## Binary neutron star mergers & multimessenger signals INT@UW, Seattle, WA

Steve Liebling With:

#### Matt Anderson (IU) Liliana Caballero (U.Guelph) Luis Lehner (Perimeter) David Neilsen (BYU) Patrick Motl (IU) Evan O'Connor (NCSU) Carlos Palenzuela (UIB)

Long Island University, New York, USA

August 15, 2017







### Physics Motivation

- Examine effects of EOS in various scenarios, notably BNS mergers
- Study EM Events: sGRBs, kilonovae/r-process, FRBs
- LIGO:
  - Look for EM precursors
  - Localization via EM signals
  - Multimessenger astronomy (e.g. neutrinos if very close)
  - Fully nonlinear tidal effects
  - Tests of GR:
    - alternative gravity
    - differentiate from exotic matter (boson stars)
    - dark matter

### Our Evolution Code: Fluid

[Palenzuela,SLL,Neilsen,Lehner,Caballero,O'Connor,Anderson,1505.01607] [Neilsen,SLL,Anderson,Lehner,O'Connor,Palenzuela,1403.3680]

- Barytropic, finite-temperature EOS
- EOS used are constrained by the most massive observed NSs
- Involves temperature and composition (electron fraction)
- MHD HRSC
- Adapts open-source neutrino leakage code from stellarcollapse.org
- Implements novel, local calculation of optical depth which tracks binary NS

### Our Evolution Code: Other

[Palenzuela,SLL,Neilsen,Lehner,Caballero,O'Connor,Anderson,1505.01607] [Neilsen,SLL,Anderson,Lehner,O'Connor,Palenzuela,1403.3680]

- HAD
- Distributed
- Fully nonlinear GR (BSSN scheme)
- AMR with subcycling in time
- GR wave extraction
- Tracers (simply advected or geodesic)

### Choice of Realistic, microphysical EoS

Choose range of EoS that satisfy observational constraint:

- NLS—stiff—large radii
- DD2-moderate-intermediate radii
- SFHo—soft—small radii



### Initial Data

- Use LORENE package to generate binaries in quasi-circular orbits
- Total mass  $2.7 M_{\odot}$
- 45 km initial separation...4-5 orbits prior to merger
- Finest resolution: 230 meters in neighborhood of each star

| EoS  | q    | ν                   | $m_{b}^{(1)}, m_{g}^{(1)}$ | $m_{b}^{(2)}, m_{g}^{(2)}$ | $R^{(1)}$     | $R^{(2)}$ | $C^{(1)}$ | $C^{(2)}$ | $J_0^{ m ADM}$         | $\Omega_0$ | $f_0^{ m GW}$ | Meject               |
|------|------|---------------------|----------------------------|----------------------------|---------------|-----------|-----------|-----------|------------------------|------------|---------------|----------------------|
|      |      |                     | $[M_{\odot}]$              | $[M_{\odot}]$              | [km]          | [km]      |           |           | $[{ m G}~M_\odot^2/c]$ | [rad/s]    | [Hz]          | $[10^{-3}M_{\odot}]$ |
| NL3  | 1.0  | 0.250               | 1.47, 1.36                 | 1.47, 1.36                 | 14.80         | 14.80     | 0.136     | 0.136     | 7.40                   | 1778       | 566           | 0.015                |
| NL3  | 0.85 | 0.248               | 1.34, 1.25                 | 1.60, 1.47                 | 14.75         | 14.8      | 0.125     | 0.147     | 7.35                   | 1777       | 566           | 2.3                  |
| DD2  | 1.0  | 0.25 <mark>0</mark> | 1.49, 1.36                 | 1.49, 1.36                 | 13.22         | 13.22     | 0.152     | 0.152     | 7.39                   | 1776       | 565           | 0.43                 |
| DD2  | 0.85 | 0.248               | 1.36, 1.29                 | 1.62, 1.47                 | 13.20         | 13.25     | 0.144     | 0.164     | 7.34                   | 1775       | 565           | 0.42                 |
| DD2  | 0.76 | 0.245               | 1.27, 1.18                 | 1.71,  1.54                | 13.16         | 13.25     | 0.132     | 0.172     | 7.26                   | 1775       | 565           | 1.3                  |
| SFHo | 1.0  | 0.250               | 1.50, 1.36                 | 1.50, 1.36                 | <b>1</b> 1.90 | 11.90     | 0.169     | 0.169     | 7.38                   | 1775       | 565           | 3.4                  |
| SFHo | 0.85 | 0.248               | 1.37,  1.25                | 1.63,  1.47                | 11.95         | 11.85     | 0.154     | 0.183     | 7.31                   | 1773       | 564           | 2.2                  |

### Novel Optical Depth Calculation [PRD 1403.3680]



• conventional to shoot rays and integrate opacity, but non-local, somewhat arbitrary which rays to consider

• instead at each point (i) start with minimum depth of neighbor, (ii) add depth to get to neighbor

• easy, works well, tracks binaries, gradient matches opacity

### Magnetic Effects [PRD 1505.01607]



+ DD2; magnetic dipole; "effective driver" for subgrid instabilities [Giacomazzo+ 1410.0013]  $10^{13}\to 10^{16}~{\rm G}$ 

- Dynamics largely the same with subgrid model "on"
- However, subgrid model causes: (i) twice material ejected (magnetic pressure) (ii) less flat  $Y_e$  distribution (iii) additional extra material mostly equatorial

### Separation



• q = 1 corresponds to equal mass case

 unequal cases merge earlier than equal
 smaller (radius) stars less sensitive to mass ratio

### Waveforms



• t = 0corresponds to first contact for q = 1 binary

• times of contact for unequal cases shown w/ vertical lines

### Could aLIGO differentiate among EOS?

Best case scenario ("Zero Detuned, High Power") configuration of aLIGO could differentiate among stiffest and softest EOS at 100 Mpc



### Post-Merger GW Power Spectral Densities



- Spectra characterized by various peaks differing among EOS
- $\bullet$  Dominant  $\mathit{f}_{\mathrm{peak}}$  associated with rotation and quadrupolar structure
- Using language of [Bauswein, Stergioulas, PRD'15]
- Peak frequencies agree within 5% with similar mass ratios of [Bernuzzi,Dietrich,Nagar PRL'15]

### Post-Merger GW Frequencies

**Table 2.** Prominent oscillation frequencies (kHz) in the power spectral densities of the post-merger gravitational waveform compared with predicted values.

| EoS  | q    | $f_1$ | $f_2$ | $f_3$ | $f_4$ | $f_{\rm peak}$ | $f_{\rm spiral}$ | $f_{2 - 0}$ | $f_{\rm c}$ |
|------|------|-------|-------|-------|-------|----------------|------------------|-------------|-------------|
| NL3  | 1.0  | 2.03  | 1.54  | 0.83  |       | 2.2            | 1.6              | 1.2         | 1.19        |
| NL3  | 0.85 | 2.01  | 1.61  | 1.37  | 0.8   |                |                  |             | 1.19        |
| DD2  | 1.0  | 2.34  | 1.97  | 1.82  | 1.62  | 2.6            | 1.9              | 1.5         | 1.41        |
| DD2  | 0.85 | 2.58  | 1.92  | 1.62  |       |                |                  | _           | 1.42        |
| DD2  | 0.76 | 2.32  | 1.86  | 1.62  |       |                |                  |             | 1.41        |
| SFHo | 1.0  | 3.45  | 2.59  | 2.20  | 1.62  | 3.2            | 2.4              | 2.1         | 1.65        |
| SFHo | 0.85 | 3.29  | 2.29  | 1.61  | —     | —              | _                | _           | 1.65        |

Note. The frequencies  $f_1$ ,  $f_2$ ,  $f_3$ , and  $f_4$ . Correspond to various peaks of the post-merger GW spectrum (see figure 3).  $f_{\text{peak}}$  and  $f_{\text{spiral}}$  are the predicted peak frequencies from [48]. The correspondence between  $f_1$  and  $f_{\text{peak}}$ ,  $f_2$  and  $f_{\text{spiral}}$ , and either  $f_3$  or  $f_4$  with  $f_{2-0}$  suggests consistency with the model presented in [48] (which was tailored for the equal mass case, but reports errors < 5% for mass ratios q = 0.92).  $f_c$  is the computed contact frequency (8).

#### Remnant's peak GW Frequency



**Binary Mergers** 

EM & Neutrinos

NL3 (left), DD2 (middle), SFHo (right) for q = 0.85 3ms after merger

- SFHo remnant more centrally condensed and hotter
- SFHo also drives decompression of hot material to lower densities where positron capture raises

electron fraction



Steven L. Liebling

BNS Mergers & Multimessenger Signals

**Binary Mergers** 

 $Log_{10}(\rho)[g/cm^3]$  $Log_{10}(\rho)[g/cm^3$  $Log_{10}(\rho)[g/cm^3]$ y [km] Ę 0 x [km] x [km] n lkm1 T [MeV] T [MeV] T [MeV] [km] x fkm] x fkml x [km]  $Log_{10}Y_c$  $Log_{10}Y_c$ Log<sub>10</sub>Y. 0.80 0.96 0.96 r [km] 1.04 1.04 1.20 -1.20-1.28x [km] x [km] x [km]  $Log_{10}|Q_{\nu}|$  [ergs/s/cm<sup>3</sup>]  $Log_{10}|Q_{\nu}|$  [ergs/s/cm<sup>3</sup>]  $Log_{10}|Q_{\nu}|$  [ergs/s/cm<sup>3</sup>] y [km]

DD2, q = 1 (left), q =0.85 (middle), q = 0.75 (right)

- Decreased electron fraction in unequal cases-tidal ejecta
- Spiral arm apparent in unequal cases

Steven L. Liebling

BNS Mergers & Multimessenger Signals

### Ejecta Properties: Electron Fraction

- Amount of ejecta increases with mass ratio
- Electron Fraction decreases with mass ratio
- As mass ratio decreases, ejected material is cooler, dominated by neutron-rich, tidal tail material
- Lower temperature inhibits positron production and neutron capture... $Y_e$  similar to original NS material



D O

#### Estimates of possible EM signals

Kilonova: [Barnes,Kasen,2013]  $t_{\text{peak}}^k \approx 0.25 \, \text{days} \left[ \frac{M_{\text{eject}}}{10^{-2} M_{\odot}} \right]^{1/2} \left[ \frac{v}{0.3c} \right]^{-1/2}$  $L \approx 2 \times 10^{41} \text{erg/s} \left[ \frac{M_{\text{eject}}}{10^{-2} M_{\odot}} \right]^{1/2} \left[ \frac{v}{0.3c} \right]^{1/2}$ Radio emission from collision with ISM: [Nakar, Piran, 2011]  $t_{\rm peak} \approx 6\,{\rm yr} \left[\frac{E_{\rm kin}}{10^{51}{\rm erg}}\right]^{1/3} \left[\frac{n_0}{0.1\,{\rm cm}^{-3}}\right]^{-1/3} \left[\frac{v}{0.3c}\right]^{-5/3}$  $F(\nu_{\rm obs}) \approx$  $0.6 \mathrm{mJy} \left[ \frac{E_{\mathrm{kin}}}{10^{51} \mathrm{erg}} \right] \left[ \frac{n_0}{0.1 \mathrm{\, cm^{-3}}} \right]^{7/8} \left[ \frac{v}{0.3c} \right]^{11/4} \left[ \frac{v_{\mathrm{obs}}}{1 \mathrm{\, GHz}} \right]^{-3/4} \left[ \frac{d}{100 \mathrm{\, Mpc}} \right]^{-2}$ r [1040 1k 110 230 Lt o 50 D(1 OIL ) [

| EoS $q$ $L[10^{\circ\circ} \text{erg/s}]$ $t^{\circ}_{\text{peak}}$ [days] $M_{\text{eject}}[10^{\circ\circ} M_{\odot}]$ $v/c$ | $E_{\rm kin}[10^{\circ\circ} {\rm ergs}]$ | t <sub>peak</sub> [yr] | F(1  GHz) [mJy]      |
|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------|----------------------|
| NL3 1.0 0.9 0.008 0.015 0.45                                                                                                   | 0.01                                      | 0.31                   | $1.8 \times 10^{-3}$ |
| NL3 0.85 8.8 0.13 2.3 0.25                                                                                                     | 1.22                                      | 4.0                    | $4.4 \times 10^{-2}$ |
| DD2 1.0 4.1 0.05 0.43 0.3                                                                                                      | 0.31                                      | 1.9                    | $1.9 \times 10^{-2}$ |
| DD2 0.85 4.1 0.05 0.42 0.3                                                                                                     | 0.29                                      | 1.8                    | $1.7 \times 10^{-2}$ |
| DD2 0.76 7.2 0.09 1.3 0.3                                                                                                      | 0.76                                      | 2.5                    | $4.6 \times 10^{-2}$ |
| SFHo 1.0 10.6 0.16 3.4 0.25                                                                                                    | 1.8                                       | 4.6                    | $6.5 \times 10^{-2}$ |
| SFHo 0.85 8.6 0.13 2.2 0.25                                                                                                    | 1.8                                       | 4.6                    | $6.5 \times 10^{-2}$ |

## Neutrino Emission

• Softest EoS most luminous and highest average neutrino energies

for any mass ratio because highest temperature



### Neutrino Analysis via (post-processed) ray tracing

q = 0.85 Top: electron neutrino surface Bottom: electron antineutrino surface



### Neutrino Analysis via (post-processed) ray tracing

DD2 Top: electron neutrino surface Bottom: electron antineutrino surface



### Neutrino Emission: Detectability

Assume 10kpc distant in SuperKamiokande-like water Cherenkov detector

| EoS  | q    | t    | $\langle E_{\bar{\nu}_e} \rangle$ | $\langle E_{\nu_e} \rangle$ | $L_{\bar{\nu}_e}$         | $R_{\nu}$ |
|------|------|------|-----------------------------------|-----------------------------|---------------------------|-----------|
|      |      | [ms] | [MeV]                             | [MeV]                       | $[10^{53} \text{ erg/s}]$ | [#/ms]    |
| NL3  | 1.0  | 3.4  | 18.5(22.4)                        | 15.2(18.3)                  | 0.7                       | 18        |
| NL3  | 0.85 | 3.0  | 15.6(18.7)                        | 12.6(15.1)                  | 0.8                       | 18        |
| DD2  | 1.0  | 3.3  | 18.3(22.1)                        | 14.6(17.4)                  | 1.1                       | 28        |
| DD2  | 0.85 | 2.8  | 18.1(21.7)                        | 15.1(18.0)                  | 1.0                       | 25        |
| DD2  | 0.76 | 2.4  | 19.7(23.9)                        | 14.8(17.9)                  | 1.3                       | 36        |
| SFHo | 1.0  | 3.5  | 24.6(29.7)                        | 23.5(28.3)                  | 3.5                       | 121       |
| SFHo | 0.85 | 3.9  | 17.8(21.3)                        | 15.3(17.9)                  | 2.0                       | 50        |

# **BNS** Conclusions

- GW:
  - Peak frequency of remnant can be estimated via a fit based on the contact frequency
  - Stiffer EoS more sensitive to mass ratio because larger radius
- Ejecta:
  - Decreasing mass ratio makes kilonova more likely
  - Obtaining individual masses from GW would benefit EM observations
  - Neutron rich ejecta...peaked around 0.2
  - promising for r-process IR afterglow (recent observation SGRB 130603B [Tanvir,et al,Nature,2013] and [Berger,et al,ApJ,2013])
- Neutrino Emission:
  - Soft EOS more luminous
  - Smaller mass ratios result in more dispersed neutrino surfaces, smaller max temps

### The m = 1 Instability

- The *l* = 2 *m* = 2 mode dominates the GW signal of BNS mergers,
- The weaker l = 2 m = 1 mode develops via a recently noticed instability
  - Newtonian simulations of [Ou, Tohline, ApJ'06]
  - Seen more recently in [Corvino+,CQG'10] [Dietrick+,PRD'15] [East+,PRD'16] [Radice+,PRD'16]
- "Benefits":
  - Occurs at half the frequency of dominant mode where noise is less
  - Lasts longer because less damped: (i) less GW radiative (ii) instabilities driving it
  - Occurs postmerger, and be specifically targeted in time and frequency

#### m = 2 develops into m = 1 for q = 0.85 DD2



- colors indicate increasing radii (red-black-blue)
- average mass density on equatorial plane See also [East,Paschalidis,Pretorius,Shapiro,1511.01093]

and [Radice,Bernuzzi,Ott,1603.05726]

#### Growth of m = 1 Mode in GW Signal for DD2



### Density Decomposition into Azimuthal Modes for DD2



#### Effect of EoS on m = 1 mode instability



### Detectability

Using:

$$ho^2 \simeq rac{2}{S_n(f)} \int_0^T h^2 \, dt$$

We arrive at

$$\begin{split} \rho_{m=1} &\approx 11 \times \left[\frac{6 \times 10^{-24} \mathrm{Hz}^{-1/2}}{\sqrt{S_n(f_{\mathrm{m1}})}}\right] \left[\frac{|\Psi_{4_{m=1}}^0|}{5 \times 10^{-5}}\right] \\ & \left[\frac{1.3 \mathrm{kHz}}{f_{\mathrm{m1}}}\right]^2 \left[\frac{T}{10 \mathrm{ms}}\right]^{1/2} \left[\frac{10 \mathrm{Mpc}}{L}\right] \end{split}$$

Not particularly encouraging, but...

### Detectability

- The m = 1 mode lasts longer than the m = 2 mode
- Occurs at **low frequency** and hence in more sensitive region of LIGO's noise curve
- Its frequency is precisely half that of the *m* = 2 and can therefore be **explicitly targeted**
- Could benefit from BNS mode stacking [Yang+, '17] [Bose+, '17]

#### for sub-threshold SNR of unity, reach to 100 Mpc to see $m = 1 \mod m$

Provides another avenue for extracting information about the equation of state

- Weaker for stiff EoS than for soft EoS
- For smaller mass ratios, m = 1 becomes stronger and saturates earlier