

GRMHD simulations of remnant accretion disks from neutron star mergers

LIGO: NS mergers

Fig.: Sensitivity of LIGO to BNS mergers (left) and sensitivity vs. predicted NS merger rates (right) Abbott+ 2016c

LIGO will probe deeply into the predicted NS merger rate distributions by 2018 (O3)

exciting discoveries expected soon

NS mergers remnants

NS mergers remnants

NS post-merger accretion disks: formation

Siegel & Metzger 2017a

Daniel Siegel

NS post-merger accretion disks: numerical setup

First self-consistent simulations modeling r-process nucleosynthesis from disk outflows from first principles:

- GRMHD: magnetic instabilities (MRI) mediating turbulence (transport of angular momentum) in the disk
- weak interactions in GRMHD
- approximate neutrino transport (leakage scheme)
- realistic EOS (Helmholtz EOS) valid at low temperatures and densities, capturing nuclear binding energy release from alpha-particle formation
- full r-process network calculations on disk outflows using 10⁴ tracer particles (SkyNet; Lippuner & Roberts 2015)

Previous Newtonian alpha-disk simulations:

Fernandez & Metzger 2013 Metzger & Fernandez 2014 Fernandez+ 2015 Fernandez+ 2017 Just+ 2015

GRHydro: part of the Einstein Toolkit

NS post-merger accretion disks: numerical setup

First self-consistent simulations modeling r-process nucleosynthesis from disk outflows from first principles:

- GRMHD: magnetic instabilities (MRI) mediating turbulence (transport of angular momentum) in the disk
- weak interactions in GRMHD
- approximate neutrino transport (leakage scheme)
- realistic EOS (Helmholtz EOS) valid at low temperatures and densities, capturing nuclear binding energy release from alpha-particle formation
- full r-process network calculations on disk outflows using 10⁴ tracer particles (SkyNet; Lippuner & Roberts 2015)

Previous Newtonian alpha-disk simulations:

Fernandez & Metzger 2013 Metzger & Fernandez 2014 Fernandez+ 2015 Fernandez+ 2017 Just+ 2015

Daniel Siegel

GRMHD simulations of remnant accretion disks from neutron star mergers

5/13

Daniel Siegel

GRMHD simulations of remnant accretion disks from neutron star mergers

B-field effect on EOS and neutrino emission rates

assume magnetic field effects become important when cyclotron frequency of electrons and Fermi energy become comparable:

 \succ average radially for space-time diagram \backsim

Accretion disk dynamo: butterfly diagram

magnetic energy is generated in the mid-plane

- migrates to higher latitudes
- dissipates into heat off the mid-plane

"hot corona"

hot corona launches thermal outflows (neutron-rich wind)

NS post-merger accretion disk are cooled from the mid-plane by neutrinos (rather than from the EM photosphere)!

NS post-merger accretion disks: self-regulation

Neutrino-cooled accretion disks self-regulate themselves to mild degeneracy (low Y_e matter): Beloborodov 2003, Chen & Beloborodov 2007, Metzger+ 2009

- viscous heating via magnetic turbulence
- neutrino cooling

charged-current processes: $e^- + p \rightarrow n + \nu_e$ $e^+ + n \rightarrow p + \bar{\nu}_e$

pair annihilation:

$$e^{-} + e^{+} \rightarrow \nu_{e} + \bar{\nu}_{e}$$
$$e^{-} + e^{+} \rightarrow \nu_{\mu,\tau} + \bar{\nu}_{\mu,\tau}$$

plasmon decay:

$$\gamma \to \nu_{\rm e} + \bar{\nu}_{\rm e}$$

 $\gamma \to \nu_{\mu,\tau} + \bar{\nu}_{\mu,\tau}$

Fig.: disk properties; contours: rest-mass density

Siegel & Metzger 2017a Siegel & Metzger 2017b, in prep.

NS post-merger accretion disks: self-regulation

Daniel Siegel

GRMHD simulations of remnant accretion disks from neutron star mergers

The origin of heavy nuclei: r-process nucleosynthesis

Daniel Siegel

GRMHD simulations of remnant accretion disks from neutron star mergers

NS post-merger accr. disks: r-process nucleosynthesis

Influence of neutrino absorption

Siegel & Metzger 2017b, in prep.

BH accretion vs. disk outflows

By end of simulation: accreted mass converged but still steady outflows

remaining disk mass likely unbound

11/13

NS post-merger accretion disks: r-process nucleosynthesis

Siegel & Metzger 2017a

- significantly higher ejected mass than in previous Newtonian hydro simulations
- unbound outflows >0.2 M_{disk}, likely ~0.4M_{disk}
- for disk in present simulation:
 > 0.005 M_{sun}, likely ~ 0.01 M_{sun}
- disk outflows alone are consistent with constraints on r-process enrichment observations

Fig.: constraints on r-process enrichment rates vs. ejected mass

NS post-merger disk outflows are promising site for the r-process

Conclusions

Simulations of NS post-merger accretion disks Siegel & Metzger 2017a

- Siegel & Metzger 2017a Siegel & Metzger 2017b, i. prep.
- GRMHD with weak interactions and approx. neutrino transport
- first fully self-consistent study of its kind
- evidence for hot coronae that launch thermal outflows
- first identification of self-regulation in neutrino-cooled accretion disks
- suggest NS post-merger systems are robust site of the r-process
 - \rightarrow can produce all r-process elements
 - → underproduction of light elements compensated by high-Y_e material from long-lived NS Wu+ 2016, Just+ 2015
 - Iow velocity outflows enable narrow-line spectroscopy to identify composition of r-process matter
- electromagnetic signature (kilonovae) potentially most promising EM counterpart to GWs

