Numerical Simulations of Binary Neutron Star Mergers

David Radice^{1,2}

¹ Research Associate, Princeton University ² Schmidt Fellow, Institute for Advanced Study

INT-2017-2b

Neutron Star Merger Evolution

From Bartos, Brady, & Márka 2013

Multimessenger Emissions

From Fernández & Metzger 2016

Multimessenger Emissions

From Fernández & Metzger 2016

Gravitational Waves

Tidal Effects (I)

Tidal Effects (II)

From Del Pozzo+ 2013

Postmerger Peak Frequency

- Post-merger signal has a characteristic peak frequency
- Empirical correlations: fpeak vs. EOS properties
- Small statistical uncertainty: radii to within few hundred meters

Postmerger: Universal Relations

Complementary measure of the tidal parameters

See also Takami+ 2014; Rezzolla & Takami 2016; Dietrich+ 2016; Bose+ 2017

Postmerger: Universal Relations

Complementary measure of the tidal parameters

See also Takami+ 2014; Rezzolla & Takami 2016; Dietrich+ 2016; Bose+ 2017

Extreme-Density Physics

- Neutron stars in binaries have masses clustered around ~1.35 Mo
- What happens if we change the EOS at high density?
- Different collapse time of remnant?
- What about fpeak?
- What can we say about the EOS with GWs?

Einstein Toolkit / WhiskyTHC

Gravity: BSSN, Z4c;

GRHD: high-order FD; FV

Nuclear EOS

Neutrino radiation: leakage, ray-by-ray moment-based transport

THC = Templated Hydrodynamics Code

To be released soon!

$1.4~M_\odot~vs~1.4~M_\odot$

t = 0.00 ms

Hyperons

No Hyperons

$1.3~M_{\odot}~vs~1.3~M_{\odot}$

t = 0.00 ms

Hyperons

No Hyperons

Binding Energy

High-density EOS encoded in the binding energy

Gravitational Waves

- Frequency evolution: a black-hole formation signature
- EOS softening always imprinted as amplitude modulation

Detectability

What About Magnetic Fields?

Magneto-Turbulence Effects

- MHD instabilities are known operate at a scale of few meters or less
- Resolution in global simulations is orders of magnitude too low
- Previous approach: neglect these effects or use unrealistically large Bfields & idealized configurations
- Our approach: explicit subgrid-scale modeling with large-eddy simulations

See also: Shibata & Kiuchi 2017

Large-Eddy Simulations (LES)

From: T. Itami; <u>http://www.cradle-cfd.com/tec/column04</u>

Large scale flow is resolved, small scale flow is modeled

Relativistic LES

Special relativistic Euler equations

$$S_i = \rho h W^2 v_i \qquad \qquad \partial_t S_i + \partial_j (S_i v^j + p) = 0$$

Only large scales are resolved in a simulation

$$\partial_t \overline{S_i} + \partial_j (\overline{S_i v^j + p}) = 0$$

Small scales are modeled

$$\overline{S_i v^j} = \bar{S}_i \bar{v}^j + \tau_i^{\ j} \qquad \partial_t \bar{S}_i + \partial_j (\bar{S}_i \bar{v}^j + \bar{p}) = -\partial_j \tau_i^{\ j}$$

Turbulent-Viscosity Models

Rely on numerical viscosity; Implicit LES approach

$$\tau_{ij} = 0$$

Turbulence modeled as an effective viscosity: Smagorinsky (1963)

$$\tau_{ij} = -2\nu_T \overline{\rho h W^2} \left[\frac{1}{2} (\partial_i \bar{v}_j + \partial_j \bar{v}_i) - \frac{1}{3} \partial_k \bar{v}^k \delta_{ij} \right]$$

 ν_{T} : turbulent viscosity

- Relativistic LES not relativistic viscous hydrodynamics
- Lorentz invariance is broken and only recovered as a limit*
- ν_T is not an intrinsic fluid quantity

* Eyink & Drivas 2017

Mixing Length Theory

Turbulent viscosity can be written in terms of characteristic speed and length

 $\nu_T = \ell_{\min} c_s$

I mix is the correlation scale (typical eddy size) of the turbulence.
Two ways to estimate:

1. for MRI driven turbulence we assume

$$\ell_{\rm mix} \sim \lambda_{\rm MRI} \sim 3 \,\mathrm{m} \,\left(\frac{\Omega}{4 \,\mathrm{rad}\,\mathrm{ms}^{-1}}\right)^{-1} \left(\frac{B}{10^{14} \,\mathrm{G}}\right)$$

2. equivalent choice [see Shibata & Kiuchi 2017] is

$$\ell_{\rm mix} \sim H_p \sim c_s / \Omega_s \sim 10 \, {\rm km} \qquad \ell_{\rm mix} = \frac{\alpha}{c_s} c_s / \Omega$$

observations* and simulations+ show: $\alpha \gtrsim 0.1$

* King+ 2007 + Shi+ 2016

Mixing Length

- MRI studies focus on steady-state thin-disk flows
- HMNS evolution is non-steady (and not a thin disk),
- MRI must do something within few rotational periods to be relevant for GWs
- Current simulations of HMNS available support $\ell_{mix} \sim \lambda_{MRI}$
- Caveat: these simulations are too short! More work needed!

Angular Momentum Transport

Delayed collapse?!?

DR 2017

See also Shibata & Taniguchi 2006; Kastaun+ 2015, 2016; Hanauske+ 2016

DR 2017

DR 2017

See also Shibata & Taniguchi 2006; Kastaun+ 2015, 2016; Hanauske+ 2016

DR 2017

Effect on the Waveforms

- f_{peak} is robust
- GW amplitude more sensitive
- MHD models needed

Effect on neutrino luminosity

- Inverted hierarchy compared to CCSNe: $L_{\nu_e} \lesssim L_{\bar{\nu}_e}$
- The remnant is re-leptonizing
- Turbulent dissipation some impact on luminosity: r-process?

The Origin of the Elements

How are heavy elements formed?

R-process Sites

Magnetorotational supernovae

- Core-collapse supernovae
 - Neutron star mergers
 - Nuclear explosions

Roberts+ 2016

DR+ 2017

Compact Binary Mergers

- Neutron-rich outflows: the site of the r-process?
- Nucleosynthetic yields
- Radioactively powered transients

Strong and Weak R-process

Nucleosynthetic yields, opacities, and radioactive heating: the composition is the most important parameter

Neutron-Star Black-Hole Merger Outflows

Tidal disruption of NS

- Ejects ~up to $10^{-1} M_{\odot}$
- Very neutron rich
- Crucially depends on R_{NS}, M_{NS}, M_{BH}, and a_{BH}

From Foucart+ 2014

Neutron Star Merger Outflows

DR, Galeazzi, Lippuner+ 2016

Secular Ejecta

From Fernandez+ 2015

From Metzger+ 2014

Late-time ejecta can in some cases dominate yields and have an impact on the EM signal. Need to be included in emission models.

Approximate neutrino transport

1. Different treatment for trapped and free-streaming components

Trapped component: leakage

- Use effective emissivities weighted with the optical depth
- Leaked trapped neutrinos become free-streaming

Free-streaming component: MO

1. Free-streaming neutrinos stream radially out

$$\vec{J} = n_{\nu}\vec{k} \qquad \qquad \nabla\cdot\vec{J} = R_{\nu}^{\text{eff}} - \kappa_{a}^{\text{eff}}n_{\nu}$$

2. Assume \vec{t} to be a Killing vector

 $\vec{p}_{\nu} \cdot \vec{t} = \text{const}$

- 3. Use effective grey emissivities and opacities (no scattering)
- 4. Solve equations fully-implicitly on a radial grid "ray-by-ray"

- Mostly grey
- Idealized geometry
- Simple microphysics (no scattering!)

- Computationally inexpensive
- Clear physical interpretation
- No "radiation shocks"
- Velocity dependent terms
- Some spectral effects

Time = 0 ms

Outflows

Record outflows at ~440 km

Impact of Neutrino Radiation

- · The tidal tail is also irradiated
- Strong r-process yields are robust;
- but non-equilibrium effects are crucial: need spectral transport

See also: Sekiguchi 2015, 2016, and Foucart+ 2015, 2016

DR+ in prep

Impact of Equation of State

- Nuclear EOS affects composition and ejecta mass
- Relative abundances are robust

Uncertainties: Ejecta Mass

EOS: SFHo $M = 1.35 M_{\odot}$

Simulation	Cooling	Heating	Ejecta Mass [Msun]
DR+ in prep	X	-	3.5 x 10 ⁻³
DR+ in prep	X	X	4.1 x 10 ⁻³
Palenzuela+ 2015	X	-	3.2 x 10 ⁻³
Bauswein+ 2013	-	-	4.8 x 10 ⁻³
Sekiguchi+ 2015	X	-	10.0 x 10 ⁻³
Sekiguchi+ 2015	X	X	11.0 x 10 ⁻³

Factor of ~3 uncertainty in the ejecta mass!

Uncertainties: Composition

- Not yet a consensus on the exact composition
- Quantitative differences for nucleosynthesis, opacities

Conclusions

Conclusions

- Postmerger GWs: probing of extreme-density physics
- MHD turbulence effects: what is ℓ_{mix} ?
- More work needed for fully-quantitative nucleosynthetic yield predictions: MHD turbulence, detailed microphysics