Constraints on the contributions of Neutron-Star Mergers and Supernovae to the r-Process

G. J. Mathews – University of Notre Dame

National Institute for Nuclear Theory program INT 17-2b: *Observational Signatures of r-process Nucleosynthesis in Neutron Star Binary Mergers* August 1, 2017 Shibagaki, Kajino, GJM, Chiba, Nishimura, Lorusso ApJ, 816, 79 (2016)

Which model is the site for the *r*-Process?

Neutrino Driven Winds in the High Entropy Supernova Bubble

Ejection of neutronized core material in a low-mass supernovae or MHD jets

Neutron star mergers

r-process material appears to arrive early consistent with a supernova origin

Mathews & Cowan, Sci. (1990)

Argast et al. 2004 A&A

r-process in neutron star mergers is delayed at low metallicity

Mathews & Cowan, Sci. (1990)

NSM

Argast et al. 2004 A&A

Evidence of r-Process in Neutron Star Mergers

There is evidence for a rare (~10%) strong r-process contributor that produces the heaviest elements

Reticulum II Dwarf Galaxy Actinide Boost Stars

Evidence of strong (~0.01 M_o) rare r-process enhancement in Reticulum II Dwarf Galaxy

Ji, Frebel, Chiti, Simon, Nature, 531, 610 (2016); ApJ 830, 93 (2016) Roderer et al. ApJ (2016)

1 out of 10 Dwarf galaxies ~10%

Actinide boost stars

Does the universality hold up to the actinides??

Some MPH stars exhibit a very large Th abundance

Can have apparent ages less than 0???

			"Standard" Stars With $\log \epsilon$ (La/Eu) < + 0.25				Stars With Actinide Boost			
Chronometer Pair	P.R. at Time "zero"	log(P.R.)	Observed Mean (dex)	No. Stars	Age (Gyr)	Age Spread (Gyr)	Observed Mean (dex)	No. Stars	Age (Gyr)	Age Spread (Gyr)
Th/La	0.585	-0.233	$-0.67 \pm 0.03 \ (\sigma = 0.10)$	16	20.4 ± 4.1	4.7	$-0.37 \pm 0.03 \ (\sigma = 0.05)$	4	6.4 ± 4.3	2.3
Th/Eu	0.463	-0.334	$-0.56 \pm 0.03 \ (\sigma = 0.08)$	16	10.6 ± 4.1	3.7	$-0.24 \pm 0.03 \ (\sigma = 0.06)$	4	-4.4 ± 4.3	2.8
Th/Er	0.236	-0.627	$-0.91 \pm 0.04 \ (\sigma = 0.11)$	12	13.2 ± 4.3	5.1	$-0.66 \pm 0.08 \ (\sigma = 0.17)$	4	1.5 ± 5.5	7.9
Th/Hf	0.648	-0.188	$-0.61 \pm 0.05 (\sigma = 0.13)$	8	19.7 ± 4.5	6.1	-0.26 ± 0.06	1	3.4 ± 5.7	
Th/Ir	0.0677	-1.169	$-1.42 \pm 0.06 (\sigma = 0.15)$	8	11.7 ± 4.8	7.0	$-1.12 \pm 0.16 (\sigma = 0.18)$	2	-2.3 ± 8.8	8.4
Th/Pb	0.111	-0.955	$-1.21 \pm 0.23 \ (\sigma = 0.32)$	2	> 9.9	11.	-0.43 ± 0.25	1		

Roederer et al. ApJ 698, 1963 (2009)

Ren et al. A&A 537, A118 (2012) Hamburg/ESO R-process enhanced star survey (HERES) Th abundance detected for 17 metal-poor stars $= > \sim 10\%$ actinite boost stars.

black: detected red: upper limit green: literature

Ejects a large amount of rprocess material

Actinide Boost Stars => Rare event (~10%) Undergoes fission recycling

Postulate: These events are the NSMs

How can NSMs appear at low metallicity?

Arrival of r-process material in the halo requires chemo-dynamical modeling of the Local Group

At least some metal-poor r-process material in the halo arrives via merging of halo dwarf galaxies

Neutron star merger r-process in dwarf galaxies can apper at low metallicity

Hiria, et al. ApJ (2015)

 τ (merger) = 10 Myr

In dwarf galaxies, metallicity growth time scale can be much longer => Lower metallicity => Reticulum II NSM event could have been delayed

 τ (merger) = 500 Myr

Problem with the Neutrino Heated Wind r-

Process

Neutrino Luminosity $\sim 10^{53}$ erg/sec Neutrino Heating Produces a high entropy bubble

 $S = \int dt \ (dQ/dt)/T$

Not enough neutrons for the heaviest *r*-process nuclides

S. Wanajo, ApJL, L22 (2013)

Most likely the NDW only produces the light r-process elements

What can make heavier r-process elements?

MHD jets? Neutron star mergers?

MHD Jets from proto neutron stars?

Nishimura et al (2005-2016) Winteler et al (2012) Nakamura et al.(2015)

MHD jets are rare

Small fraction of all SNe ~ 1%
 High magnetic fields
 High rotation

This is a general problem with jet models

- Short timescale => rapid freezeout
- => bypass isotopes near closed nuclear shells

r-procss nucleosynthesis in the supernova MHD jet

Nishimura, Kajino, GJM, Nishimura, Suzuki (2012) PRC, 85, 048801

38 neutron-rich isotopes including 100 Kr, $^{103-105}$ Sr, $^{106-108}$ Y, $^{108-110}$ Zr, 111,112 Nb, $^{112-115}$ Mo, and 116,117 Tc. Measured at RIKEN RIBF

Gaps depend upon ejection time scale and beta decay rates

Lorusso et al. (2015)

R-PROCESS NUCLEOSYNTHESIS IN THE MHD+NEUTRINO-PAIR HEATED COLLAPSAR JET

K. Nakamura, S. Sato, S Harikae, T. Kajino and GJM, A&A, 582, 234 (2015)

MT 2008 Dec 1 21:21:28 00 A011_00Ea

R-Process in the collapsar jet?

K. Nakamura, S. Sato, S Harikae, T. Kajino, and GJM, A&A (2015)

May need a process to fill in above and below r-process peaks

• Fission recycling in neutron star mergers

Key Nuclear Physics Issue: Fission barriers and mass distributions near the termination of the r-process path

Neutron star mergers can produce solar r-process abundance distributions, but this depends upon fission barriers and fragment mass distributions

Wanajo et al. ApJ (2014)

Goriely et al. PRL (2013)

r-process yields are sensitive to the termination of the r-process by beta-induced fission

Shibagaki, Kajino, GJM et al, ApJ, 816, 79 (2016)

Each possibility has advantages and disadvantages => One must consider the galactic chemical evolution rprocess contributions from all three sites

$$\frac{dM_i}{dt} = P_i(t) + E_i(t) + X_{in}f_{in}(t) - X_i[f_{out}(t) + B(t)]$$

Ejection rate of species i into the ISM

$$E_{i}(t) = \int_{m(t-\tau_{m})}^{m_{h}} (m_{i})X_{i}(t-\tau_{m})(m-m_{r}-m_{i})\phi(m)\psi(t-\tau_{m})dm$$

Production rate of newly synthesized species i into the ISM

$$P_{Fe}(t) = m_{Fe}(Ia)R_{Ia} + m_{Fe}(Ib)R_{Ib} + m_{Fe}(II)R_{II}$$

$$P_{rNSM}(t) = m_r(NSM)R_{NSM} + m_{Fe}(Ib)R_{Ib} + m_{Fe}(II)R_{II}$$

$$P_{rNDW}(t) = m_r(NDW)R_{SNII}$$

$$P_{rMHDJ}(t) = m_r(MHDJ)\epsilon_{MHDJ}R_{SNII}$$

$$R_{NSM} = \int_{m_l}^{m_h} dM_B\phi(M_B)\int_{q_l}^{1} dqf(q)\int_{a_l}^{a_h} daP(a)\psi(t - \tau_{m2} - t_G)$$

$$R_{SNII} = \int_{m_l}^{m_h} \phi(m)\psi(t - \tau_m)dm$$

Normalization

- R(SNII) = 1.9±1.1/Century Diehl, et al., Nature 439, 45 (2006).
- ε(MJDJ) =Fraction of SNe that make MHD jets = ~ 1% Winteler, et al., ApJ 750, L22 (2012).
- R(NSM) (1-28) x 10⁻³ /Century Kalogera, et al., ApJ 614, L137 (2004).

mass ejection rate

Relative contribution to the Solar-System rprocess material from NDW, MHD-jets, and neutron-star mergers?

Ejected Mass

=>

- $m_r(NDW) = 7.4 \text{ x } 10^{-4} \text{ M}_{\odot}$
 - Wanajo et al (2013)
- $m_r(MHDJ) \epsilon(MJDJ) = 0.6 \times 10^{-2} M_{\odot} \times (0.03 \pm 0.02)$
 - Winteler et al. (2012)
- $m_r(NSM) = (2\pm 1) \times 10^{-2} M_{\odot}$

$$f_{Fission} \approx$$

 $\frac{\mathrm{R}_{\mathrm{NSM}}\mathrm{M}_{\mathrm{r,NSM}}}{\epsilon_{MHDJ}\mathrm{R}_{\mathrm{CCSN}}\mathrm{M}_{\mathrm{r,MHDJ}}}$

NDW ~80% : MHDJ ~15% : NSM ~5%

$$f_{Weak} \approx \frac{\mathrm{R}_{\mathrm{CCSN}} \mathrm{M}_{\mathrm{r,Weak}}}{\epsilon_{MHDJ} \mathrm{R}_{\mathrm{CCSN}} \mathrm{M}_{\mathrm{r,MHDJ}}}$$

Universality at low metallicity?

Actinide Boost

Is Ret-II a NSM or a Jet?

- [Ba/Eu] NSM ~ -1
- [Ba/Eu] MHDJ ~ 0.3

[Ba/Eu] - Ret-II ~ -0.4-0.8
 – Looks like a NSM

Conclusions

- All three candidates contribute to the solar r-process abundances:
 - NDW, MHD jets, NS mergers
 - 80%, 15%, 5%
- The relative contributions of each environment may be discernable from the shortcomings of each model
- Fission barriers and beta induced fission rates crucial for A = 280-300
- [Ba/Eu] may be a crucial test for a fission recycling distribution