Overview: Kilonova 1. Basics 2. Prospects for EM observations 3. Signatures of r-process nucleosynthesis

Masaomi Tanaka (National Astronomical Observatory of Japan)

References (Reviews)

• Rosswog, S. 2015

"The multi-messenger picture of compact binary mergers" International Journal of Modern Physics D, 24, 1530012-52

• Fernandez, R. & Metzger, B. D. 2016

"Electromagnetic Signatures of Neutron Star Mergers in the Advanced LIGO Era" Annual Review of Nuclear and Particle Science, 66, 23

• Tanaka, M. 2016

"Kilonova/Macronova Emission from Compact Binary Mergers" Advances in Astronomy, 634197

• Metzger, B. D. 2017

"Kilonovae" Living Reviews in Relativity, 20, 3

Merger => see Masaru's talk

Dynamical ejecta (~< 10 ms)

Post-dynamical ejecta (~< 100 ms)

- Mej ~ 10⁻³ 10⁻² Msun
- v ~ 0.1-0.2 c
- wide Ye

n + v_e -> p + e⁻ n + e⁺ -> v̄_e + p

- Mej >~ 10⁻³ Msun
- v ~ 0.05 c
- relatively high Ye

Nucleosynthesis (< 1 sec) => see Francois's talk

=> Solar abundance? (Discussion yesterday)

(from Wanajo+14)

Radioactive heating (decay of many r-process nuclei)

(for M = 0.01 Msun)

Metzger+10

Physical properties of NS merger ejecta at ~1 day

(Blackboard)

"Kilonova/Macronova"

Timescal

Initial works: Li & Paczynski 98, Kulkarni 05, Metzger+10, Goriely+11, ... High opacity: Kasen+13, Barnes & Kasen 13, MT & Hotokezaka 13, ...

Timescale

$$t_{\text{peak}} = \left(\frac{3\kappa M_{\text{ej}}}{4\pi cv}\right)^{1/2}$$

$$\simeq 8.4 \text{ days} \left(\frac{M_{\text{ej}}}{0.01M_{\odot}}\right)^{1/2} \left(\frac{v}{0.1c}\right)^{-1/2} \left(\frac{\kappa}{10 \text{ cm}^2 \text{ g}^{-1}}\right)^{1/2}$$
Luminosity

$$L_{\text{peak}} = L_{\text{dep}}(t_{\text{peak}})$$

$$\simeq 1.3 \times 10^{40} \text{ erg s}^{-1} \left(\frac{M_{\text{ej}}}{0.01 M_{\odot}}\right)^{0.35} \left(\frac{v}{0.1c}\right)^{0.65} \left(\frac{\kappa}{10 \text{ cm}^2 \text{ g}^{-1}}\right)^{-0.65}$$

Opacity

Atomic structure calculation

with HULLAC code (relativistic, local radial potential, Bar-Shalom+99) and GRASP code (relativisitic, e-e interaction, Jonsson+07)

κ (p shell) < κ (d shell) < κ (f shell)</td>κ (Lanthanide) ~ 10 cm² g⁻¹K Kasen+13, MT & Hotokezaka 13

Light curve

Spectra

Extremely red spectra (peaks at near infrared wavelengths)

If post-dynamical ejecta is Lanthanide-free (Ye >~ 0.25) => low opacity => "blue kilonova" (Metzger+14, Kasen+15)

"Blue kilonova"

L~10⁴¹ erg/s, t~ a few days, Optical

Summary

Metzger 17

Overview: Kilonova

1. Basics

2. Prospects for EM observations

3. Signatures of r-process nucleosynthesis

Optical light curves in observed magnitudes

Constraints from short GRBs (1/2)

GRB 130603B

Tanvir+2013, Berger+2013

1 + 1(?) more cases GRB 060614 & GRB 050709

Ejection of ~0.06 Msun ^H

Hotokezaka+13, Barnes+16

GRB 160821B: ~ 0.01 Msun? (Troja+16)

Constraints from short GRBs (2/2)

Fong+16

DECam observations of GW151226

=> see Philip's talk

Cowperthwaite+16

J–GEM observations of GW151226

Yoshida, Utsumi, Tominaga, Morokuma, MT et al. 2017 Utsumi, Tominaga, MT in prep. => see Nozomu's talk
(next week)

987 deg² Subaru/HSC: 64 deg² Kiso: 778 deg² MOA: 145 deg² Heavy contamination of supernovae, AGNs, and variable stars => How to select NS mergers?

- Association with nearby galaxies
 Faintness
- Rapid evolution
- Red color

MT+14, MT 16

Candidate selection for Subaru/HSC survey (~ 23-24 mag)

- Association with nearby galaxies
- Faintness
- Rapid evolution
- Red color

0 remaining candidate

Utsumi, Tominaga, MT+ in prep.

Overview: Kilonova

- 1. Basics
- 2. Prospects for EM observations
- **3.** Signatures of r-process nucleosynthesis

Supernova vs NS merger

	Supernova	NS merger
M (r-process)	10 ⁻² Msun (?)	10 ⁻² Msun
M (total)	~10 Msun	10 ⁻² Msun
Heating source	⁵⁶ Ni	r-process
Spectra	H, He, α elements, Iron group	r-process (w/ heavy blend)

We can "measure" r-process mass with kilonova

$$L_{\text{peak}} = L_{\text{dep}}(t_{\text{peak}})$$

$$\simeq 1.3 \times 10^{40} \text{ erg s}^{-1} \left(\frac{M_{\text{ej}}}{0.01 M_{\odot}}\right)^{0.35} \left(\frac{v}{0.1c}\right)^{0.65} \left(\frac{\kappa}{10 \text{ cm}^2 \text{ g}^{-1}}\right)^{-0.65}$$

NS merger as a possible origin of r-process elements

Event rate

R_{NSM} ~ 10²-10³ Gpc⁻³ yr⁻¹ ~ 3-30 GW events yr⁻¹ (w/ Adv. detectors, < 200 Mpc)

LIGO 01

 $G_{\rm NSM} < 10^4 \, {\rm Gpc}^{-3} \, {\rm yr}^{-1}$

Ejection per event

M_{ej}(r-process) ~ 10⁻² Msun

Enough to explain the r-process abundance in our Galaxy M(Galaxy, r-process) $\sim M_{ej}(r) \times (R_{NSM} \times t_G)$ $\sim 10^{-2} \times 10^{-4} \times 10^{10} \sim 10^4 Msun$

EM

Rosswog+17, see also Hotokezaka+15

Constraints on the NS-NS merger rate

BH-BH 01: 2015-2016 01 **O2 O**3 Dominik et al. pop syn -02: 2016-2017 de Mink & Belczynski pop syn -03:2018 Vangioni et al. r-process -Jin et al. kilonova -Petrillo et al. GRB -Coward et al. GRB -Siellez et al. GRB -Fong et al. GRB -Kim et al. pulsar aLIGO 2010 rate compendium - 10^{2} 10^{3} 10^{0} 10^{1} 10^{4} BNS Rate (Gpc⁻³yr⁻¹)

Expected event rates

arXiv:1607.07456

How good we can estimate ejected mass?

Mej = 0.01 Msun

Davs after the merger

Nuclear mass model => heating rate

FRDM: Finite range droplet model

DZ31:

31-parameter mass model (Duflo and Zuker 95)

Rosswog+17

We need (1) multi-color observations, and

(2) good theoretical models for spectra

- mergers and nucleosynthesis (long-term simulations)
- heating rate (nuclear physics)
- radiative transfer (atomic data, opacity)

Summary

- Kilonova
 - Dynamical ejecta (Lanthanide-rich)
 => L ~ 10⁴⁰⁻⁴¹ erg s⁻¹ for a week, red spectrum
 - Post-dynamical ejecta (IF Lanthanide-free)
 => L ~ 10⁴¹ erg s⁻¹ for a few days, blue spectrum
- For EM follow-up observations
 - At >~ 1 day: Likely to be fainter than 22 mag @ 200 Mpc
 => >4m-class telescopes
 - At ~< 1 day: Can be brighter than 21 mag @ 200 Mpc
 => 1-2m-class telescopes
- Measurements of r-process mass
 - Need multi-color observations
 - Need good theoretical models to predict spectra/color