

Electromagnetic Signatures of r-process Nucleosynthesis in Neutron Star Binary Mergers, July 24 - August 18, 2017 (INT-17-2b)

Neutron star equation of state: the known and the unknown

Jérôme Margueron, IPN Lyon & INT Seattle

1- There exist many predictions for the nuclear EOS.

- How could we quantify their differences?
- How close there are from nuclear experimental knowledge?

2- Cold neutron stars: How nuclear experimental uncertainties propagate in extrapolation at high densities and isospin asymmetries?

3- Hot proto-neutron stars and ν propagation: What is the melting T of the pasta?

Collaboration with R. Casali (CTA Brazil), F. Gulminelli (LPC Caen), S. Reddy (INT), A. Roggero (INT).

Motivations

EOS: a nuclear physic challenge !

Equation of state in condensed matter physics :

EOS of pyrite to 80 GPa and 2400 K, Thompson et al., American Mineralogist 101 (2016) 1046

In nuclear physics, we only have 1 density (almost) at pressure P=0 !

INTIPOL

Could NS observation data provide the nuclear EoS ?

Recent attempts to deduce the nuclear EoS from:

- thermal X-rays emission,
- X-ray pulsations (NICER),
- Photospheric expansion,

Hebeler 2013 Ozel 2010, 2012, 2014 Steiner 2010, 2013

• • •

... NS merging (expected data from VIRGO/LIGO)

Maybe.. maybe not.. but nuclear physics experimental knowledge could help !

The empirical parameters: a way to characterise the nuclear EOS and to link them to nuclear experimental data

Empirical parameters

The empirical parameters code the bulk properties of the nuclear EoS.

80

x = 0.05x = 0.01x = 0

0.3

 ρ [fm⁻³]

0.4

0.5

$$\frac{\text{Taylor expansion of the EoS around } \rho_0 \text{ (theory):}}{\frac{E}{A} = E_{sat} + E_{sym}\delta^2 + (L_{sym}\delta^2)x + \frac{1}{2}(K_{sat} + K_{sym}\delta^2)x^2 + \dots$$
where $x = \frac{n - n_{sat}}{3n_{sat}}$ and $\delta = \frac{n_n - n_p}{n}$

Phenomenological mass formula (experiment):

• LD formula:
$$B(A, Z) = E_{sat} + E_{sym}I^2 + E_{surf}A^{-1/3} + \dots$$
 $I = \frac{N-Z}{A}$

- Droplet formula: including skin contribution ٠
- Compressible LD formula: $B(A, Z) = \frac{E}{A}(n_A, I) + E_{surf}A^{-1/3}$ • $n_A = n_{sat} \left(1 - \frac{3L_{sym}}{K_{sat}} I^2 \right)$

INTion

Experimental determination of the empirical parameters

- E_{sat} , E_{sym} : From fit of LDM through the nuclear chart, or from DFT adjustment.
- K_{sat}: from ISGMR [Blaizot, 1980]
 - \rightarrow better correlated to M_c [Khan, J.M. 2012]
- L_{sym}, K_{sym}: more difficult
 - Neutron skin in Pb,
 - ISGMR in neutron rich nuclei (K_{sym} , K_{τ}) [Garg+2010]

Measurement of neutron skin:

With strong probes:

- p-N elastic diffusion
- π , α , d scattering
- π photoproduction
- Heavy-ion collisions
- Electric dipole polarizability

With weak probes:

• PREX / C-REX

How well do we know the empirical parameters ?

Definition:

Around
$$n_{sat}$$
: $\frac{E}{A}(n,\delta) \approx e_{sat}(n) + e_{sym}(n)\delta^2 + e_{sym,4}(n)\delta^4 + \dots$

with
$$e_{sat}(n) = E_{sat} + \frac{1}{2}K_{sat}x^2 + \frac{1}{6}Q_{sat}x^3 + \frac{1}{24}Z_{sat}x^4 + \dots$$

 $e_{sym}(n) = E_{sym} + L_{sym}x + \frac{1}{2}K_{sym}x^2 + \frac{1}{6}Q_{sym}x^3 + \frac{1}{24}Z_{sym}x^4 + \dots$

Determination:

- \rightarrow Systematic comparison of model predictions:
 - \rightarrow Non relativistic interactions: Skyrme, Gogny, ...
 - \rightarrow Relativistic: RMF, RHF
- \rightarrow For models being adjusted on nuclear properties (binding energy, charge radius, etc...)

Model		$ ho_0$	E_0	K_0	Q_0	Z_0	E_{sym}	L_{sym}	K_{sym}	Q_{sym}	Z_{sym}
		${\rm fm}^{-3}$	${\rm MeV}$	MeV	${\rm MeV}$	MeV	MeV				
Skyrme	Average	0.1586	-15.91	251.68	-300.20	1178.35	31.22	53.52	-130.15	316.68	-1890.99
	σ	0.0040	0.21	45.42	157.81	848.47	2.03	31.06	132.03	218.23	1191.23
RMF	Average	0.1494	-16.24	267.99	-1.94	5058.30	35.11	90.20	-4.58	271.07	-3671.83
	σ	0.0025	0.06	33.52	392.51	2294.07	2.63	29.56	87.66	357.13	1582.34
RHF	Average	0.1540	-15.97	248.06	389.17	5269.07	33.97	90.03	128.16	523.29	-9955.49
	σ	0.0035	0.08	11.63	350.44	838.41	1.37	11.06	51.11	236.80	4155.74
Average		0.1540	-16.04	255.91	29.01	3835.24	33.43	77.92	-2.19	370.34	-5172.77
σ	_	0.0051	0.20	34.39	424.59	2401.14	2.64	30.84	142.71	298.54	4362.35

$$e_{sat}(n) = E_{sat} + \frac{1}{2}K_{sat}x^2 + \frac{1}{6}Q_{sat}x^3 + \frac{1}{24}Z_{sat}x^4 + \dots$$
$$e_{sym}(n) = E_{sym} + L_{sym}x + \frac{1}{2}K_{sym}x^2 + \frac{1}{6}Q_{sym}x^3 + \frac{1}{24}Z_{sym}x^4 + \dots$$

	,	1 % acc	curacy								
Model		$ ho_0$	E_0	K_0	Q_0	Z_0	E_{sym}	L_{sym}	K_{sym}	Q_{sym}	Z_{sym}
		${\rm fm}^{-3}$	${\rm MeV}$	MeV	${\rm MeV}$	MeV	${\rm MeV}$	${\rm MeV}$	${\rm MeV}$	MeV	${ m MeV}$
Skyrme	Average	0.1586	-15.91	251.68	-300.20	1178.35	31.22	53.52	-130.15	316.68	-1890.99
	σ	0.0040	0.21	45.42	157.81	848.47	2.03	31.06	132.03	218.23	1191.23
RMF	Average	0.1494	-16.24	267.99	-1.94	5058.30	35.11	90.20	-4.58	271.07	-3671.83
	σ	0.0025	0.06	33.52	392.51	2294.07	2.63	29.56	87.66	357.13	1582.34
RHF	Average	0.1540	-15.97	248.06	389.17	5269.07	33.97	90.03	128.16	523.29	-9955.49
	σ	0.0035	0.08	11.63	350.44	838.41	1.37	11.06	51.11	236.80	4155.74
Average		0.1540	-16.04	255.91	29.01	3835.24	33.43	77.92	-2.19	370.34	-5172.77
σ		0.0051	0.20	34.39	424.59	2401.14	2.64	30.84	142.71	298.54	4362.35

$$e_{sat}(n) = E_{sat} + \frac{1}{2}K_{sat}x^2 + \frac{1}{6}Q_{sat}x^3 + \frac{1}{24}Z_{sat}x^4 + \dots$$
$$e_{sym}(n) = E_{sym} + L_{sym}x + \frac{1}{2}K_{sym}x^2 + \frac{1}{6}Q_{sym}x^3 + \frac{1}{24}Z_{sym}x^4 + \dots$$

Empirical parameters from various effective approaches 10-20 % accuracy

-											
Model		$ ho_0$	E_0	K_0	Q_0	Z_0	E_{sym}	L_{sym}	K_{sym}	Q_{sym}	Z_{sym}
	_	${\rm fm}^{-3}$	${\rm MeV}$	MeV	${\rm MeV}$	${\rm MeV}$	${\rm MeV}$	MeV	${\rm MeV}$	MeV	${ m MeV}$
Skyrme	Average	0.1586	-15.91	251.68	-300.20	1178.35	31.22	53.52	-130.15	316.68	-1890.99
	σ	0.0040	0.21	45.42	157.81	848.47	2.03	31.06	132.03	218.23	1191.23
RMF	Average	0.1494	-16.24	267.99	-1.94	5058.30	35.11	90.20	-4.58	271.07	-3671.83
	σ	0.0025	0.06	33.52	392.51	2294.07	2.63	29.56	87.66	357.13	1582.34
RHF	Average	0.1540	-15.97	248.06	389.17	5269.07	33.97	90.03	128.16	523.29	-9955.49
	σ	0.0035	0.08	11.63	350.44	838.41	1.37	11.06	51.11	236.80	4155.74
Average		0.1540	-16.04	255.91	29.01	3835.24	33.43	77.92	-2.19	370.34	-5172.77
σ		0.0051	0.20	34.39	424.59	2401.14	2.64	30.84	142.71	298.54	4362.35
							-				

$$e_{sat}(n) = E_{sat} + \frac{1}{2}K_{sat}x^{2} + \frac{1}{6}Q_{sat}x^{3} + \frac{1}{24}Z_{sat}x^{4} + \dots$$
$$e_{sym}(n) = E_{sym} + L_{sym}x + \frac{1}{2}K_{sym}x^{2} + \frac{1}{6}Q_{sym}x^{3} + \frac{1}{24}Z_{sym}x^{4} + \dots$$

50 % accuracy

Model		$ ho_0$	E_0	K_0	Q_0	Z_0	E_{sym}	L_{sym}	K_{sym}	Q_{sym}	Z_{sym}
		${\rm fm}^{-3}$	MeV	${\rm MeV}$	${\rm MeV}$	MeV	MeV	MeV	${ m MeV}$	MeV	MeV
Skyrme	Average	0.1586	-15.91	251.68	-300.20	1178.35	31.22	53.52	-130.15	316.68	-1890.99
	σ	0.0040	0.21	45.42	157.81	848.47	2.03	31.06	132.03	218.23	1191.23
RMF	Average	0.1494	-16.24	267.99	-1.94	5058.30	35.11	90.20	-4.58	271.07	-3671.83
	σ	0.0025	0.06	33.52	392.51	2294.07	2.63	29.56	87.66	357.13	1582.34
RHF	Average	0.1540	-15.97	248.06	389.17	5269.07	33.97	90.03	128.16	523.29	-9955.49
	σ	0.0035	0.08	11.63	350.44	838.41	1.37	11.06	51.11	236.80	4155.74
Average		0.1540	-16.04	255.91	29.01	3835.24	33.43	77.92	-2.19	370.34	-5172.77
σ		0.0051	0.20	34.39	424.59	2401.14	2.64	30.84	142.71	298.54	4362.35

$$e_{sat}(n) = E_{sat} + \frac{1}{2}K_{sat}x^{2} + \frac{1}{6}Q_{sat}x^{3} + \frac{1}{24}Z_{sat}x^{4} + \dots$$
$$e_{sym}(n) = E_{sym} + L_{sym}x + \frac{1}{2}K_{sym}x^{2} + \frac{1}{6}Q_{sym}x^{3} + \frac{1}{24}Z_{sym}x^{4} + \dots$$

INTipol

Very large inaccuracy

Model		$ ho_0$	E_0	K_0	Q_0	Z_0	E_{sym}	L_{sym}	K_{sym}	Q_{sym}	Z_{sym}
	_	${\rm fm}^{-3}$	${\rm MeV}$	MeV	MeV	MeV	${\rm MeV}$	MeV	MeV	${\rm MeV}$	${ m MeV}$
Skyrme	Average	0.1586	-15.91	251.68	-300.20	1178.35	31.22	53.52	-130.15	316.68	-1890.99
	σ	0.0040	0.21	45.42	157.81	848.47	2.03	31.06	132.03	218.23	1191.23
RMF	Average	0.1494	-16.24	267.99	-1.94	5058.30	35.11	90.20	-4.58	271.07	-3671.83
	σ	0.0025	0.06	33.52	392.51	2294.07	2.63	29.56	87.66	357.13	1582.34
RHF	Average	0.1540	-15.97	248.06	389.17	5269.07	33.97	90.03	128.16	523.29	-9955.49
	σ	0.0035	0.08	11.63	350.44	838.41	1.37	11.06	51.11	236.80	4155.74
Average		0.1540	-16.04	255.91	29.01	3835.24	33.43	77.92	-2.19	370.34	-5172.77
σ		0.0051	0.20	34.39	424.59	2401.14	2.64	30.84	142.71	298.54	4362.35

$$e_{sat}(n) = E_{sat} + \frac{1}{2}K_{sat}x^{2} + \frac{1}{6}Q_{sat}x^{3} + \frac{1}{24}Z_{sat}x^{4} + \dots$$
$$e_{sym}(n) = E_{sym} + L_{sym}x + \frac{1}{2}K_{sym}x^{2} + \frac{1}{6}Q_{sym}x^{3} + \frac{1}{24}Z_{sym}x^{4} + \dots$$

INTIPOL

		fixe	ed Ex	plore in	nside sn	nall inte		Consider large interval			
Model		ρ	E_0	K ₀	Q_0	Z_0	E_{sym}	L_{sym}	K _{sym}	Q_{sym}	Z_{sym}
		${\rm fm}^{-3}$	MeV	MeV	MeV	${ m MeV}$	MeV	${\rm MeV}$	MeV	MeV	MeV
Skyrme	Average	e 0.1586	-15.91	251.68	-300.20	1178.35	31.22	53.52	-130.15	316.68	-1890.99
	σ	0.0040	0.21	45.42	157.81	848.47	2.03	31.06	132.03	218.23	1191.23
RMF	Average	e 0.1494	-16.24	267.99	-1.94	5058.30	35.11	90.20	-4.58	271.07	-3671.83
	σ	0.0025	0.06	33.52	392.51	2294.07	2.63	29.56	87.66	357.13	1582.34
RHF	Average	e 0.1540	-15.97	248.06	389.17	5269.07	33.97	90.03	128.16	523.29	-9955.49
	σ	0.0035	0.08	11.63	350.44	838.41	1.37	11.06	51.11	236.80	4155.74
Average		0.1540	-16.04	255.91	29.01	3835.24	33.43	77.92	-2.19	370.34	-5172.77
σ		0.0051	0.20	34.39	424.59	2401.14	2.64	30.84	142.71	298.54	4362.35

- In the following, we neglect any correlation among the empirical parameters.

- Another approach is possible: apply the eEOS directly in nuclei and fix the uncertainties directly from the experimental data ++ bring physical correlations (work in progress).

INTIPOL

Phenomenological + ab-initio approaches

		Esat	Esym	n _{sat}	L _{sym}	Ksat	K _{sym}	Q_{sat}	Q_{sym}	Zsat	Z _{sym}	m_{sat}^*/m	$\Delta m^*_{sat}/m$	ĸ	K_{τ}
Model		MeV	MeV	fm ⁻³	MeV	MeV	MeV	MeV	MeV	MeV	MeV				MeV
(N_{α})	der. order	0	0	1	1	2	2	3	3	4	4	-	-	-	-
					Pheno	menolo	gical a	pproach	nes						
Skyrme	Average	-15.88	30.25	0.1595	47.8	234	-130	-357	378	1500	-2219	0.73	0.08	0.46	-344
(16)	σ	0.15	1.70	0.0011	16.8	10	66	22	110	169	617	0.10	0.24	0.27	25
Skyrme	Average	-15.87	30.82	0.1596	49.6	237	-132	-349	370	1448	-2175	0.77	0.127	0.44	-354
(35)	σ	0.18	1.54	0.0039	21.6	27	89	89	188	510	1069	0.14	0.310	0.37	45
RMF	Average	-16.24	35.11	0.1494	90.2	268	-5	-2	271	5058	-3672	0.67	-0.09	0.40	-549
(11)	σ	0.06	2.63	0.0025	29.6	34	88	393	357	2294	1582	0.02	0.03	0.06	153
RHF	Average	-15.97	33.97	0.1540	90.0	248	128	389	523	5269	-9956	0.74	-0.03	0.34	-572
(4)	σ	0.08	1.37	0.0035	11.1	12	51	350	237	838	4156	0.03	0.01	0.07	169
Total	Average	-16.03	33.30	0.1543	76.6	251	-3	13	388	3925	-5268	0.72	0.01	0.39	-492
(50)	σ_{tot}	0.20	2.65	0.0054	29.2	29	132	431	289	2270	4282	0.09	0.20	0.22	166
	Min	-16.35	26.83	0.1450	9.9	201	-394	-748	-86	-903	-16916	0.38	-0.47	0.00	-835
	Max	-15.31	38.71	0.1746	122.7	355	213	950	846	9997	-5	1.11	1.02	2.02	-254
					A	b-initio	approa	aches							
APR	Average	-16.0	33.12	0.16	50.0	270	-199	-665	923	337	-2053	1.0	0.0	0.0	-376
(1)	σ	_†	0.30	_†	1.3	2	13	30	67	94	125	_†	_†	_†	30
χ-EFT	Average	-15.16	32.01	0.171	48.1	214	-172	-139	-164	1306	-2317	-	-	-	-428
Drischler 2016	σ_{tot}	1.24	2.09	0.016	3.6	22	40	104	234	214	379	-	-	-	63
(7)	Min	-16.92	28.53	0.140	43.9	182	-224	-310	-640	901	-2961	-	-	-	-534
	Max	-13.23	34.57	0.190	53.5	242	-108	24	96	1537	-1750	-	-	-	-334

[†] This parameter is fixed.

In neutron matter

					ΣNM	\sim_{NM}
	MeV	MeV		MeV	MeV	MeV
henomeno	logical	approa	ch	es		
Average	14.95	49.6		106	21	-727
σ	1.72	21.6		116	276	1580
Average	18.86	90.2		263	269	1386
σ	2.69	29.6		121	750	3876
Average	17.99	90.0		376	912	-4686
σ	1.46	11.1		63	587	4994
Ab-init	io appr	oaches				
Average	17.27	50.0		71	258	-1716
σ	0.30	1.3		15	97	219
Average	16.76	45.8		77	80	-131
σ	1.39	9.7		43	29	15
Average	16.39	56.4		119	-	· •
σ	2.97	11.0		101	-	
Average	16.93	48.3		41	-314	-991
σ	0.92	3.5		33	226	349
	Average σ Average σ Average σ Average σ Average σ Average σ Average σ Average σ Average σ	Average 14.95 σ 1.72 Average 18.86 σ 2.69 Average 17.99 σ 1.46 Ab-initio appr Average 17.27 σ 0.30 Average 16.76 σ 1.39 Average 16.39 σ 2.97 Average 16.93 σ 0.92	Nenomenological approadAverage14.9549.6 σ 1.7221.6Average18.8690.2 σ 2.6929.6Average17.9990.0 σ 1.4611.1Ab-initio approachesAverageAverage17.2750.0 σ 0.301.3Average16.7645.8 σ 1.399.7Average16.3956.4 σ 2.9711.0Average16.9348.3 σ 0.923.5	Average14.9549.6 σ 1.7221.6Average18.8690.2 σ 2.6929.6Average17.9990.0 σ 1.4611.1Ab-initio approaches1Average17.2750.0 σ 0.301.3Average16.7645.8 σ 1.399.7Average16.3956.4 σ 2.9711.0Average16.9348.3 σ 0.923.5	Average14.9549.6106 σ 1.7221.6116Average18.8690.2263 σ 2.6929.6121Average17.9990.0376 σ 1.4611.163Ab-initio approaches1Average17.2750.071 σ 0.301.315Average16.7645.877 σ 1.399.743Average16.3956.4119 σ 2.9711.0101Average16.9348.341 σ 0.923.533	Average14.9549.610621 σ 1.7221.6116276Average18.8690.2263269 σ 2.6929.6121750Average17.9990.0376912 σ 1.4611.163587Ab-initio approaches σ 0.301.315Average17.2750.071258 σ 0.301.31597Average16.7645.87780 σ 1.399.74329Average16.3956.4119- σ 2.9711.0101-Average16.9348.341-314 σ 0.923.533226

Bayesian analysis of chiral EFT predictions

Estimation of the error:
$$\chi^2 = \frac{1}{2M-3} \sum_{i=1}^{M} \left(\frac{e_i - e_{ELFc}(n_0^i)}{\varepsilon_i^e} \right)^2 + \left(\frac{p_i - p_{ELFc}(n_0^i)}{\varepsilon_i^p} \right)^2$$

Likelihood probability: $p(E_{NM}, L_{sym}, K_{NM}) = \exp(-\chi^2/2)$

1-parameter probability: $p(A) = \sum_{B,C} p(A,B,C)$

The « model independent » EOS can include constraints from ab-initio calculations.

INTipol

In Summary

In the following, we consider the following central values and uncertainties (1σ) :

Ρα	E _{sat} MeV	<i>E_{sym}</i> MeV	n_{sat} fm ⁻³	<i>L_{sym}</i> MeV	<i>K_{sat}</i> MeV	K _{sym} MeV	Q _{sat} MeV	Q _{sym} MeV	Z _{sat} MeV	Z _{sym} MeV	m_{sat}^*/m	$\Delta m^*_{sat}/m$
$\langle P_{\alpha} \rangle$	-15.8	32	0.155	60	230	-100	300	0	-500	-500	0.75	0.1
$\sigma_{P_{\alpha}}$	±0.3	± 2	± 0.005	± 15	± 20	± 100	± 400	± 400	± 1000	± 1000	± 0.1	± 0.1

Large uncertainties

 \rightarrow What impact for the nuclear EOS?

A "model independent" nuclear EOS

The question of the spurious correlations

 \rightarrow To few parameters in symmetric matter.

 \rightarrow General issues: results can be model-dependent.

Needs for a "model independent" nuclear EoS

- For the analysis of NS observation (thermal X-rays, X-ray pulsations, etc...)
 - Extraction of NS radius
- For implementation in hydro-dynamical codes (CCSN, NS mergers, etc...)
- For Heavy Ion Collisions (Hadron physics) and analysis of the results

The nuclear EoS is a function of the density, isospin asymmetry (n/p ratio) and temperature.

Here we do not consider phase transitions to hyperon matter or quark matter.

An "model independent" nuclear EoS

- **Hypothesis:** 1) Matter is non-relativitic (\rightarrow E=T+V),
 - 2) Nuclear potential quadratic in δ ,
 - 3) The EoS is analytic in x (\rightarrow polynomial expansion possible),
 - 4) $\lim e(\rho, \delta) \rightarrow 0$ for $\rho \rightarrow 0$.

Kinetic energy:
$$t^{eff}(\rho, \delta) = \frac{1}{2} t_0^{FG} \left(\frac{\rho}{\rho_0}\right)^{2/3} \left[f^{FG}(\delta) + \frac{\rho}{\rho_0} f^{eff}(\delta)\right]$$

Binding energy:
$$e^{N}(\rho, \delta) = t^{eff}(\rho, \delta) + \sum_{\alpha \ge 0}^{N} \left[v_{\alpha}^{s,is} + v_{\alpha}^{s,iv} \delta^{2} \right] \frac{x^{\alpha}}{\alpha!} u_{\alpha}(\rho)$$

→ One-to-one correspondence between model parameters and empirical quantities:

 \rightarrow Flexible model with no hidden correlations among parameters.

→ Can map most of nucleon EOS (up to $4n_{sat}$): $v_{\alpha=3}^{s,is} = Q_0 - 2t_0^{FG}(4 - 5\bar{M})$ "model independent" EOS. $v_{\alpha=3}^{s,is} = Z_0 - 8t_0^{FG}(-7 + 5\bar{M})$

INTipni

 $\begin{aligned}
 v_{\alpha=0}^{s,is} &= E_0 - t_0^{FG} (1 + \bar{M}) & \text{satisfy the} \\
 v_{\alpha=1}^{s,is} &= -t_0^{FG} (2 + 5\bar{M}) & \text{limit } \rho \rightarrow 0 \\
 v_{\alpha=2}^{s,is} &= K_0 - 2t_0^{FG} (-1 + 5\bar{M}) \\
 v_{\alpha=3}^{s,is} &= Q_0 - 2t_0^{FG} (4 - 5\bar{M}) \\
 v_{\alpha=4}^{s,is} &= Z_0 - 8t_0^{FG} (-7 + 5\bar{M})
 \end{aligned}$

Impact of E_{sat} & E_{sym}

Impact of n_{sat} & L_{sym}

Impact of K_{sat} & K_{sym}

Impact of Q_{sat} & Q_{sym}

Impact of Z_{sat} & Z_{sym}

Impact of $m^*_{sat} \& \Delta m^*_{sat}$

Impact of varying all uncertainties $\pm 1\sigma$

Many EOS does not satisfy basic requirements (stability, causality, ...) → We need to remove them

Application to neutron star

Impact of the isoscalar empirical parameters

Impact of the isovector empirical parameters

Intiple Largest source of uncertainty: Lsym and Ksym

Impact of the "exp" unknown on the Mass/Radius relation

Bayesian analysis

	· procacini		0111 01 <i>a</i> ,1,1 <i>a</i>	$\sqrt{2\pi}$	$P_{\alpha,2}$ 2 ($P_{\alpha,2}$)		
Pa	E _{sym} MeV	L _{sym} MeV	K _{sat} MeV	K _{sym} MeV	Q _{sa} MeV	Q _{sym} MeV	Z _{sat} MeV	Z _{sym} MeV
$P_{\alpha,1}$	32	60	230	-100	300	0	-500	-500
$P_{\alpha,2}$	2	15	20	100	400	400	1000	1000
Min	26	20	190	-400	-1300	-2000	-4500	-5500
Max	38	90	270	200	1900	2000	3500	4500
step	2	10	20	75	400	400	1000	1000
Ν	7	8	5	9	9	11	9	11

Prior probability distribution: $g_{P_{\alpha,1},P_{\alpha,2}}(P_{\alpha}) = \frac{1}{\sqrt{2\pi}P_{\alpha,2}} \exp{-\frac{1}{2}\left(\frac{P_{\alpha}-P_{\alpha,1}}{P_{\alpha,2}}\right)^2}$

Likelihood probability: filter imposing general physical constraints

$$p_{lik}(\{P_{\alpha}\}_{i}) = \frac{1}{N_{lik}} w_{\text{filter}}(\{P_{\alpha}\}_{i}) \prod_{\alpha=1}^{8} g_{P_{\alpha}^{1}, P_{\alpha}^{2}}(P_{\alpha}) \qquad \text{prior}$$
Physical filters: Stability: $\Delta P > 0$ Causality: $v_{s}^{2} < c^{2}$

Positiveness of the symmetry energy

M_{max}>2Mo

3 hypothesis for the cooling of NS: some NS may need fast cooling

DURCA-0: No fast (dUrca) cooling for all observed NS

DURCA-1: Fast cooling only for NS with M>1.8Mo

DURCA-2: Fast cooling only for NS with 1.8Mo>M>1.6Mo

DURCA: Impact on the proton fraction $x_p = n_p/n_b$

Posterior probabilities

Weak effect of the the filters \rightarrow flexibility of the EOS

1.0

-0.3

-0.2

0.0

0.0

-0.0

-0.1

-0.0

Z_{svm}

Predictions of general properties (M)

Compactness of RX J0720.4-3125

Universal features of nucleonic EOS

Prediction for the nuclear EOS at β -equilibrium

INTIPLI Universal features of nucleonic EOS

Prediction for the symmetry energy S(n)

Prediction for the adiabatic index $\Gamma(n)$

Prediction for sound velocity $v_s(n)$

Prediction for particle fractions

If it can be proved that dUrca exist \rightarrow possible tight constraint for the nuclear EOS INTIPL

Inversion problem: what is the impact of the empirical parameters of the measure of MR relation?

 $R_{best}(M)$ is our most probable MR relation. Suppose it is shifted as $R_{best}(M)-R_{shift}$

Conclusions

- We propose a flexible form of the EoS which can mimic most of existing nucleonic EoS.
- Information from nuclear physics can be easily encoded, but are not enough and astrophysical information are also needed.
- Most important parameters are L_{sym} and K_{sym} , as well as $Q_{sat/sym}$
- We can predict universal features for nuclear EoS (MR diagram): R=12-13 km P(ρ)
- If it can be proven that dUrca exists \rightarrow possible tight constraint for the nuclear EOS.
- At β-equilibrium, melting temperature of clusters is expected to be quite low (<5 MeV)
 → The impact of clusters on v propagation remains quite weak.

