# Mass ejection from neutron-star mergers in numerical relativity

Masaru Shibata

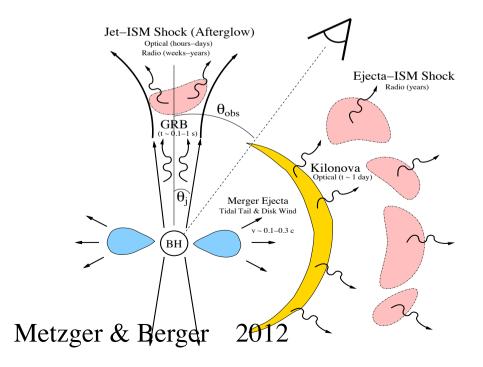
Center for Gravitational Physics,

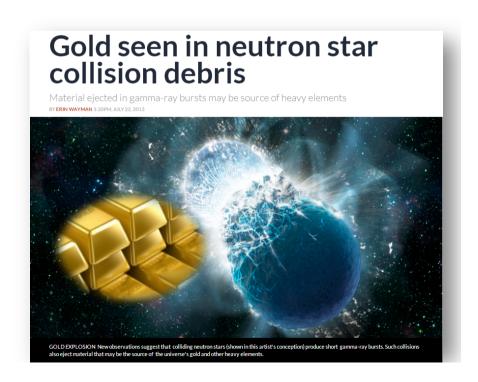
Yukawa Institute for Theoretical Physics,

Kyoto University

THEORETICAL PHYSICS

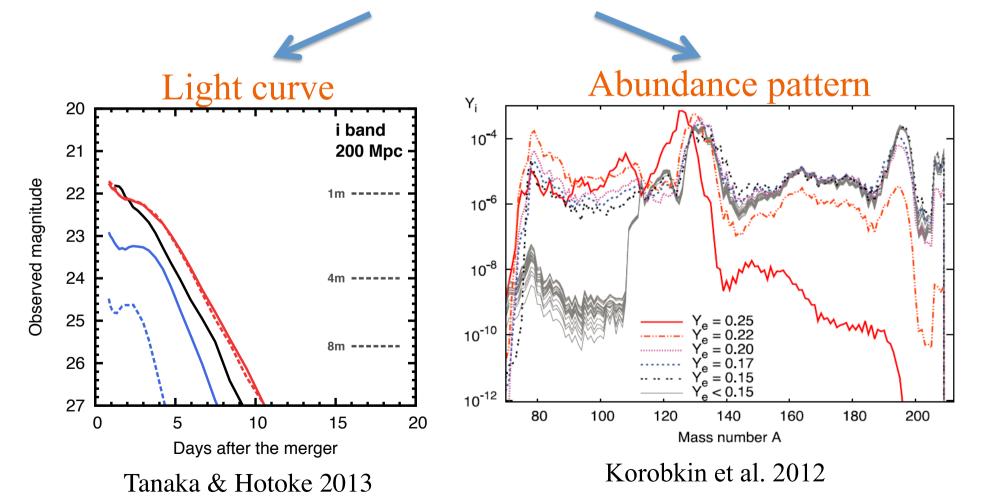
CGP


Center for Gravitational Physics Yukawa Institute


#### **Outline**

- I. Brief introduction
- II. Typical scenarios for NS mergers (both for NS-NS and BH-NS)
- III. Dynamical mass ejection
- IV. Early MHD/viscous ejection from NS-NS
- V. Viscous (+neutrino-assisted) disk wind
- VI. Summary

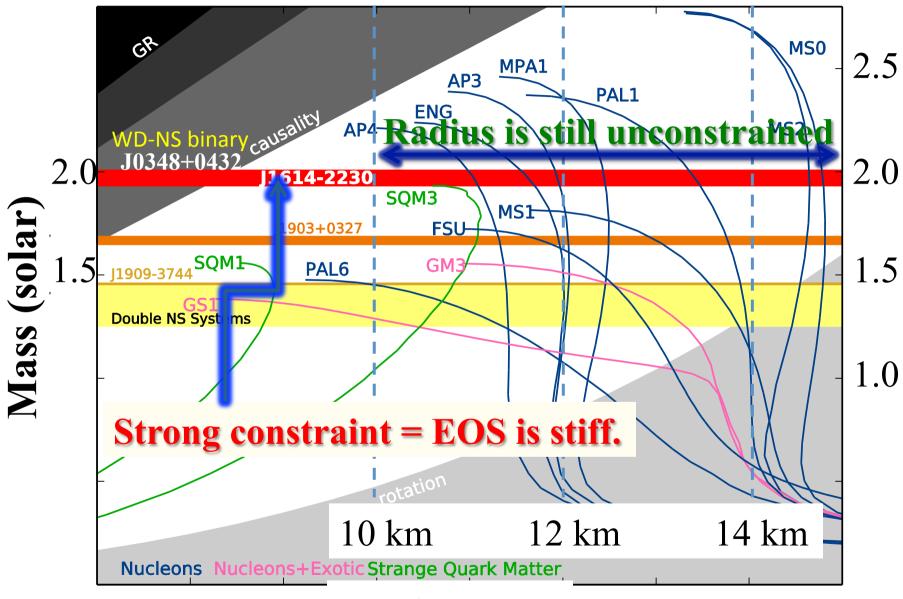
# I Introduction (not necessary?) Why mass ejection from NS binaries is important?


- 1. Electromagnetic counterparts of NS merger: **Key for confirming gravitational-wave detection**(talks by Tanaka & Cowperthwaite)
- 2. Possible site of r-process nucleosynthesis (talks by Foucart & Hotoke)





# In the following, I focus on


- Ejecta mass  $M_{\rm eject}$
- Electron fraction  $Y_{\rm e}$



# II A Typical scenarios for NS-NS merger

- Constraints from radio-telescope observations:
- 1. Approximately 2-solar-mass NSs exist (Demorest ea 2010, Antoniadis ea 2013)
  → equation of state (EOS) for NS has to be stiff
- 2. Typical total mass of compact binary neutron stars  $\rightarrow \sim 2.73\pm0.15$  solar mass (by Pulsar timing obs.)

### Mass-radius relation for various EOS

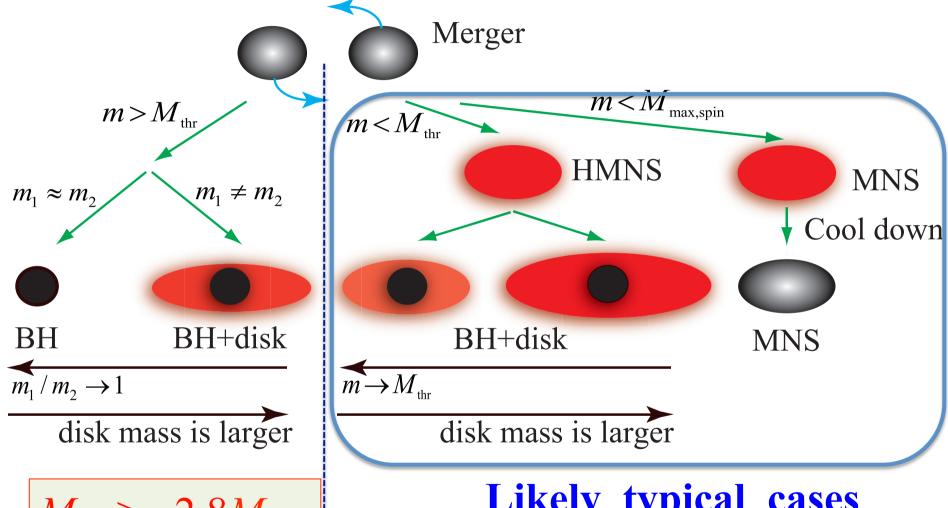


Radius (km)

### Compact NS-NS system in our galaxy

Total Mass of NS in compact NS-NS is likely to be in a narrow range,  $m \approx 2.73 \pm 0.15 \, M_{\rm sun}$ 

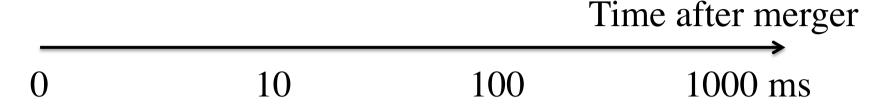
|    | !          | Orbital period Eccentricity |       | Each mass        |       | lifetime |                           |
|----|------------|-----------------------------|-------|------------------|-------|----------|---------------------------|
|    | PSR        | P(day)                      | e     | $M(M_{\rm sur})$ | $M_1$ | $M_2$    | $T_{ m GW}$               |
| 1. | B1913+16   | 0.323                       | 0.617 | 2.828            | 1.441 | 1.387    | 3.0                       |
| 2. | B1534+12   | 0.421                       | 0.274 | 2.678            | 1.333 | 1.345    | 27                        |
| 3. | B2127+11C  | 0.335                       | 0.681 | 2.71             | 1.35  | 1.36     | 2.2                       |
| 4. | J0737-3039 | 0.102                       | 0.088 | 2.58             | 1.34  | 1.25     | 0.86                      |
| 5. | J1756-2251 | 0.32                        | 0.18  | 2.57             | 1.34  | 1.23     | 17                        |
| 6. | J1906+746  | 0.166                       | 0.085 | 2.61             | 1.29  | 1.32     | 3.1                       |
| 7. | J1913+1102 | 0.206                       | 0.090 | 2.875            | 1.65  | 1.24     | ~5                        |
| 8. | A24        | 0.184                       | 0.606 | 2.74             | 1.35  | 1.39     | ~0.75                     |
|    |            |                             |       |                  |       |          | $\times 10^8 \text{ yrs}$ |


# II A Typical scenarios for NS-NS merger

- Constraints from radio-telescope observations:
- 1. Approximately 2-solar-mass NSs exist (Demorest ea 2010, Antoniadis ea 2013)
  → equation of state (EOS) for NS has to be stiff
- 2. Typical total mass of compact binary neutron stars  $\rightarrow \sim 2.73\pm0.15$  solar mass (by Pulsar timing obs.)



- Numerical relativity simulations have shown that
- Merger results typically in high-mass neutron stars (not BH) (Shibata et al. 2005, 2006.. recently many works....)


# Possible outcomes of NS-NS mergers



 $M_{\text{thr}} > \sim 2.8 M_{\text{sun}}$ Depends strongly on EOS

Likely typical cases for M = 2.6— $2.8M_{sun}$ 

# Mass ejection history for MNS formation



Dynamical ejection (Sec. III) (determined by dynamical timescale of NS)

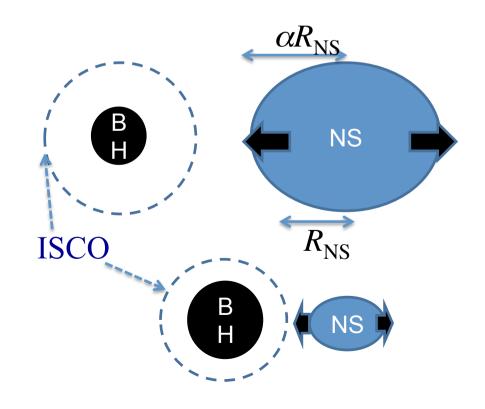
MHD/viscous ejection (Sec. IV)
(by viscous timescale of remnant MNS)

Long-term viscous ejection (V) (by viscous timescale of disk)

Neutrino irradiation (for neutrino emission timescale) (minor effects but could play an assist)

Recombination (Fernandez-Metzger '13)

# II B Scenarios for BH-NS merger


- Almost no observational constraints but for black hole mass likely  $>\sim 5M_{sun}$ 
  - → Wide parameter space has to be explored
- Fate = two possibilities:
- 1. Tidal disruption of NS
- 2. Simple plunge of NS into BH

# Condition for tidal disruption

For tidal disruption, (Self gravity of NS) < (BH tidal force)

$$\frac{M_{\rm NS}}{\left(\alpha R_{\rm NS}\right)^2} < \frac{M_{\rm BH}\left(\alpha R_{\rm NS}\right)}{r^3} \quad \left(\alpha > 1\right) \Rightarrow 1 \le \left(\frac{M_{\rm BH}}{r_{\rm ISCO}}\right)^3 \left(\frac{M_{\rm NS}}{M_{\rm BH}}\right)^2 \left(\frac{\alpha R_{\rm NS}}{M_{\rm NS}}\right)^3$$

- For tidal disruption
- \* Large NS Radius or
- \* Small BH mass or
- High corotation spin is necessary



# For tidal disruption of plausible BH-NS with $M_{\rm NS}$ =1.35 $M_{\rm sun}$ , $R_{\rm NS}$ ~ 12 km, & $M_{\rm RH}$ > 6 $M_{\rm sun}$



## High BH spin is necessary $> \sim 0.5$

Foucart et al. ('13,14,...); Kyutoku et al. ('15)

$$1 \le 0.1 \left(\frac{6M_{\rm BH}}{r_{\rm ISCO}}\right)^3 \left(\frac{7M_{\rm NS}}{M_{\rm BH}}\right)^2 \left(\frac{R_{\rm NS}}{6M_{\rm NS}}\right)^3 \left(\frac{\alpha}{1.7}\right)^3$$
$$\left(M_{\rm BH} \le r_{\rm ISCO} \le 9M_{\rm BH}\right)$$

Natural conclusion: BH-disk systems formed as a remnant should have a high BH spin

# Mass ejection history for BH-NS

(in the presence of tidal disruption of NS)

Time after merger

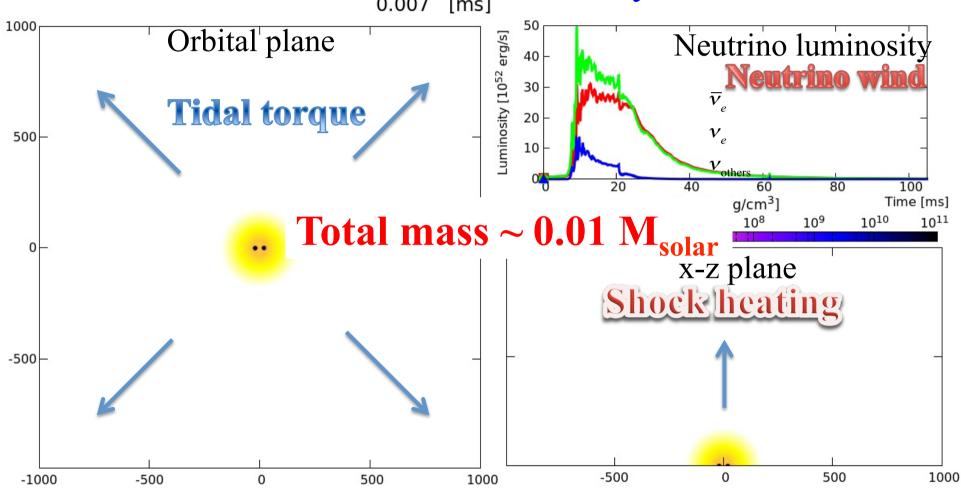
0 10 100 ms

Dynamical ejection (Sec. III)

(determined by dynamical timescale of system)

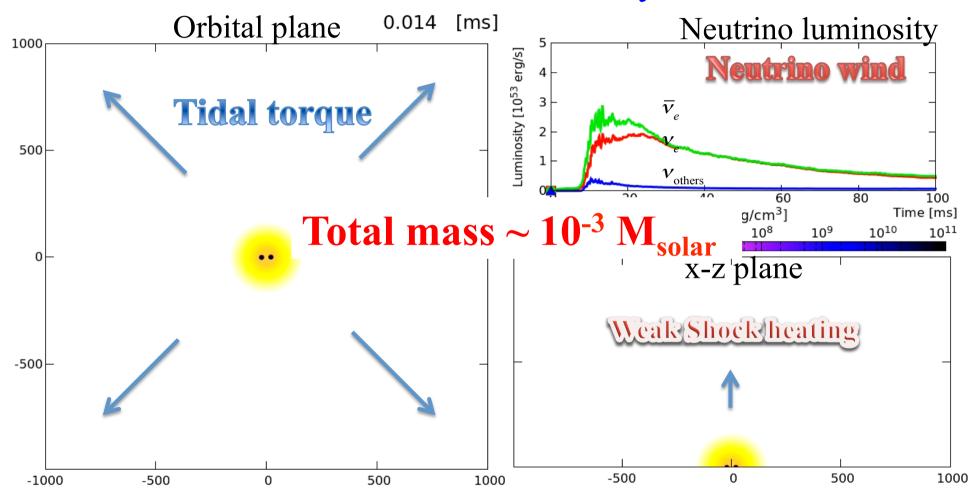
Long-term MHD/viscous ejection (Sec. V)

(by viscous timescale of disk)


(Fernandez-Metzger 13, Just+ 15,...)

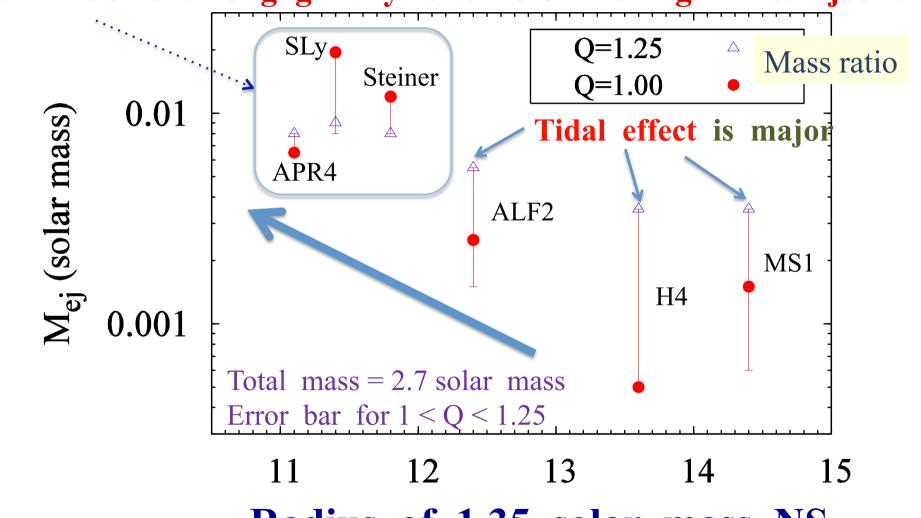
Neutrino irradiation (would be minor)

# III Dynamical mass ejection


## NS-NS: Neutrino-radiation hydro simulation

Soft EOS (SFHo, R~11.9 km): 1.30-1.40 M<sub>sun</sub> Rest-mass density density




### NS-NS: Neutrino-radiation hydro simulation

Stiff EOS (DD2, *R*~13.2 km): 1.30-1.40 M<sub>sun</sub> Rest-mass density



# Ejecta mass depends on EOS: NS-NS case

Soft EOS → strong gravity → SHOCK → high-mass ejection



Radius of 1.35 solar mass NS

Hotokezaka+ PRD '13 (See also Bauswein+ '13; Bernuzzi + '15)

# Summary for dynamical ejecta in NR

### Ejecta mass depends significantly on NS EOS & mass

|                                | Nearly equal mass $(M_{\text{tot}} \sim 2.7 M_{\text{sun}})$ | Unequal mass: $m_1/m_2 < 0.9$ $(M_{\text{tot}} \sim 2.7 M_{\text{sun}})$ | Small total mass system (< 2.6M <sub>sun</sub> )          |
|--------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------|
| Soft EOS (R=11-12 km)          | HMNS → BH $M_{\rm eje} \sim 10^{-2} M_{\rm sun}$             | HMNS → BH $M_{\rm eje} \sim 10^{-2} M_{\rm sun}$                         | MNS (long lived) $M_{\rm eje} \sim 10^{-3} \ M_{\rm sun}$ |
| Stiff EOS ( <i>R</i> =13-15km) | ,                                                            | MNS (long lived) $M_{\rm eje} \sim 10^{-2.5} M_{\rm sun}$                | MNS (long lived) $M_{\rm eje} \sim 10^{-3} M_{\rm sun}$   |
| <b>\</b> T                     | Foucart et al '16 Shibata unpublished Sekighichi+ '17        |                                                                          |                                                           |

➤ Typical velocity: 0.15—0.25 c

#### High temperature $\Rightarrow \gamma \gamma \rightarrow e^- + e^+, \quad n + e^+ \rightarrow p + \overline{\nu}_e$ Neutrino irradiation $\Rightarrow n + v \rightarrow p + e^{-}$ U.UU/ [MS] 1000 Electron fraction (x-y) Luminosity [10<sup>52</sup> erg/s] Neutrino luminosity-30 20 500 10 20 60 100 Electron fraction Time [ms] 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Electron fraction (x-z) -500

**Green = neutron rich** 

1000

500

0

-500

0

1000

500

-500

-1000

# Electron fraction profile: Broad

Sekiguchi et al. 2015 PRD  $10^{0}$ 1.35-1.35 solar case **SFHo** Fraction of mass TM<sub>1</sub>  $10^{-1}$  $10^{-2}$ 

 $\triangleright$  Average depends on EOS but typically peak at 0.2-0.3

Ye

0.3

0.4

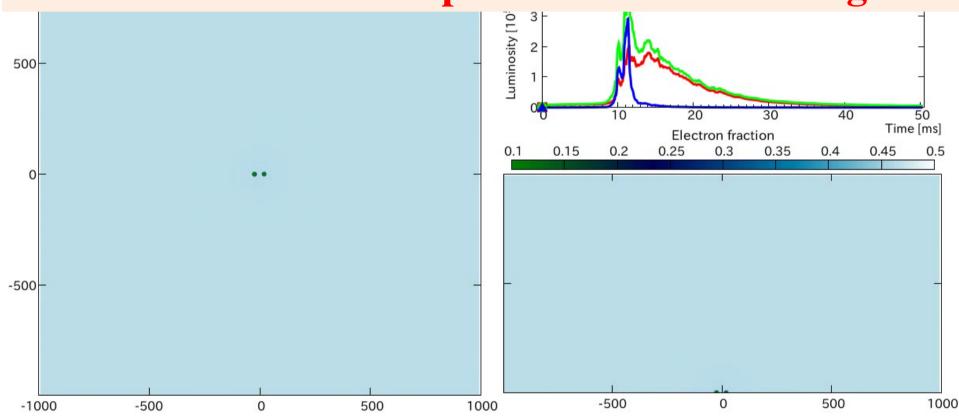
0.5

0.2

Broad distribution irrespective of EOS

0.1

0


➤ Similar results by Radice+16, Lehner+15,16

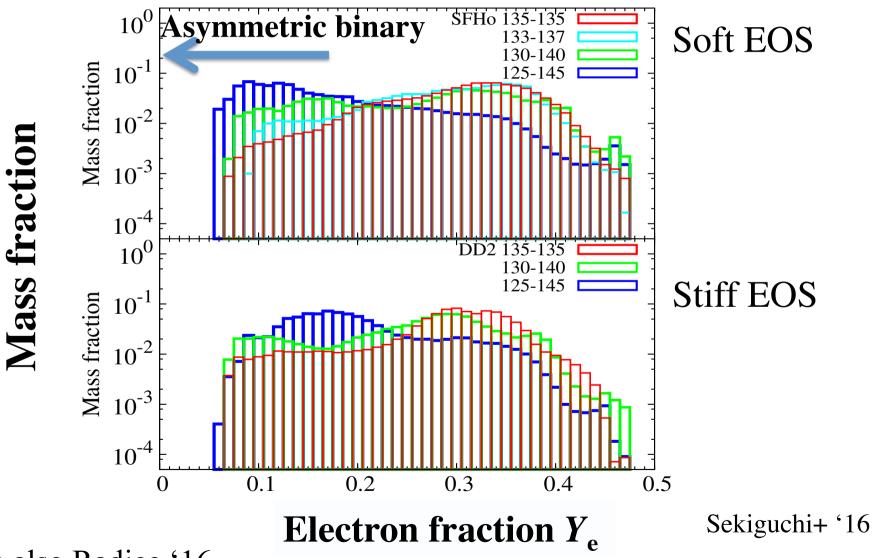
# Neutrino-radiation hydrodynamics simulation

SFHo (*R*~11.9 km): 1.25-1.55 M<sub>sun</sub>

0.002 [ms]

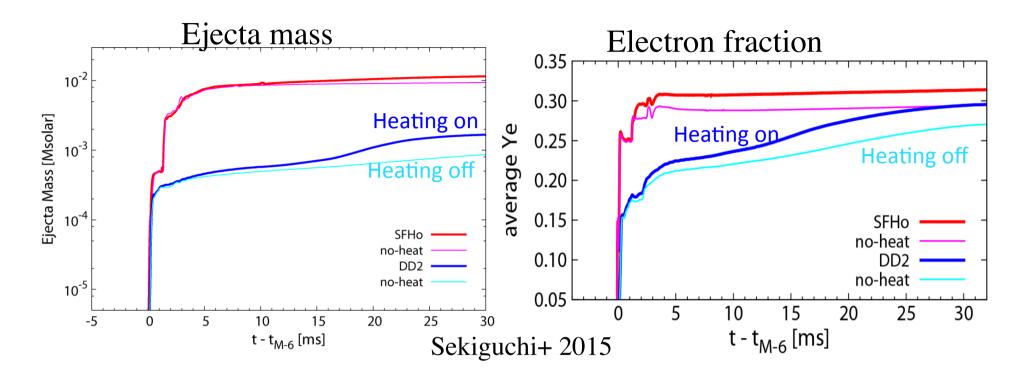
## More neutron-rich except for disk surrounding BH




**Green = neutron rich** 

Sekiguchi et al. (2017 hopefully)

#### **Electron fraction distribution:**


**Broad irrespective of EOS and mass** 

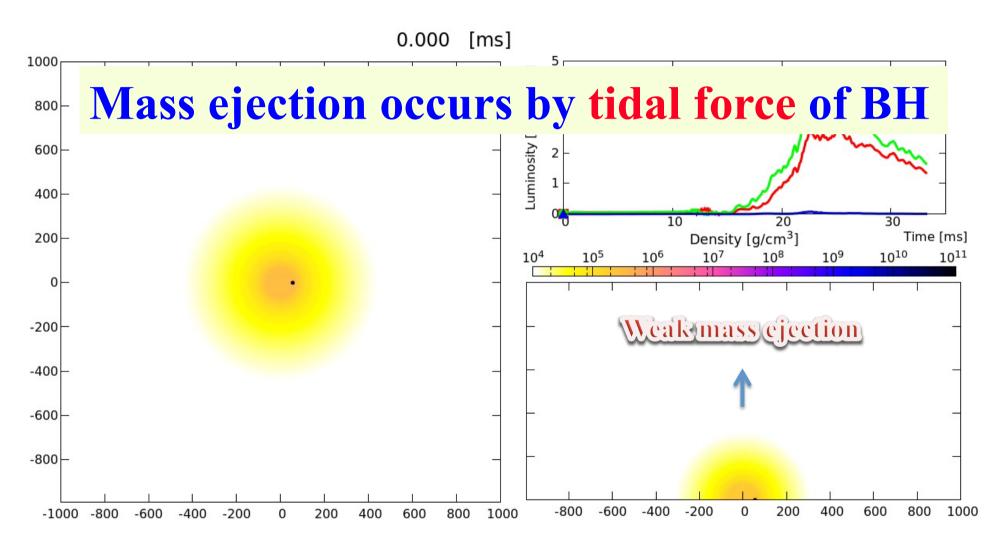
→ Good for producing a variety of r-elements



See also Radice '16

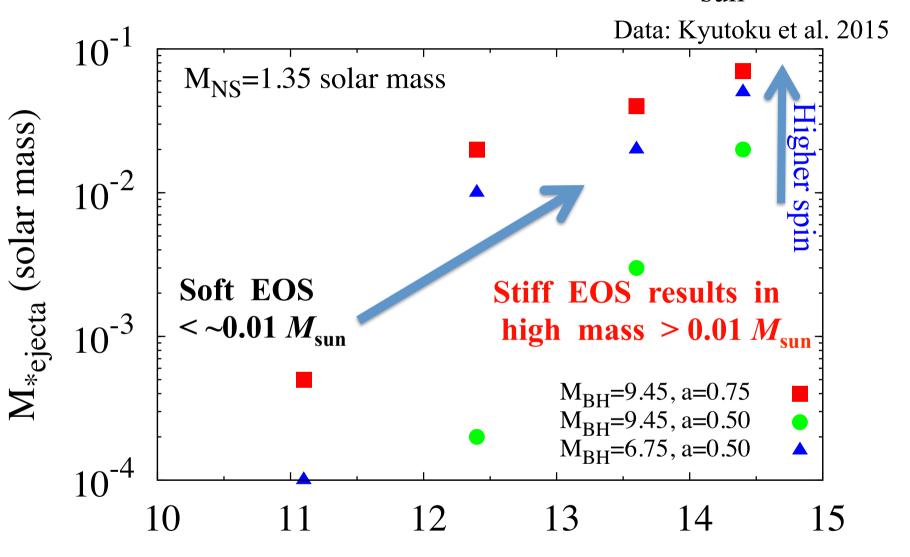
#### Neutrino irradiation: subdominant effect




#### Neutrino irradiation from MNS increases

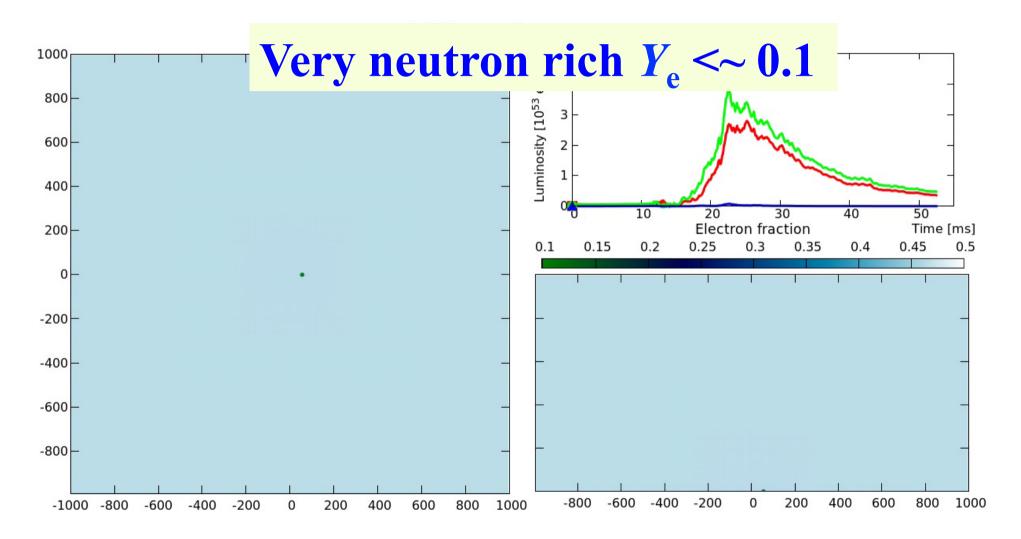
- $\triangleright$  the ejecta mass by  $\sim 0.001$  solar mass
- > Average value of  $Y_e$  by  $\sim 0.03$
- ✓ Note that neutrino luminosity decreases in ~100 ms

See also, Perego et al. 2014; Goriely et al. 2015; Martin et al. 2015; Foucart et al. 2016


# BH-NS merger (SFHo EOS: density)

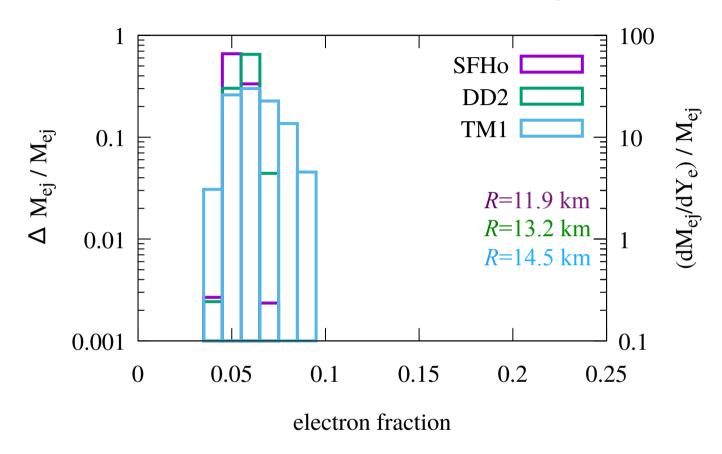
$$M_{\rm BH}$$
=5.4 $M_{\rm sun}$ ,  $M_{\rm NS}$ =1.35 $M_{\rm sun}$ ,  $a_{\rm BH}$ =0.75




Kyutoku et al. hopefully 2017

# **BH-NS** with NS mass $1.35M_{sun}$




Radius of 1.35 solar mass NS High BH spin is important for mass ejection

# BH-NS merger (SFHo EOS: electron frac) $M_{\rm BH}$ =5.4M<sub>sun</sub>, $M_{\rm NS}$ =1.35M<sub>sun</sub>, $a_{\rm BH}$ =0.75



Kyutoku et al. hopefully 2017

# Electron fraction of ejecta



- Quite low electron fraction irrespective of EOS (Foucart et al., '13, 14, 15..., Kyutoku+ hopefully '17)
- Likely to primarily produce heavy r-elements

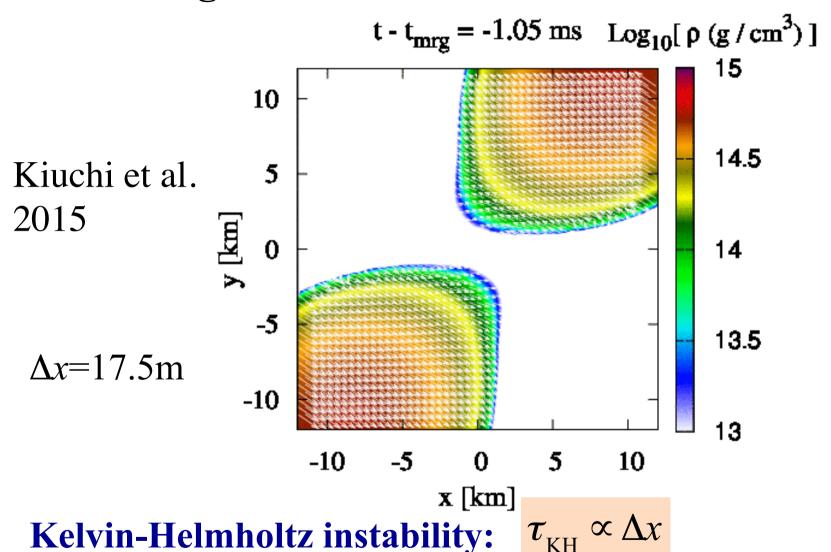
# Dynamical ejecta properties in NR

#### **♦**Mass:

- NS-NS:  $\sim 10^{-3}$ —0.02  $M_{\rm sun}$  depending on each mass & EOS: Soft EOS &  $\sim 2.7$   $M_{\rm sun}$  is favorable (Hotoke+ 13, Sekiguchi+ 15,16, Radice+ 16, Lehner+ 15,16)
- BH-NS: 0—0.1  $M_{\rm sun}$ : Stiff EOS is favorable; high BH spin is also the key (Foucart+ '13-15, Kyutoku+15): --  $M_{\rm eiect} \sim 0.2$ —0.5  $M_{\rm disk}$

#### **♦** Electron fraction

- NS-NS: Broad distribution of  $Y_e$  with average  $\langle Y_e \rangle \sim 0.2$ —0.3: For asymmetric case,  $\langle Y_e \rangle$  could be  $\langle 0.2 \rangle \sim 0.2$
- BH-NS: Peak at  $Y_e < 0.1$  (Foucart+ '13-15, Kyutoku+ '17)
- **Typical velocity**: 0.15—0.25 c; max could be  $\sim 0.8$  c


# IV Early Viscous/MHD ejecta for NS-NS

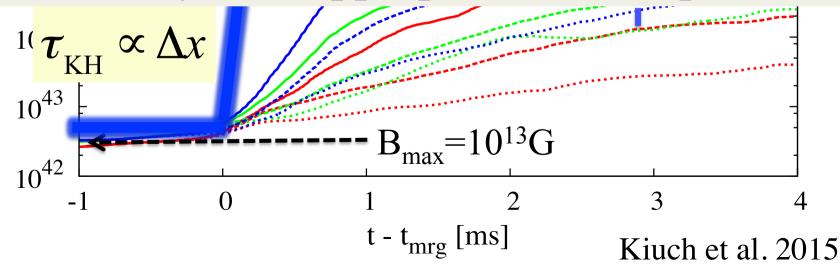
- MHD/viscous effects are likely to play a role (Fernandez-Metzger+ '13—15, Just et al. '15 ....)
- But, previous simulations are studied only for torus surrounding BH (or very artificial NS)
- Realistic remnants = MNS + torus, for which no well-resolved MHD or viscous simulations
- MNS of differential rotation has potential for mass ejection

# Physical state for the merger remnants

- Remnant MNS are *magnetized* & *differentially rotating* → subject to MHD instabilities
- MHD simulations (e.g., Price & Rosswog, '07, Kiuchi et al. '14, '15) suggest that magnetic fields would be significantly amplified by Kelvin-Helmholtz instability → turbulence may be induced

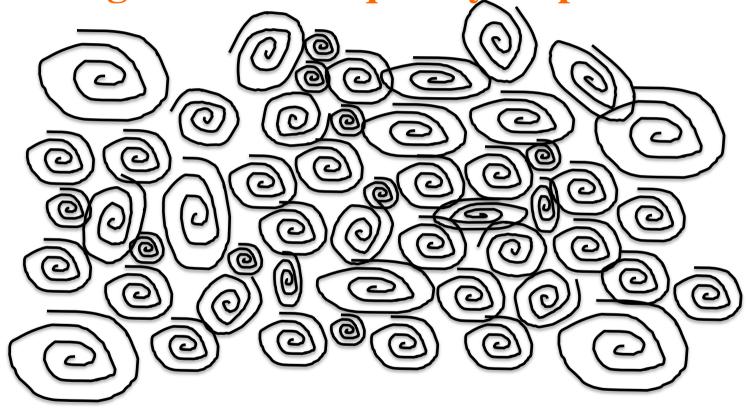

### **High-resolution GRMHD for NS-NS**




- → Magnetic field should be amplified by winding
- → Quick angular momentum transport ? (not yet seen)

# Magnetic energy: Resolution dependence

B field would be amplified in  $\Delta t \ll 1$  ms  $\rightarrow$  turbulence?




Purely hydrodynamics or radiation hydrodynamics is not likely to be appropriate for this problem



## Shear motion at the merger

→ huge number of vortexes are formed and magnetic field is quickly amplified



- → further shear motion → turbulence
- → turbulent (effectively global) viscosity

## For post-merger dynamics,

- Obviously more resolved MHD simulation is needed
  - → But it is not feasible due to the restriction of the computational resources (in future we have to do)
- One alternative for exploring the possibilities is viscous hydrodynamics (Radice '17, Shibata et al. '17)

✓ Note that we do not know whether viscous hydrodynamics can precisely describe turbulence fluid

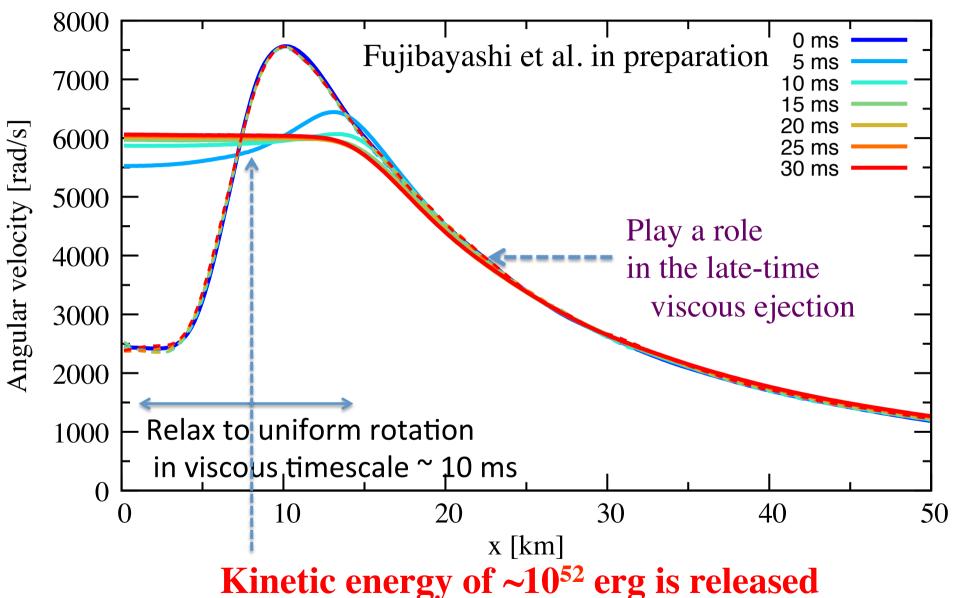
Viso 
$$\tau_{v} \approx \frac{R^{2}}{v} = \frac{1}{\alpha_{v} \Omega_{e}} \frac{\left(R\Omega_{e}\right)^{2}}{c_{s}^{2}} \sim 10 \left(\frac{\alpha_{v}}{0.01}\right)^{-1} \text{ ms}$$

Employ covariant & causal GR viscous hydro (Israel & Steward)

<u>Initial condition</u>: Merger remnant of 1.35-1.35M<sub>sun</sub> NS-NS

Alpha viscosity;  $v = \alpha_v c_s^2 \Omega^{-1}$  with  $\alpha_v = 0.01$ 

<u>EOS</u>: DD2 ( $R_{NS} = 13.2 \text{ km}$ )


 $\rightarrow$  Dynamical ejecta mass  $\sim 0.001 M_{\rm sun}$ 

Wide 1500×1500 km

300×300 km

Density in *x-z* plane

### **Evolution of angular velocity**



Kinetic energy of ~10<sup>52</sup> erg is released

→ early viscous ejection

## Ejecta mass and $Y_e$ distribution

t < 10—20 ms: Differential rotation of MNS  $\rightarrow$  rigid rotation  $\rightarrow$  viscous heating  $\rightarrow$  ejecta of mass >  $10^{-2.5} M_{\text{sun}}$ 



Time [ms]

### Viscous hydrodynamics for post-merger MNS

(S. Fujibayashi et al. in preparation)

Electron fraction

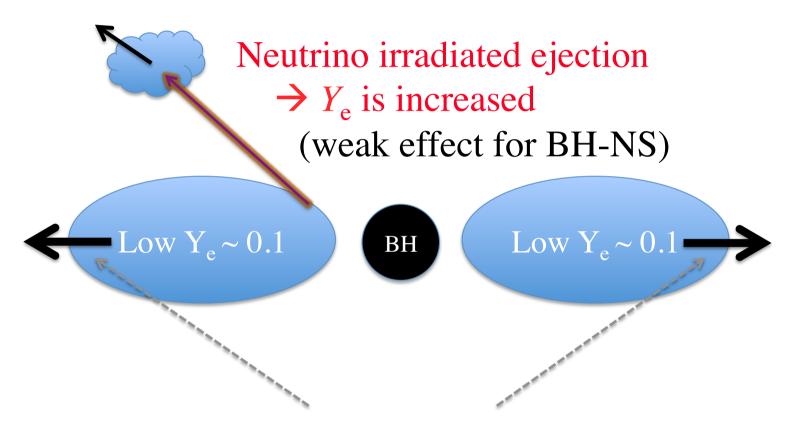


# Dynamical + MHD/viscous ejecta in NR

Total ejecta mass could be  $\sim 0.01 \, M_{\rm sun}$  or more

|                                | Nearly equal mass $(M_{\text{tot}} \sim 2.7 M_{\text{sun}})$                                                                 | Unequal mass:<br>$m_1/m_2 < 0.9$<br>$(M_{\text{tot}} \sim 2.7 M_{\text{sun}})$                       | Small total mass system $(< 2.6 M_{sun})$ |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Soft EOS (R=11-12 km)          | $\begin{array}{c} \text{MNS} \rightarrow \text{BH} \\ \text{M}_{\text{eje}} \sim 10^{-2} \text{ M}_{\text{sun}} \end{array}$ | $\frac{\text{MNS} \rightarrow \text{BH}}{\text{M}_{\text{eje}} \sim 10^{-2} \text{ M}_{\text{sun}}}$ | MNS (long lived) $M_{eje} \sim ??$        |
| Stiff EOS ( <i>R</i> =13-15km) | MNS (long lived) $M_{eje} \sim 10^{-2} M_{sun}$                                                                              | MNS (long lived) $M_{eje} \sim 10^{-2} \; M_{sun}$                                                   | MNS (long lived) $M_{eje} \sim ??$        |

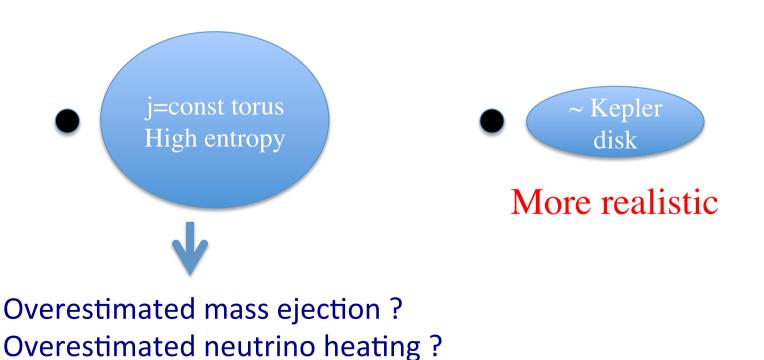
To be studied


- $> < Y_e > \sim 0.2 0.3$  (likely)
- >Y<sub>e</sub> has a wide distribution > Good for nucleo-synthesis

# V Long-term viscous disk wind

- ➤ Studies have been done mostly for BH-disk systems (Fernandez-Metzger, '13-15, Just+ '15, Siegel-Metzger '17; Natural model for BH-NS merger)
- 10—20% of mass of disk surrounding a spinning BH is likely to be ejected by **viscous ejection**
- Due to  $Y_e$  freeze-out in the absence of strong neutrino sources, low  $Y_e$  matter could be ejected

#### **Basic Picture**


(Fernandez-Metzger '13,14, Just '15, .....)



Viscous ejection of mass 10-20% of torus mass  $Y_e$  freeze out  $\rightarrow$  Low  $Y_e$  is preserved (good r-process)

#### Concern

- ✓ Initial disk model is rather artificial, in particular,
- j=const angular momentum distribution is often used, but it's unphysical, and in this case, torus becomes geometrically thick leading to easy ejection:



# Throughout mass ejection of BH-NS merger

- For tidal disruption of NS, high BH spin is necessary
  - → remnant should be high-spin BH + disk
- ightharpoonup Dynamical ejecta:  $M_{\rm eject} \sim 0.2 0.5 M_{\rm disk}$  (e.g., Kyutoku+ '15)
- $\triangleright$  Viscous ejecta from disk could be  $\sim 0.1-0.2~M_{\rm disk}$ 
  - → Comparable to dynamical ejecta
- ♦ Dynamical ejecta has small  $Y_e$  < 0.1 (e.g., Forcart+, '14)
- ♦ Viscous ejecta is also likely to give  $Y_e$ ~0.1–0.2 because of the absence of strong neutrino sources and resulting freeze-out effect (Fernandez-Metzger '13, 14, Just + '15, Siegel-Metzger '17)
- → Likely to be a strong site for the r-process nucleosyn.

#### Conclusion seems to be robust

# Long-term viscous disk wind: NS-NS case

- ➤ Remnant MNS-disk systems have been studied only with artificial treatments of MNS
- The presence of a strong neutrino emitter like MNS would change  $Y_e$  significantly (Metzger-Fernanndez '13, Perego+ '14, Fujibayashi+ '17)
- ✓ Caution:
- Luminosity of MNS decreases with time
- Low- $Y_e$  disk initial condition may not be realistic for MNS-disk system
- Need more realistic studies from NR merger simulation

# IV Summary

#### **♦** <u>NS-NS</u>:

- Dynamical + subsequent short-term MHD/viscous ejection are likely to provide ejecta mass of > 0.01  $M_{sun}$  irrespective of EOS and each mass of binary
- Y<sub>e</sub> is mildly low & broadly distributed: good
- Long-term evolution of post-merger MNS-torus: ???
- ◆ BH-NS: likely robust conclusion
- Dynamical ejection could provide  $0.01-0.1 \text{ M}_{\text{sun}}$ , in the case of TD and resulting  $Y_{\text{e}}$  is low < 0.1
- Post-merger BH-torus could also eject mass 20-50% of disk mass by viscous effect  $\rightarrow M_{\rm eje} > \sim 0.01 \, \rm M_{\rm sun}$ :  $Y_{\rm e}$  could also be mildly low  $\sim 0.1-0.2$