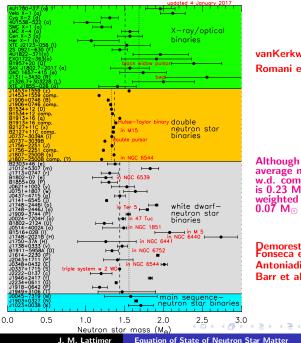
Equation of State of Neutron Star Matter

J. M. Lattimer

Department of Physics & Astronomy

lectromagnetic Signatures of R-Process Nucleosynthesis in Neutron Star Merger INT, Seattle, Washington 24 July - 18 August, 2017

- The Unitary Gas Constraint on the Nuclear Symmetry Energy
- Constraints from Nuclear Physics and the Maximum Mass on Neutron Star Universal Structure
- How the Possibility of Hybrid Stars Loosens Constraints
- Observational Estimates of Neutron Star Radii and Their Problems



vanKerkwijk 2010 Romani et al. 2012

Although simple average mass of w.d. companions is 0.23 M_\odot larger, weighted average is 0.07 M_\odot larger

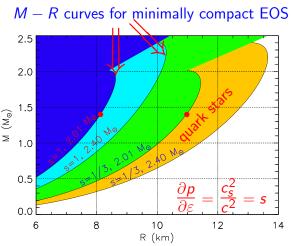
Demorest et al. 2010 Fonseca et al. 2016 Antoniadis et al. 2013 Barr et al. 2016

Causality + GR Limits and the Maximum Mass

A lower limit to the maximum mass sets a lower limit to the radius for a given mass.

Similarly, a precision upper limit to *R*, with a well-measured mass, sets an upper limit to the maximum mass.

 $R_{1.4} > 8.15 \text{ km if}$ $M_{max} \ge 2.01 M_{\odot}.$



If quark matter exists in the interior, the minimum radii are substantially larger.

The Unitary Gas

The **unitary gas** is an idealized system consisting of fermions interacting via a pairwise zero-range s-wave interaction with an infinite scattering length:

As long as the scattering length $a >> k_F^{-1}$ (interparticle spacing), and the range of the interaction $R << k_F^{-1}$, the properties of the gas are universal in the sense they don't depend on the details of the interaction.

The sole remaining length scale is $k_F = (3\pi^2 n)^{1/3}$, so the unitary gas energy is a constant times the Fermi energy $\hbar^2 k_F^2/(2m)$:

$$E_{\rm UG} = \xi_0 \frac{3\hbar^2 k_F^2}{10m}.$$

 $\xi_0 \simeq 0.37$ is known as the **Bertsch** parameter, measured in cold-atom experiments.

・ 同 ト ・ ヨ ト ・ ヨ ト

The Unitary Gas as Analogue of the Neutron Gas

A pure neutron matter (PNM) gas differs from the unitary gas:

- $|a| \simeq 18.5$ fm; $|ak_F|^{-1} \simeq 0.03$ for $n = n_s$.
- $R \simeq 2.7$ fm; $Rk_F \approx 4.5$ for $n = n_s$.
- Repulsive 3-body interactions are additionally necessary for neutron matter to fit the energies of light nuclei.
- Neutron matter has potentially atractive p-wave and higher-order interactions.

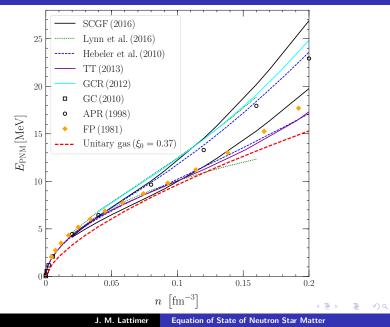
The first three imply $E_{\rm PNM} > E_{\rm UG}$:

- $\xi \simeq \xi_0 + 0.6 |ak_F|^{-1} + \dots |ak_F|^{-1} << 1$
- $\blacktriangleright \xi \simeq \xi_0 + 0.12 R k_F + \dots \qquad R k_F << 1$

A reasonable conjecture would appear to be $(u = n/n_s)$

 $E_{
m PNM}(u) = E(u, Y_p = 0) \ge E_{
m UG,0} u^{2/3} \simeq 12.6 u^{2/3} {
m MeV}$

Comparison to Neutron Matter Calculations



Consequences for the Nuclear Symmetry Energy

$$S(u) = E_{\rm PNM} - E(u, Y_p = 1/2).$$

A good approximation for the Y_p -dependence of E is

$$S(u) \simeq \frac{1}{8} \frac{\partial^2 E(u, Y_p)}{\partial Y_p^2}.$$

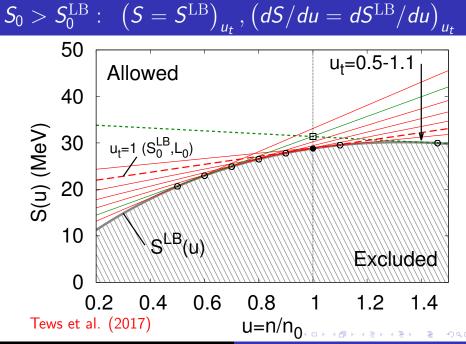
Near n_s ,
$$S(u) \simeq S_0 + \frac{L}{3}(u-1) + \frac{K_{sym}}{18}(u-1)^2 + \cdots$$
$$E(u, Y_p = 1/2) \simeq -B + \frac{K_s}{18}(u-1)^2 + \cdots$$

In this case, the unitary gas conjecture is

$$S(u) > E_{\mathrm{UG},0}u^{2/3} - \left[-B + \frac{\kappa_s}{18}(u-1)^2 + \cdots\right] \equiv S^{\mathrm{LB}}(u)$$

Thus, the symmetry energy parameters S_0 and L must satisfy

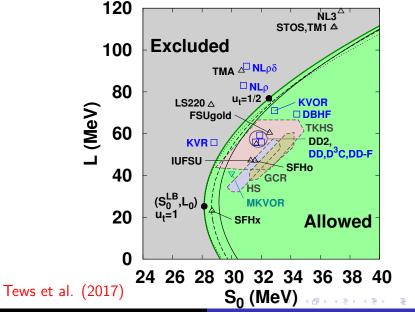
$$S(u = 1) = S_0 \ge S_0^{\text{LB}} = E_{\text{UG},0} + B \simeq 28.5 \text{ MeV}$$
$$L(u = 1) = L_0 = 3 (udS/du)_{u=1} = 2E_{\text{UG},0} \simeq 25.2 \text{MeV}$$



J. M. Lattimer

Equation of State of Neutron Star Matter

Symmetry Parameter Exclusions

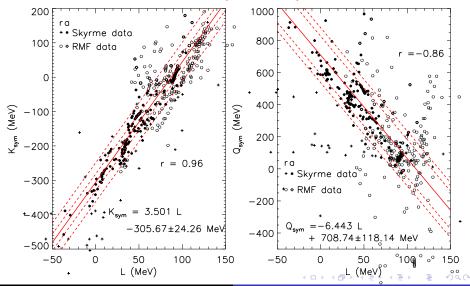


J. M. Lattimer

Equation of State of Neutron Star Matter

Symmetry Parameter Correlations

Compilations from Dutra et al. (2012, 2014)

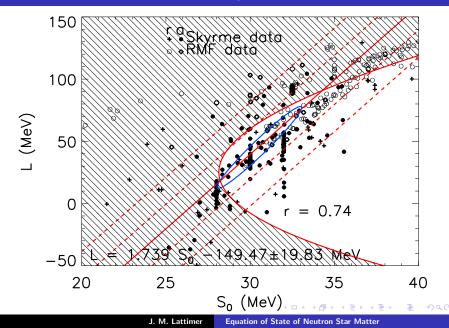


J. M. Lattimer

Equation of State of Neutron Star Matter

0

More Realistic Exclusion Region



Analytic Approximation for the Boundary

$$S(u_t) = S^{\text{LB}}(u_t), \qquad \left(\frac{dS}{du}\right)_{u_t} = \left(\frac{dS^{\text{LB}}}{du}\right)_{u_t}$$

gives

$$S_{0} + \frac{L}{3}(u_{t} - 1) + \frac{K_{sym}}{18}(u_{t} - 1)^{2} = E_{\text{UG},0}u_{t}^{2/3} + B - \frac{K_{s}}{18}(u_{t} - 1)^{2}$$
$$L + \frac{K_{sym}}{3}(u_{t} - 1) = 2E_{\text{UG},0}u_{t}^{-1/3} - \frac{K_{s}}{3}(u_{t} - 1)$$
Assume $K_{n} = 3L$ (i.e., $K_{\text{sym}} \approx 3L - K_{s}$). Then

 $S_0 = rac{E_{{
m UG},0}}{3u_t^{4/3}}(1+2u_t^2) - E_0, \qquad L = rac{2E_{{
m UG},0}}{u_t^{4/3}}$

or after eliminating u_t ,

$$S_0 = \frac{L}{6} \left[1 + 2 \left(\frac{2E_{\text{UG},0}}{L} \right)^{3/2} \right] - E_0$$

3

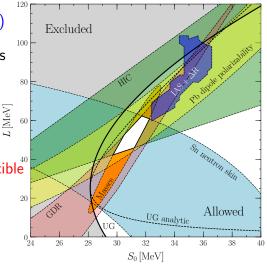
Experimental Constraints

Isovector Skins and Isobaric Analog States from Danielewicz et al. (2017)

Other experimental constraints from Lattimer & Lim (2013)

Unitary gas constraints from Tews et al. (2017)

Experimental and neutron matter constraints are compatible with unitary gas bounds.



Piecewise Polytropes

Crust EOS is known: $n < n_0 = 0.4 n_s$.

Read, Lackey, Owen & Friedman (2009) found high-density EOS can be modeled as piecewise polytropes with 3 segments.

They found universal break points $(n_1 \simeq 1.85 n_s, n_2 \simeq 3.7 n_s)$ optimized fits to a wide family of modeled EOSs.

For $n_0 < n < n_1$, assume neutron matter EOS. Arbitrarily choose $n_3 = 7.4n_s$.

For a given p_1 (or Γ_1): $0 < \Gamma_2 < \Gamma_{2c}$ or $p_1 < p_2 < p_{2c}$. $0 < \Gamma_3 < \Gamma_{3c}$ or $p_2 < p_3 < p_{3c}$.

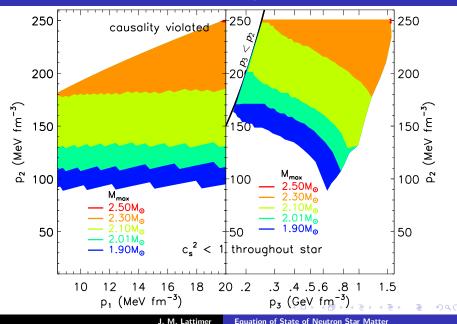
Minimum values of p_2 , p_3 set by M_{max} ; maximum values set by causality.



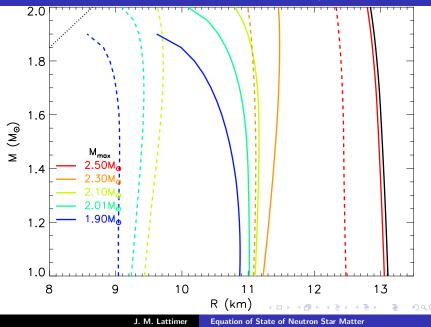
 $log(\rho in g/cm^3)$

Equation of State of Neutron Star Matter

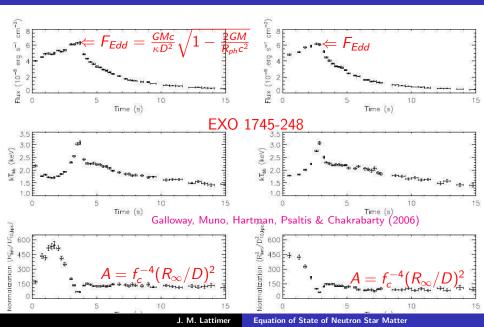
Maximum Mass and Causality Constraints



Mass-Radius Constraints from Causality

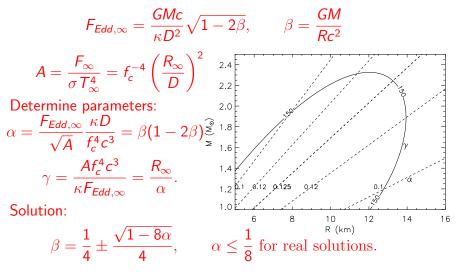


Photospheric Radius Expansion X-Ray Bursts

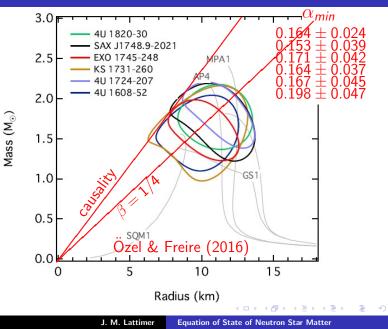


PRE Burst Model

Observations measure:



PRE M - R Estimates



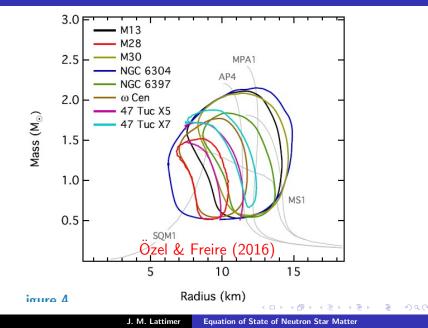
PRE Burst Models – Effect of Source Redshift

Ozel et al.
$$z_{\rm ph} = z$$
 $\beta = GM/Rc^2$ Steiner et al. $z_{\rm ph} << z$

$$\begin{aligned} F_{\text{Edd}} &= \frac{GMc}{\kappa D} \sqrt{1 - 2\beta} \qquad F_{\text{Edd}} &= \frac{GMc}{\kappa D} \\ A &= \frac{F_{\infty}}{\sigma T_{\infty}^4} = f_c^{-4} \left(\frac{R_{\infty}}{D}\right)^2 \qquad \alpha &= \beta \sqrt{1 - 2\beta} \\ \alpha &= \frac{F_{\text{Edd}}}{\sqrt{A}} \frac{\kappa D}{F_c^2 c^3} = \beta (1 - 2\beta) \qquad \theta &= \frac{1}{3} \cos^{-1} \left(1 - 54\alpha^2\right) \\ \gamma &= \frac{Af_c^4 c^3}{\kappa F_{\text{Edd}}} = \frac{R_{\infty}}{\alpha} \qquad \beta &= \frac{1}{6} \left[1 + \sqrt{3} \sin \theta - \cos \theta\right] \\ \beta &= \frac{1}{4} \pm \frac{1}{4} \sqrt{1 - 8\alpha} \qquad \alpha &\leq \sqrt{\frac{1}{27}} \simeq 0.192 \text{ required.} \\ \alpha &\leq \frac{1}{8} \text{ required.} \end{aligned}$$

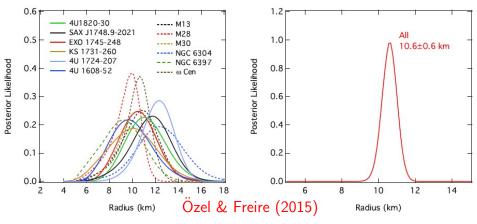
(本部) (本語) (本語) (語)

QLMXB M - R Estimates



Combined R fits

Assume P(M) is that measured from pulsar timing $(\bar{M} = 1.4M_{\odot})$.



イロト イヨト イヨト イヨト

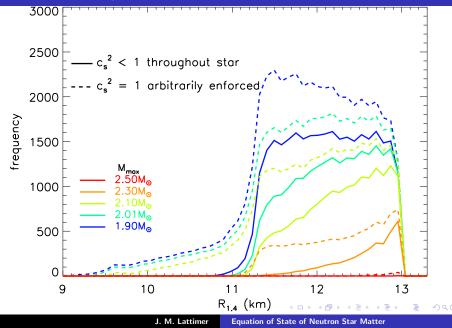
Role of Systematic Uncertainties

Systematic uncertainties plague radius measurements.

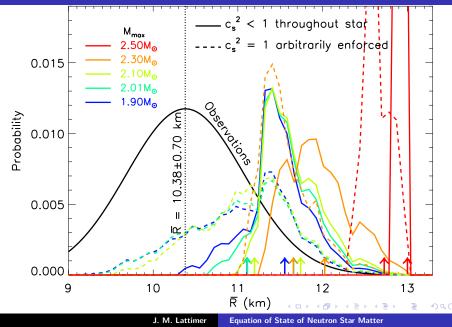
- Assuming uniform surface temperatures leads to underestimates in radii.
- Uncertainties in amounts of interstellar absorption
- Atmospheric composition: In quiescent sources, He or C atmospheres predict about 50% larger radii than H atmospheres.
- Non-spherical geometries: In bursting sources, the use of the spherically-symmetric Eddington flux formula leads to underestimate of radii.
- Disc shadowing: In bursting sources, leads to underprediction of A = f_c⁻⁴(R_∞/D)², overprediction of α ∝ 1/√A, and underprediction of R_∞ ∝ √α.

• E •

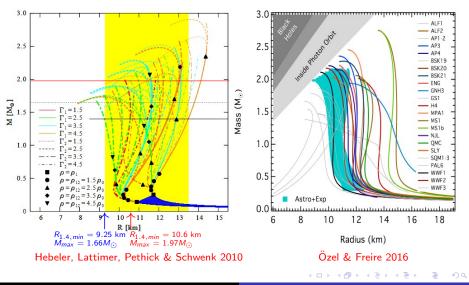
Piecewise-Polytrope Radius Distributions



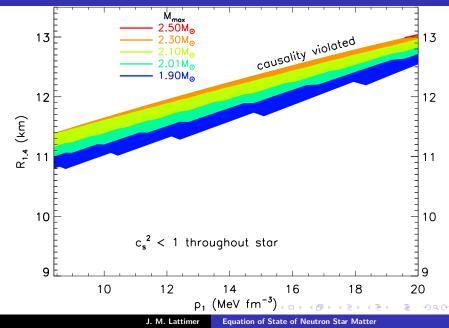
Folding Observations with Piecewise Polytropes



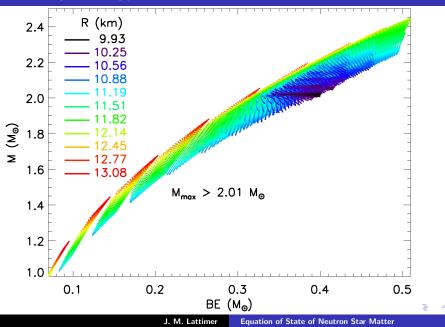
Other Studies



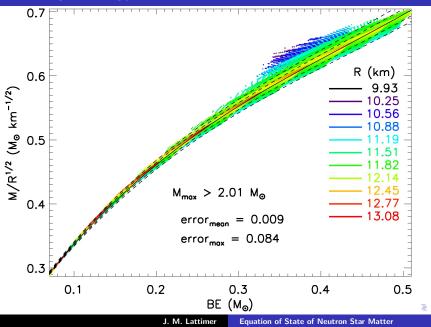
Radius - p_1 Correlation



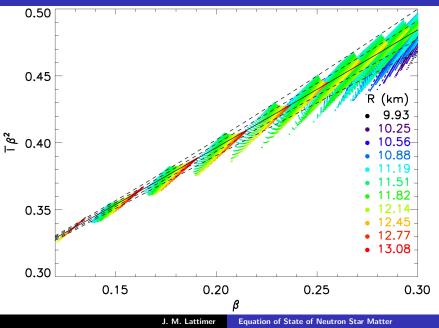
Binding Energy - Mass Correlations



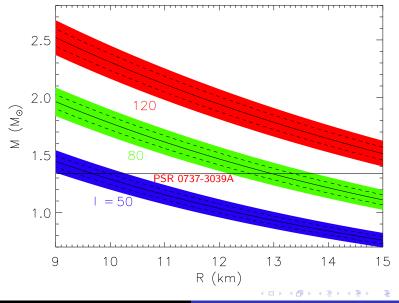
Binding Energy - Mass - Radius Correlations



Moment of Inertia - Mass - Radius Correlations

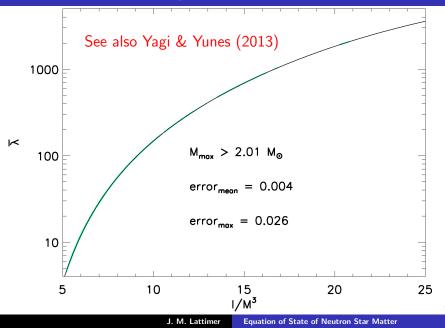


Moment of Inertia - Radius Constraints

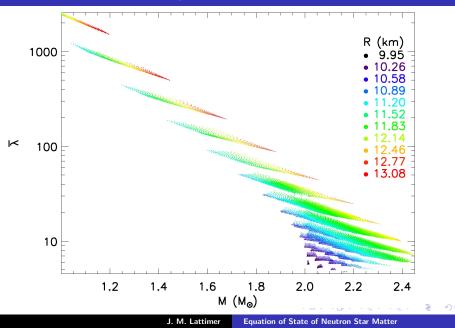


J. M. Lattimer Equation of State of Neutron Star Matter

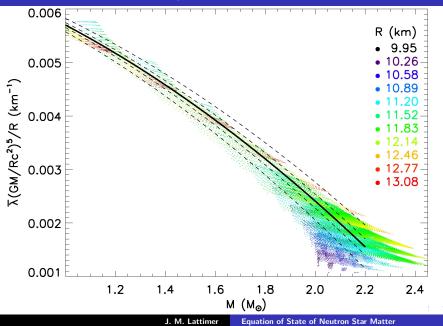
Tidal Deformatibility - Moment of Inertia



Tidal Deformatibility - Mass



Tidal Deformatibility - Mass - Radius



In a neutron star merger, both stars are tidally deformed. The most accurately measured deformability parameter is

$$ar{\Lambda}=rac{16}{13}\left[ar{\lambda}_1q^4(12q+1)+ar{\lambda}_2(1+12q)
ight]$$

where

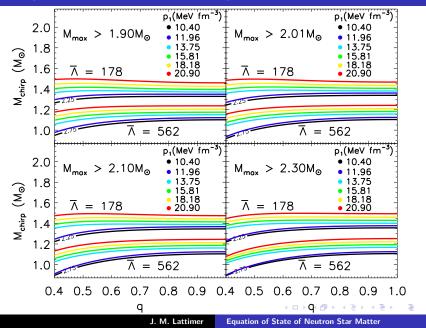
$$q=\frac{M_1}{M_2}<1$$

For $S/N \approx 20 - 30$, typical measurement accuracies are expected to be (Rodriguez et al. 2014; Wade et al. 2014):

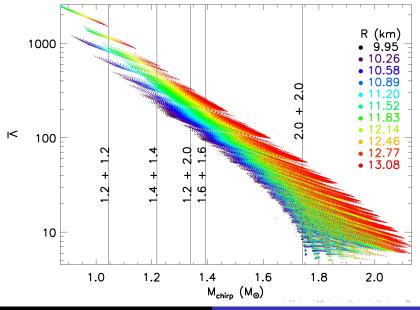
 $\Delta M_{chirp} \sim 0.01 - 0.02\%, \qquad \Delta ar{\Lambda} \sim 20 - 25\%$

 $\Delta(M_1 + M_2) \sim 1 - 2\%, \qquad \Delta q \sim 10 - 15\%$

Binary Tidal Deformatibility - $\overline{\Lambda}$

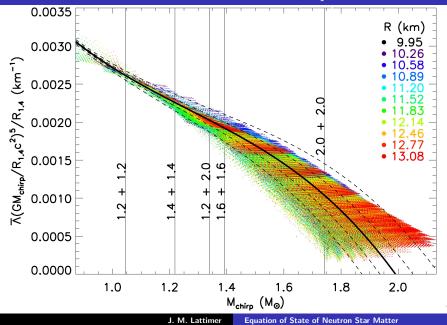


Binary Tidal Deformatibility - $M_{\rm chirp}$

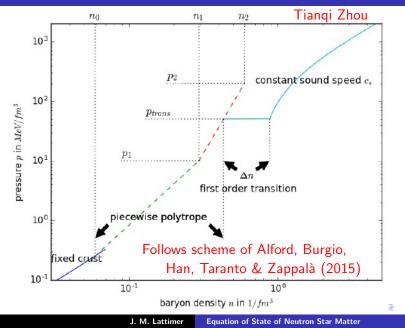


J. M. Lattimer Equation of State of Neutron Star Matter

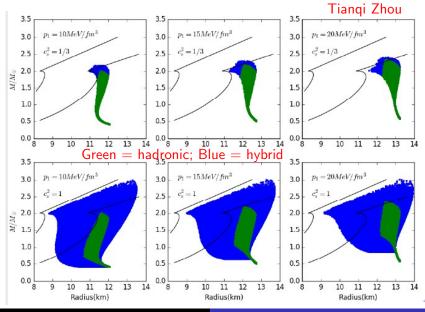
Binary Tidal Deformatibility - $M_{\rm chirp}$ - $R_{1.4}$



Hybrid Stars With First-Order Phase Transition



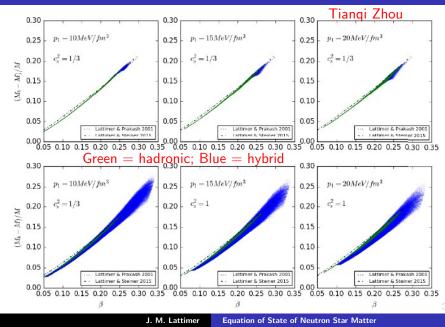
Mass-Radius Comparisons



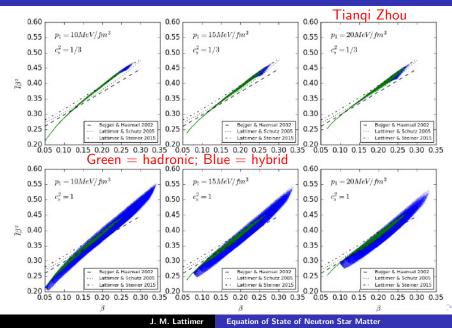
J. M. Lattimer

Equation of State of Neutron Star Matter

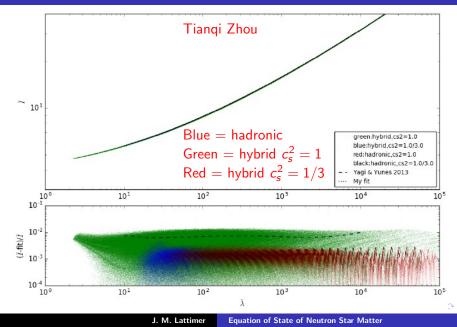
Binding Energy - Compactness Comparisons



Moment of Inertia - Compactness Comparisons



Tidal Deformability Comparisons



Future Observations

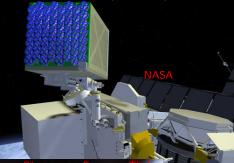
- Twin stars with different radii: Evidence for phase transitions
- Neutron star seismology and r-modes from GW observations:

$$u_{ellipticity} = 2f, \qquad \nu_{r-mode} \approx (4/3)f$$

- Compactness from ν_{r-mode} .
- Temperature if r-modes dominate heating.
- Moment of inertia if r-modes dominate spindown.
- ► Require factor of 3–10 improvement in sensitivity over aLIGO.
- Potential sources would be very young.
- What else?

Additional Proposed Radius and Mass Constraints

- ► Pulse profiles Hot or cold regions on rotating neutron stars alter pulse shapes: NICER and LOFT will enable X-ray timing and spectroscopy of thermal and non-thermal emissions. Light curve modeling → M/R; phase-resolved spectroscopy → R.
- Moment of inertia Spin-orbit coupling of ultra- relativistic binary pulsars (e.g., PSR 0737+3039) vary *i* and contribute to *i*: *I* ∝ *MR*².
- Supernova neutrinos Millions of neutrinos detected from a Galactic supernova will measure $BE = m_B N - M$, $\langle E_{\nu} \rangle$, τ_{ν} .
- QPOs from accreting sources ISCO and crustal oscillations



Equation of State of Neutron Star Matter

J. M. Lattimer

" Is Grandpa in the rocket ship?"

NICER successfully launched aboard a Falcon rocket, June 3. Was powered up June 13.

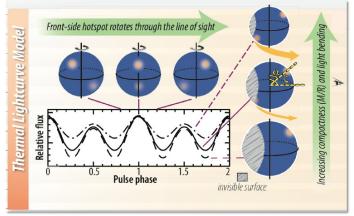
Now taking data:

J0437-4715 $(1.44 M_{\odot})$ J0030+0451 J1231-1411 J1614-2230 $(1.93 M_{\odot})$

Equation of State of Neutron Star Matter

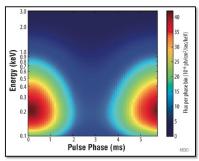
Science Measurements

Reveal stellar structure through lightcurve modeling, long-term timing, and pulsation searches

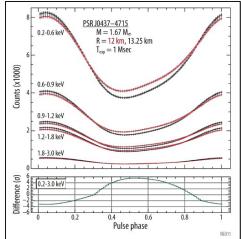


Lightcurve modeling constrains the compactness (M/R) and viewing geometry of a non-accreting millisecond pulsar through the depth of modulation and harmonic content of emission from rotating hot-spots, thanks to gravitational light-bending...

Science Overview - 5



... while phase-resolved spectroscopy promises a direct constraint of radius *R*.



aionas Austrian (

X-ray Timing of RXJ0720.4-3125

Hambaryan et al. (2017) undertook phase-resolved spectroscopy of the isolated neutron star RXJ0720.4-3125, one of "magnificent 7".

Spin period is 16.79s. $T_{bb} \sim 90 \text{ eV},$ $T_{Fe} \sim 105 \text{ eV}.$

 $R_{1.4} \simeq 13.2 \pm 0.3$ km.

