} 4f^{2}6s6p \\ \mathbf{4f^{12}6s^{2}}, \ \mathbf{4f^{12}6s(5d, 6p, 6d, 7s, 8s)}, \end{array}$	$10,\!535$	$9,\!247,\!777$
Er 11	$\begin{array}{l} 4f^{11}6s^2(5d,6p), 4f^{11}5d^26s, 4f^{11}5d6s(6p,7s) \\ \mathbf{4f^{12}6s}, 4f^{12}(5d,6p), 4f^{11}6s^2, 4f^{11}6s(5d,6p), \\ \mathbf{4f^{115}f^2}, $	5,333	2,432,665
Er III	$4f^{11}5d^2, 4f^{11}5d6p$ $4f^{12}, 4f^{11}(5d, 6s, 6p)$	723	42,671

GRASP2K code (relativistic, e-e correlation, Jonsson+07)

Nd II-III, Er II-III

Energy levels of Nd II

Line expansion opacity of Nd II

T = 5,000 K, $\rho = 10^{-13}$ g cm⁻³, t = 1 day

Line expansion opacity of Nd II

T = 5,000 K, $\rho = 10^{-13}$ g cm⁻³, t = 1 day

Expansion opacity of Fontes+17 is higher by a factor of 3-5

Line expansion opacity (for each element)

MT+ in prep.

HULLAC

к (p shell) << к (d shell) << к (f shell)

103

see Kasen+13, Fontes+17

Er (Z=68) Energy levels

Best viewed with the latest versions of Web browsers and JavaScript enabled

This form provides access to NIST critically evaluated data on atomic energy levels.

Spectrum: | e.g., Fe I or Mg Li-like or Z=59 II

Default Values

Retrieve Data

Spectroscopic experiments for Er (Z=68)

Collaboration with Nobuyuki Nakamura, Hajime Tanuma, Hiroyuki Sakaue, and Izumi Murakami Atomic and opacity calculations

• Kilonova light curves

Collaboration with Shinya Wanajo (Sofia University, Japan) and Yuichiro Sekiguchi (Toho University, Japan)

Dynamical ejecta (~< 10 ms)

Rosswog+99, Lee+07, Goriely+11, Hotokezaka+13, Bauswein+13, Radice+16...

- Mej ~ 10⁻³ 10⁻² Msun
- v ~ 0.1-0.2 c
- wide Ye

n + v_e -> p + e⁻ n + e⁺ -> v_e + p

Post-merger ejecta (~< 100 ms)

Fernandez+13,15, Perego+14, Kiuchi+14,15, Martin+15, Just+15, Wu+16, Siegel & Metzger 17...

- Mej >~ 10⁻³ Msun
- v ~ 0.05 c
- relatively high Ye

"Blue" kilonova?

Simulations with Fe opacity or gray opacity Metzger+14, Kasen+15, Fernandez & Metzger 16, Metzger 16

3D Monte-Carlo frequency-dependent radiation transfer

(MT & Hotokezaka 13, MT+14, MT 16)

Sobolev optical depth

$$\alpha = \frac{\pi e^2}{mc} n_1 f_{\rm osc} \phi(\nu)$$

$$\begin{aligned} \tau_{\rm sob} &= \int \alpha dr \\ &= \int \alpha \frac{dr}{dv} \frac{c}{\nu_0} d\nu \\ &= \int \frac{\pi e^2}{mc} n_1 f_{\rm osc} \phi(\nu) \frac{dr}{dv} \frac{c}{\nu_0} d\nu \\ &= \frac{\pi e^2}{mc} n_1 f_{\rm osc} \frac{dr}{dv} \frac{c}{\nu_0} \\ &= \frac{\pi e^2}{mc} n_1 f_{\rm osc} t\lambda \end{aligned}$$

$$\frac{d\nu}{\nu_0} = \frac{dv}{c} = \frac{1}{c}\frac{dv}{dr}dr$$

if velocity dominated by radial motion (v_{th} << v_{rad})

$$\int \phi(\nu) d\nu = 1$$

Fluorescence

When photons interact with line, * Full treatment

Redistribute photon energy according to branching ratios (Lucy, Mazzali & Lucy, Kasen+06)

* Absorptive

Δλ

Redistribute photon energy according to thermal distribution j = αB(T) (Kasen+13, Tanaka & Hotokezaka 13, Fontes+17, Wollaeger+17)

* Scattering/resonance No energy redistribution

Simple model
Mej = 0.01 Msun
v = 0.1c
Heating rate ~ t^{-1.3}
Constant thermalization (0.25)

Depends sensitively on Ye κ ~ 0.5 cm² g⁻¹ for Lanthanide-free ejecta (Ye ~ 0.3)

NS-NS - Mej = 0.01 Msun - v = 0.2c

Hotokezaka+13, Sekiguchi+15,16

Wind

- Mej = 0.01 Msun
- v = 0.05c
- Heating rate from nucleosynthesis calc.
 Thermalization (Barnes+16)

Optical (r-band)

Mej = 0.01 Msun

MT+ in prep.

Wide variety even for the same ejecta mass => Accurate estimate of Ye is crucial

Blue component may be absorbed by dynamical ejecta?

e.g., Kasen+15, Metzger 17

Foucart+16

High Ye in the polar region (< 30-45 deg) => Blue emission may be able to escape

Sekiguchi+16

NIR (J-band)

Mej = 0.01 Msun

see also Kasliwal+17

nu mpc)

r-band magnitude @ 100 Mpc

Mej = 0.01 Msun

r-band magnitude @ 200 Mpc

Mej = 0.01 Msun

Summary

- Guides from theory are important for observations
- New opacity calculations for Se, Ru, Te, Nd, and Er
- Opacity sensitively depends on compositions
 - $\kappa \sim 0.5 \text{ cm}^2 \text{ g}^{-1}$ for Ye ~ 0.3 (Lanthanide free)
 - κ ~ 10 cm² g⁻¹ for solar abundance
- Kilonova brightness depends on compositions
 - Optical: 22-25 mag for ~3 days @ 200 Mpc (0.01 Msun)
 - NIR: 22-24 mag for ~7 days @ 200 Mpc (0.01 Msun)
- Accurate estimate of Ye in merger simulations is critical