

calculation and movie by Erika Holmbeck, nsm trajectory from Just+2015

3

nuclear data required for *r*-process simulations

seed assembly charged particle reactions e.g., ${}^{4}\text{He}(\alpha n, \gamma){}^{9}\text{Be}$

masses beta-decay rates beta-delayed neutron emission probabilities neutron capture rates

> fission rates fission product distributions neutrino interactions

sensitivity study review: Mumpower, Surman, McLaughlin, Aprahamian Progress in Particle and Nuclear Physics 86 (2016) 86

r-process abundance pattern signatures

nuclear data required for *r*-process simulations

seed assembly charged particle reactions e.g., ${}^{4}\text{He}(\alpha n, \gamma){}^{9}\text{Be}$

masses beta-decay rates beta-delayed neutron emission probabilities neutron capture rates

> fission rates fission product distributions neutrino interactions

sensitivity study review: Mumpower, Surman, McLaughlin, Aprahamian Progress in Particle and Nuclear Physics 86 (2016) 86

nuclear data required for *r*-process simulations

neutrino interactions

sensitivity study review: Mumpower, Surman, McLaughlin, Aprahamian Progress in Particle and Nuclear Physics 86 (2016) 86

required nuclear data: ${}^{4}\text{He}(\alpha n,\gamma){}^{9}\text{Be}$

required nuclear data: masses

nuclear masses from AME 2016

masses beta-decay rates beta-delayed neutron emission probabilities neutron capture rates

> fission rates fission product distributions neutrino interactions

required nuclear data: masses

while $(n,\gamma)-(\gamma,n)$ equilibrium holds, the neutron separation energies determine the abundances along an isotopic chain:

$$\frac{Y_{eq}(Z,A+1)}{Y_{eq}(Z,A)} = \frac{G(Z,A+1)}{2G(Z,A)} n_n \left(\frac{2\pi\hbar N_A}{m_n kT}\right)^{3/2} \exp\left[\frac{S_n(Z,A+1)}{kT}\right]$$

r-process uncertainties: masses

r-process uncertainties: masses

.

SKM*

SLY4

SKP-3

SV-MIN

UNEDEO

NEDE1

Surman, Mumpower, McLaughlin 2016

masses from massexplorer.frib.msu.edu: Olsen, Nazarewicz:

see also Martin+2016

experimental prospects at FRIB: masses

AME 2016 FRIB Day 1 reach FRIB design goal

experimental prospects at FRIB: masses

А

required nuclear data: beta decay

beta decay properties from NUBASE 2016 masses beta-decay rates beta-delayed neutron emission probabilities neutron capture rates

> fission rates fission product distributions neutrino interactions

required nuclear data: beta decay

beta-decay rates

determine the relative abundances of the isotopic chains through the steady beta flow condition:

 $\lambda_{\beta}(Z, A_{path})Y(Z, A_{path}) \sim \text{constant}$

r-process uncertainties: beta decay rates

r-process uncertainties: beta decay rates

r-process uncertainties: beta decay rates

experimental prospects at FRIB: beta decay

NUBASE 2016 FRIB Day 1 reach FRIB design goal

experimental prospects at FRIB: beta decay

А

required nuclear data: neutron capture rates

neutron capture rates from

KADONIS database

masses beta-decay rates beta-delayed neutron emission probabilities neutron capture rates

> fission rates fission product distributions neutrino interactions

r-process uncertainties: neutron capture rates

experimental prospects at FRIB: neutron capture

TIIII

KADONIS FRIB (d,p) FRIB beta Oslo

experimental prospects at FRIB: neutron capture

пг

r-process uncertainties: fission

FIRE: Fission In R-process Elements US DOE/NNSA Topical Collaboration

required input data: neutrinos

masses beta-decay rates beta-delayed neutron emis neutron capture rates

fission rates fission product distributions

the rare earth peak

Its formation mechanism is sensitive to both the astrophysical conditions of the late phase of the *r*process and the nuclear physics of the nuclei populated at this time

Surman, Engel, Bennett, Meyer 1997

rare earth peak formation

Mumpower, McLaughlin, Surman 2012

rare earth peak formation

rare earth peak formation and nuclear masses

rare earth peak formation and nuclear masses

Neodymium (Z = 60) isotopic chain

reverse-engineering rare earth masses

mass modification parameterization:

$$M(Z, N) = M_{DZ}(Z, N) + a_N e^{-(Z-C)^2/2f}$$

reverse-engineering rare earth masses

rare earth peak formation comparison

theory-only predicted mass surfaces

Neodymium (Z = 60) isotopic chain

summary

Evidence increasingly suggests compact object mergers are the primary site of synthesis of the heaviest elements, though many uncertainties remain.

On the nuclear physics side, current and next-generation radioactive beam facilities will continue to push the boundaries of measurements of extremely neutron-rich nuclei.

As nuclear physics uncertainties are reduced, we can exploit details of the *r*-process abundance pattern, such as the rare earth peak, to explore the nature of rprocess environments.

