
Two topics:

neutrino flavor transformation
from compact object mergers

and

reverse engineering

the rare earth peak

Gail McLaughlin

North Carolina State University

Collaborators: Jim Kneller (NC State), Alex Friedland (SLAC), Annie Malkus (University of Wisconsin), Matt Mumpower (LANL),

Albino Perego (Darmstadt), Andrew Steiner (UTK), Rebecca Surman (Notre Dame), Daavid Väänänen (UBC), Nicole Vaash (Notre

Dame), Alexey Vlasenko (NC State), Yonglin Zhu (NC State)



Topic one: neutrino flavor transformation



Why examine neutrino flavor transformation for mergers?

• neutrinos influence nucleosynthesis

• neutrinos can contribute to jet production

• neutrinos could be detected (if lucky!)

• and any other time you want to know the flavor content of the

neutrino field.



Example: neutrinos influence nucleosynthesis

Neutrinos change the ratio of neutrons to protons

νe + n→ p+ e−

ν̄e + p→ n+ e−



Oscillations change the neutrinos

Neutrinos change the ratio of neutrons to protons

νe + n→ p+ e−

ν̄e + p→ n+ e−

Oscillations change the spectra of νes and ν̄es

νe ↔ νµ, ντ

ν̄e ↔ ν̄µ, ν̄τ

Mergers have less νµ, ντ than νe and ν̄e

→ oscillation reduces numbers of νe, ν̄e



Neutrino oscillations usually studied in free streaming limit

Usually calculated in a regime with few collisions, so above trapping

surfaces → free streaming approximation

Interesting flavor transformation behavior stems from the potentials

neutrinos experience. These potentials come from coherent forward

scattering from neutrons, protons, electrons, positrons, neutrinos.



Oscillations: scales

Modified wave equation

i~c
d

dr
ψν =





Ve + V a
νν − δm2

4E cos(2θ) V b
νν + δm2

4E sin(2θ)

V b
νν + δm2

4E sin(2θ) −Ve +−V a
νν + δm2

4E cos(2θ)



ψ

Scales in the problem:

• vacuum scale δm2

4E

• matter scale Ve ∝ GFNe(r)

• neutrino self-interaction scale

Vνν ∝ GFNν ∗ angle−GFNν̄ ∗ angle



Oscillations: matter neutrino resonance

Modified wave equation

i~c
d

dr
ψν =





Ve + V a
νν − δm2

4E cos(2θ) V b
νν + δm2

4E sin(2θ)

V b
νν + δm2

4E sin(2θ) −Ve +−V a
νν + δm2

4E cos(2θ)



ψ

Scales in the problem:

• vacuum scale δm2

4E

• matter scale Ve ∝ GFNe(r)

• ν self-interaction scale Vνν ∝ GFNν ∗ angle−GFNν̄ ∗ angle

Ve ∼ Vνν → MNR oscillations

e.g. Mergers, black hole accretion disks, Malkus et al ’12, ’14, Duan, Frensel, Fuller, Kneller,

Malkus, GCM, Qian, Patwardhan, Perego, Shalgar, Surman, Tian, Wu, Väänänen, Volpe, Zhu



Oscillations: nonlinear

Modified wave equation

i~c
d

dr
ψν =





Ve + V a
νν − δm2

4E cos(2θ) V b
νν + δm2

4E sin(2θ)

V b
νν + δm2

4E sin(2θ) −Ve +−V a
νν + δm2

4E cos(2θ)



ψ

Whenever Vνν is important, the problem is very nonlinear. Vνν
depends on the number density of each flavor of neutrino, which

depends how the neutrinos have oscillated.

multi-energy : each energy neutrino and antineutrino has its own

equation, solved simultaneously with the others

multi-angle : each emitted neutrino and antineutrino has its own

equation, solved simultaneously with the others

**This means thousands of these coupled equations.**



Survival Probabilites

We plot results as survival probabilities.

Pνe
= |ψνe

|2, Pν̄e
= |ψν̄e

|2

Pνe
is the probability that a neutrino that starts as electron type will

still be electron type when it is measured later.

Start in flavor states (assume fast oscillations saturate)



Multi-energy, single angle calculation

Neutrino emitting surface is 45 km, T = 6.4 MeV

Antineutrino emitting surface is 45 km, T = 7.1 MeV

Launch a neutrino at 45 degrees.



Merger oscillations: potentials for

same size νe and ν̄e surfaces
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Merger oscillations: survival probabilities for

same size νe and ν̄e surfaces

multi-energy, single angle calculations

10-24

10-22

10-20

10-18

10-16

105 106 107 108 109 1010

Po
te

nt
ia

l (
er

g)

Position (cm)

MNR
region

nutation
region

MSW
region

Ve
|Vν|
∆12

|∆32|

fig. from Malkus et al 2016
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MNR transition: explained by single-energy

single-angle model

Compare numerics to prediction Malkus et al, Wu, et al, Vaananen et al
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Merger oscillations: potentials for

different size νe and ν̄e surfaces
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Merger oscillations: survival probabilities for

different size νe and ν̄e surfaces

multi-energy, single angle calculations
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Analytic survival probability prediction

also works for symmetric MNR transitions

Geometry causes Vνν to switch sign

Symmetric MNR Fig. from Väänänen ’16



Matter densities in a

dynamical merger calculation

Zhu et al ’16



Resonance locations, Ve ∼ Vνν, in the

dynamical merger remnant
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Potentials and survival probabilities along

a sample trajectory
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Resonance locations, Ve ∼ Vνν, in the

dynamical merger remnant
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Resonance locations, Ve ∼ Vνν, in the

dynamical merger remnant
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Conclusions

Rapid progress in last couple years:

• Predictions of matter neutrino resonance transition behavior

• Likely exists in mergers

• Likely affects nucleosynthesis

What to do next?

• a little more theory work

• keep up with dynamical models as they advance transport

• more physical effects, e.g. general relativity

Long term

• multi-angle effects in full geometry

• decoupling regime, feedback into dynamical calculation



Topic 2:

reverse engineering the

rare earth peak



The solar rare earth peak

Solar abundance data with the rare earth peak in red



Approaches to studying the rare earth peak

Usual procedure:

• Continue to improve hydrodynamics, neutrino transport and

general relativistic treatments in astrophysical simulations

• Calculate abundance pattern with a nuclear model and

thermodynamic conditions as input

Alternative approach:

• Assume a set of thermodynamic conditions

• Back out properties of the nuclear model, for this set of conditions



Step one: Identify a “base” mass model

Choose the Duflo-Zuker mass model since it doesn’t produce a rare

earth peak, green line is “very neutron rich cold conditions”, red line is

“hot conditions” Fig. from Mumpower et al 2016



Step two: Add a term to the base model

What term though?



Step two: Add a term to the base model

M(Z,N) =MDZ(Z,N) + aNe
−(Z−CZ)2/(2f) (1)

Decision: let each isotone be independent (aN s). Why? Measured

data shows similar isotone structure for nearby elements. Require an

exponential fall off in element number (Z) to avoid altering measured

masses and also to keep the fit to a local region.



Step two: Add a term to the base model

M(Z,N) =MDZ(Z,N) + aNe
−(Z−CZ)2/(2f) (2)

Now use MCMC to determine the aN and the CZ

Details: Metropolis algorithm, start with all aN = 0, for each choice of aN , CZ consistent separation energies, beta decay Q

values and neutron capture rates are calculated, algorithm converges in about 10,000 steps.



Step three: use MCMC to find a better

fit to the rare earth peak

Mumpower et al 2017



Example calculations

Mumpower et al 2017, Nd isotopic chain



Including measured beta decay rates

Fig. from Nicole Vassh



Comparing with recently measured masses

Fig. from Nicole Vassh



Conclusions

Reverse engineering of nuclear masses looks promising

• use MCMC for nuclear masses, coordinated with neutron capture,

beta decay

• different classes of thermodynamic conditions predict different

mass patterns

Where to go from here

• continue to improve MCMC

• continue compare with (and include) measured data as it becomes

available

• examine additional uncertainties



Conclusions, cont.

Goal

• test the dynamical formation mechansim of the rare earth peak (as

opposed to the fission formation mechanism)

• eventually infer astrophysical conditions, this is complementary to

approach taken by observations, simulations


