## Decay properties of neutron-rich nuclei

T. Marketin

Department of Physics, Faculty of Science, University of Zagreb

Observational Signatures of r-process Nucleosynthesis in Neutron Star Mergers Seattle, August 2017.







G. Lorusso *et al.*, Phys. Rev. Lett. 114, 192501 (2015) R. Caballero-Folch *et al.*, Phys. Rev. Lett. 117, 012501 (2016) S. Nishimura *et al.*, Phys. Rev. Lett. 106, 052502 (2011)







## Large-scale calculations



 $T_{\beta,\text{exp}}(s)$ 

P. Möller et al., At. Data Nucl. Data Tables 66, 131 (1997)

In 2003. the reference dataset is published, again based on the FRDM + QRPA, but also including the first-forbidden transitions using a gross statistical calculation.



 $10^{1}$ 

80

Proton Number

10<sup>3</sup>

 $10^{2}$ 

20

10<sup>4</sup>

10<sup>3</sup>

 $10^{2}$ 

10<sup>1</sup>

10<sup>0</sup>

10<sup>-1</sup>

10<sup>-2</sup>

10<sup>-3</sup>

10<sup>4</sup>

 $10^{3}$ 

10<sup>2</sup>

10<sup>1</sup>

 $10^{0}$ 

10<sup>-1</sup>

10<sup>-2</sup>

10<sup>-3</sup>

 $10^{-3}$ 

 $\Gamma_{eta, \mathsf{calc}}/T_{eta,\mathsf{exp}}$ 

β<sup>-</sup> decay (Theory: GT)

Total Error = 3.73 for 184 nuclei,  $T_{\beta,exp} < 1$  s

 $\beta^-$  decay (Theory: GT + ff)

Total Error = 3.08 for 184 nuclei,  $T_{\beta,exp} < 1$  s

 $10^{-2}$ 

Total Error = 4.82 for 546 nuclei,  $T_{\beta,exp} < 1000$  s

10<sup>-1</sup>

 $10^{0}$ 

Experimental  $\beta$ -Decay Half-life  $T_{\beta,exp}$  (s)

Total Error = 21.16 for 546 nuclei (13 clipped),  $T_{\beta,exp}$  < 1000 s



## **QRPA** calculations

Transitions are obtained by solving the pn-(R)QRPA equations

$$\begin{pmatrix} A & B \\ B^* & A^* \end{pmatrix} \begin{pmatrix} X^{\lambda} \\ Y^{\lambda} \end{pmatrix} = E_{\lambda} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} X^{\lambda} \\ Y^{\lambda} \end{pmatrix}$$

Residual interaction is derived from the Lagrangian density

$$\mathcal{L}_{\rho+\pi} = -g_{\rho}\bar{\psi}\gamma_{\mu}\bar{\rho}^{\mu}\vec{\tau}\psi - \frac{f_{\pi}}{m_{\pi}}\bar{\psi}\gamma_{5}\gamma^{\mu}\partial_{\mu}\vec{\pi}\vec{\tau}\psi$$

Total strength of a particular transition

$$B_{\lambda,J}(GT) = \left| \sum_{pn} \left\langle p \left\| \hat{O}_J \right\| n \right\rangle \left( X_{pn}^{\lambda,J} u_p v_n - Y_{pn}^{\lambda,J} v_p u_n \right) \right|^2$$

Decay rate is of the form

$$\lambda_{i} = D \int_{1}^{W_{0,i}} W\sqrt{W^{2} - 1} \left(W_{0,i} - W\right)^{2} F(Z,W)C(W)dW$$

$$T_{1/2} = \frac{\ln 2}{\lambda}, \qquad D = \frac{(G_F V_{ud})^2}{2\pi^3} \frac{(m_e c^2)^5}{\hbar}$$

Allowed decay shape factor:

$$C(W) = B(GT)$$

First-forbidden transitions shape factor

$$C(W) = k \left( 1 + aW + bW^{-1} + cW^2 \right)$$



| 1 <u> </u>                                                                    |                   | D3C*  |          | FRDM  |          |  |
|-------------------------------------------------------------------------------|-------------------|-------|----------|-------|----------|--|
| $\bar{r} = \frac{1}{N} \sum \log \frac{T_{calc.}}{T_{calc.}}$                 | $T_{ m exp.}$ [s] | ī     | $\sigma$ | ī     | $\sigma$ |  |
| $N \stackrel{\frown}{\underset{i}{\frown}} T_{exp.}$                          | < 1000            | 0.011 | 0.889    | 0.021 | 0.660    |  |
| г – 1/2                                                                       | < 100             | 0.057 | 0.791    | 0.040 | 0.580    |  |
| $\sigma = \left  \frac{1}{N} \sum_{i} \left( r_i - \bar{r} \right)^2 \right $ | < 10              | 0.061 | 0.645    | 0.046 | 0.515    |  |
|                                                                               | < 1               | 0.011 | 0.436    | 0.019 | 0.409    |  |
|                                                                               | < 0.1             | 0.041 | 0.195    | 0.021 | 0.354    |  |



| D3C*      |        |          |
|-----------|--------|----------|
|           | ī      | $\sigma$ |
| even-even | -0.037 | 0.331    |
| odd-Z     | 0.054  | 0.328    |
| odd-N     | -0.086 | 0.387    |
| odd-odd   | 0.089  | 0.582    |
| total     | 0.011  | 0.436    |

| FRDM      |        |          |
|-----------|--------|----------|
|           | ī      | $\sigma$ |
| even-even | 0.333  | 0.226    |
| odd-Z     | -0.128 | 0.288    |
| odd-N     | 0.124  | 0.436    |
| odd-odd   | -0.179 | 0.409    |
| total     | 0.019  | 0.409    |



G. Lorusso et al., Phys. Rev. Lett. 114, 192501 (2015)



Neutron number N





Position of the peak around  $A \approx 190$  depends critically on the amount of neutrons available after freeze-out.

Latest calculations provide systematically shorter half-lives in the region of heavy nuclei – significant consequences for the r-process.



## **Beta-delayed neutron emission**

In nuclei with small  $S_n$  an additional process is possible:



Beta-delayed neutron emission contributes neutrons at the late stages of the r-process, after the initial neutron flux has dissipated.



R. Caballero-Folch et al., Phys. Rev. Lett. 117, 012501 (2016)





neutron number

G. R. Keepin et al., Phys. Rev. 107, 1044 (1957)

Beta-delayed neutron emission does affect the resulting abundance pattern.



Calculation based on the finite amplitude method (FAM) – a formulation of the QRPA which allows for a quick determination of the nuclear response.

The interaction was also adjusted to dynamic properties of select nuclei – improved description of decay properties.









QVC correlations push states towards the Fermi energy – enhancing the density of states in vicinity of the FE.

Excellent description of GT resonance in <sup>208</sup>Pb and half-lives of the Ni chain.



Y. F. Niu et al., Phys. Rev. Lett. 114, 142501 (2015)