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Outline

I The Unitary Gas Constraint on the Nuclear
Symmetry Energy

I Constraints from Nuclear Physics and the
Maximum Mass on Neutron Star Universal
Structure

I How the Possibility of Hybrid Stars Loosens
Constraints

I Observational Estimates of Neutron Star Radii
and Their Problems
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Although simple
average mass of
w.d. companions
is 0.23 M� larger,
weighted average is
0.07 M� larger

Demorest et al. 2010
Fonseca et al. 2016
Antoniadis et al. 2013
Barr et al. 2016

Romani et al. 2012

vanKerkwijk 2010
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Causality + GR Limits and the Maximum Mass

A lower limit to the
maximum mass sets a
lower limit to the
radius for a given mass.

Similarly, a precision
upper limit to R , with
a well-measured mass,
sets an upper limit to
the maximum mass.

R1.4 > 8.15 km if
Mmax ≥ 2.01M�.
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If quark matter exists in the interior, the minimum radii are
substantially larger.
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The Unitary Gas

The unitary gas is an idealized system consisting of fermions
interacting via a pairwise zero-range s-wave interaction with an
infinite scattering length:

As long as the scattering length a >> k−1F (interparticle spacing),
and the range of the interaction R << k−1F , the properties of the
gas are universal in the sense they don’t depend on the details of
the interaction.

The sole remaining length scale is kF = (3π2n)1/3, so the unitary
gas energy is a constant times the Fermi energy ~2k2F/(2m):

EUG = ξ0
3~2k2F
10m

.

ξ0 ' 0.37 is known as the Bertsch parameter, measured in
cold-atom experiments.
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The Unitary Gas as Analogue of the Neutron Gas

A pure neutron matter (PNM) gas differs from the unitary gas:

I |a| ' 18.5 fm; |akF |−1 ' 0.03 for n = ns .

I R ' 2.7 fm; RkF ≈ 4.5 for n = ns .

I Repulsive 3-body interactions are additionally necessary for
neutron matter to fit the energies of light nuclei.

I Neutron matter has potentially atractive p-wave and
higher-order interactions.

The first three imply EPNM > EUG:

I ξ ' ξ0 + 0.6|akF |−1 + . . . |akF |−1 << 1

I ξ ' ξ0 + 0.12RkF + . . . RkF << 1

A reasonable conjecture would appear to be (u = n/ns)

EPNM(u) = E (u,Yp = 0) ≥ EUG,0u
2/3 ' 12.6u2/3 MeV
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Comparison to Neutron Matter Calculations
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Consequences for the Nuclear Symmetry Energy

S(u) = EPNM − E (u,Yp = 1/2).

A good approximation for the Yp−dependence of E is

S(u) ' 1

8

∂2E (u,Yp)

∂Y 2
p

.

Near ns ,
S(u) ' S0 +

L

3
(u − 1) +

Ksym

18
(u − 1)2 + · · ·

E (u,Yp = 1/2) ' −B +
Ks

18
(u − 1)2 + · · ·

In this case, the unitary gas conjecture is

S(u) > EUG,0u
2/3 −

[
−B +

Ks

18
(u − 1)2 + · · ·

]
≡ SLB(u)

Thus, the symmetry energy parameters S0 and L must satisfy

S(u = 1) = S0 ≥ SLB
0 = EUG,0 + B ' 28.5 MeV

L(u = 1) = L0 = 3 (udS/du)u=1 = 2EUG,0 ' 25.2MeV
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S0 > SLB
0 :

(
S = SLB

)
ut
,
(
dS/du = dSLB/du

)
ut
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Symmetry Parameter Exclusions
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Symmetry Parameter Correlations

Compilations from Dutra et al. (2012, 2014)
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More Realistic Exclusion Region

J. M. Lattimer Equation of State of Neutron Star Matter



Analytic Approximation for the Boundary

S(ut) = SLB(ut),

(
dS

du

)

ut

=

(
dSLB

du

)

ut

gives

S0 +
L

3
(ut − 1) +

Ksym

18
(ut − 1)2 = EUG,0u

2/3
t + B − Ks

18
(ut − 1)2

L +
Ksym

3
(ut − 1) = 2EUG,0u

−1/3
t − Ks

3
(ut − 1)

Assume Kn = 3L (i.e., Ksym ≈ 3L− Ks). Then

S0 =
EUG,0

3u
4/3
t

(1 + 2u2t )− E0, L =
2EUG,0

u
4/3
t

or after eliminating ut ,

S0 =
L

6

[
1 + 2

(
2EUG,0

L

)3/2
]
− E0
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Experimental Constraints
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Experimental and neutron
matter constraints are compatible
with unitary gas bounds.
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Piecewise Polytropes
Crust EOS is known: n < n0 = 0.4ns .

Read, Lackey, Owen & Friedman (2009)
found high-density EOS can be modeled
as piecewise polytropes with 3 segments.

They found universal break points
(n1 ' 1.85ns , n2 ' 3.7ns) optimized fits
to a wide family of modeled EOSs.

For n0 < n < n1, assume neutron matter
EOS. Arbitrarily choose n3 = 7.4ns .

For a given p1 (or Γ1):
0 < Γ2 < Γ2c or p1 < p2 < p2c .
0 < Γ3 < Γ3c or p2 < p3 < p3c .

Minimum values of p2, p3 set by Mmax ;
maximum values set by causality.

◦
n3, p3

nm

◦
n0, p0

◦
n1, p1

◦n2, p2

13.8 14.814.3 15.3 15.7
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Maximum Mass and Causality Constraints

p 3
<

p 2
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Mass-Radius Constraints from Causality
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Photospheric Radius Expansion X-Ray Bursts

Galloway, Muno, Hartman, Psaltis & Chakrabarty (2006)

⇐ FEdd = GMc
κD2

√
1− 2GM

Rphc2
⇐ FEdd

A = f −4c (R∞/D)2 A = f −4c (R∞/D)2

EXO 1745-248
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PRE Burst Model

Observations measure:

FEdd ,∞ =
GMc

κD2

√
1− 2β, β =

GM

Rc2

A =
F∞
σT 4
∞

= f −4c

(
R∞
D

)2

Determine parameters:

α =
FEdd ,∞√

A

κD

f 4c c
3

= β(1− 2β)

γ =
Af 4c c

3

κFEdd ,∞
=

R∞
α
.

Solution:

β =
1

4
±
√

1− 8α

4
, α ≤ 1

8
for real solutions.
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PRE M − R Estimates

Özel & Freire (2016)
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PRE Burst Models – Effect of Source Redshift

Ozel et al. zph = z β = GM/Rc2 Steiner et al. zph << z

FEdd =
GMc

κD

√
1− 2β

A =
F∞
σT 4
∞

= f −4c

(
R∞
D

)2

α =
FEdd√

A

κD

F 2
c c

3
= β(1− 2β)

γ =
Af 4c c

3

κFEdd

=
R∞
α

β =
1

4
± 1

4

√
1− 8α

α ≤ 1

8
required.

FEdd =
GMc

κD

α = β
√

1− 2β

θ =
1

3
cos−1

(
1− 54α2

)

β =
1

6

[
1 +
√

3 sin θ − cos θ
]

α ≤
√

1

27
' 0.192 required.
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QLMXB M − R Estimates

Özel & Freire (2016)
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Combined R fits

Assume P(M) is that measured from pulsar timing
(M̄ = 1.4M�).

Özel & Freire (2015)
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Role of Systematic Uncertainties

Systematic uncertainties plague radius measurements.

I Assuming uniform surface temperatures leads to
underestimates in radii.

I Uncertainties in amounts of interstellar absorption

I Atmospheric composition: In quiescent sources, He or C
atmospheres predict about 50% larger radii than H
atmospheres.

I Non-spherical geometries: In bursting sources, the use of
the spherically-symmetric Eddington flux formula leads to
underestimate of radii.

I Disc shadowing: In bursting sources, leads to
underprediction of A = f −4c (R∞/D)2, overprediction of
α ∝ 1/

√
A, and underprediction of R∞ ∝

√
α.

J. M. Lattimer Equation of State of Neutron Star Matter



Piecewise-Polytrope Radius Distributions
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Folding Observations with Piecewise Polytropes
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Other Studies

Hebeler, Lattimer, Pethick & Schwenk 2010 Özel & Freire 2016

↑
R1.4,min = 10.6 km
Mmax = 1.97M�

R1.4,min = 9.25 km
Mmax = 1.66M�

↑
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Radius - p1 Correlation
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Binding Energy - Mass Correlations
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Binding Energy - Mass - Radius Correlations
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Moment of Inertia - Mass - Radius Correlations
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Moment of Inertia - Radius Constraints

PSR 0737-3039A
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Tidal Deformatibility - Moment of Inertia

See also Yagi & Yunes (2013)
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Tidal Deformatibility - Mass
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Tidal Deformatibility - Mass - Radius
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Binary Tidal Deformability

In a neutron star merger, both stars are tidally deformed. The
most accurately measured deformability parameter is

Λ̄ =
16

13

[
λ̄1q

4(12q + 1) + λ̄2(1 + 12q)
]

where

q =
M1

M2
< 1

For S/N ≈ 20− 30, typical measurement accuracies are
expected to be (Rodriguez et al. 2014; Wade et al. 2014):

∆Mchirp ∼ 0.01− 0.02%, ∆Λ̄ ∼ 20− 25%

∆(M1 + M2) ∼ 1− 2%, ∆q ∼ 10− 15%
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Binary Tidal Deformatibility - Λ̄
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Binary Tidal Deformatibility - Mchirp
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Binary Tidal Deformatibility - Mchirp - R1.4
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Hybrid Stars With First-Order Phase Transition
Tianqi Zhou

Follows scheme of Alford, Burgio,

Han, Taranto & Zappalà (2015)
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Mass-Radius Comparisons
Tianqi Zhou

Green = hadronic; Blue = hybrid
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Binding Energy - Compactness Comparisons
Tianqi Zhou

Green = hadronic; Blue = hybrid
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Moment of Inertia - Compactness Comparisons
Tianqi Zhou

Green = hadronic; Blue = hybrid
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Tidal Deformability Comparisons

Tianqi Zhou

Green = hybrid c2s = 1

Blue = hadronic

Red = hybrid c2s = 1/3
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Future Observations

I Twin stars with different radii:
Evidence for phase transitions

I Neutron star seismology and r-modes from GW
observations:

νellipticity = 2f , νr−mode ≈ (4/3)f

I Compactness from νr−mode .
I Temperature if r-modes dominate heating.
I Moment of inertia if r-modes dominate spindown.
I Require factor of 3–10 improvement in sensitivity over

aLIGO.
I Potential sources would be very young.

I What else?
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Additional Proposed Radius and Mass Constraints

I Pulse profiles Hot or cold regions
on rotating neutron stars alter
pulse shapes: NICER and LOFT
will enable X-ray timing and
spectroscopy of thermal and
non-thermal emissions. Light
curve modeling → M/R;
phase-resolved spectroscopy → R.

I Moment of inertia Spin-orbit
coupling of ultra- relativistic
binary pulsars (e.g., PSR
0737+3039) vary i and contribute
to ω̇: I ∝ MR2.

I Supernova neutrinos Millions of
neutrinos detected from a
Galactic supernova will measure
BE= mBN −M, < Eν >, τν .

I QPOs from accreting sources
ISCO and crustal oscillations

NASA

Neutron star Interior Composition ExploreR

Large Observatory For x-ray Timing

ESA/NASA
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”Is Grandpa in the rocket ship?”

NICER successfully launched
aboard a Falcon rocket,

June 3.

Was powered up June 13.

Now taking data:

J0437-4715 (1.44M�)
J0030+0451
J1231-1411
J1614-2230 (1.93M�)
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X-ray Timing of RXJ0720.4-3125

Hambaryan et al. (2017) undertook phase-resolved spectroscopy of
the isolated neutron star RXJ0720.4-3125, one of ”magnificent 7”.
Spin period is 16.79s.
Tbb ∼ 90 eV,
TFe ∼ 105 eV.
R1.4 ' 13.2± 0.3 km.
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