Neutron Star Constraints From Mergers and Cold Atoms

J. M. Lattimer

Department of Physics & Astronomy

Observational Signatures of Nucleosynthesis in Neutron Star Mergers INT, Seattle, Washington 31 July - 4 August, 2017

- The Unitary Gas Constraint on the Nuclear Symmetry Energy
- Neutron Star Universal Structure Relations
- Using Tidal Deformabilities to Infer the Equation of State
- Universal Structure Relations for Hybrid Stars

(E)

vanKerkwijk 2010 Romani et al. 2012

Although simple average mass of w.d. companions is 0.23 M_{\odot} larger, weighted average is 0.07 M_{\odot} larger

Demorest et al. 2010 Fonseca et al. 2016 Antoniadis et al. 2013 Barr et al. 2016

Causality + GR Limits and the Maximum Mass

A lower limit to the maximum mass sets a lower limit to the radius for a given mass.

Similarly, a precision upper limit to *R*, with a well-measured mass, sets an upper limit to the maximum mass.

 $R_{1.4} > 8.15$ km if $M_{max} \ge 2.01 M_{\odot}.$

If quark matter exists in the interior, the minimum radii are substantially larger.

The Unitary Gas

The **unitary gas** is an idealized system consisting of fermions interacting via a pairwise zero-range s-wave interaction with an infinite scattering length:

As long as the scattering length $a >> k_F^{-1}$ (interparticle spacing), and the range of the interaction $R << k_F^{-1}$, the properties of the gas are universal in the sense they don't depend on the details of the interaction.

The sole remaining length scale is $k_F = (3\pi^2 n)^{1/3}$, so the unitary gas energy is a constant times the Fermi energy $\hbar^2 k_F^2/(2m)$:

$$E_{\rm UG}=\xi_0\frac{3\hbar^2k_F^2}{10m}.$$

 $\xi_0 \simeq 0.37$ is known as the **Bertsch** parameter, measured in cold-atom experiments.

(日本) (日本) (日本)

The Unitary Gas as Analogue of the Neutron Gas

A pure neutron matter (PNM) gas differs from the unitary gas:

- $|a| \simeq 18.5$ fm; $|ak_F|^{-1} \simeq 0.03$ for $n = n_s$.
- $R \simeq 2.7$ fm; $Rk_F \approx 4.5$ for $n = n_s$.
- Repulsive 3-body interactions are additionally necessary for neutron matter to fit the energies of light nuclei.
- Neutron matter has potentially atractive p-wave and higher-order interactions.

The first three imply $E_{\rm PNM} > E_{\rm UG}$:

- $\xi \simeq \xi_0 + 0.6 |ak_F|^{-1} + \dots |ak_F|^{-1} << 1$
- $\blacktriangleright \xi \simeq \xi_0 + 0.12 R k_F + \dots \qquad R k_F << 1$

A reasonable conjecture would appear to be $(u = n/n_s)$

 $E_{
m PNM}(u) = E(u, Y_p = 0) \ge E_{
m UG,0} u^{2/3} \simeq 12.6 u^{2/3} \; {
m MeV}$

Consequences for the Nuclear Symmetry Energy

$$S(u) = E_{\rm PNM} - E(u, Y_p = 1/2).$$

A good approximation for the Y_p -dependence of E is

$$S(u) \simeq \frac{1}{8} \frac{\partial^2 E(u, Y_p)}{\partial Y_p^2}.$$

Near n_s ,
$$S(u) \simeq S_0 + \frac{L}{3}(u-1) + \frac{K_{sym}}{18}(u-1)^2 + \cdots$$
$$E(u, Y_p = 1/2) \simeq -B + \frac{K_s}{18}(u-1)^2 + \cdots$$

In this case, the unitary gas conjecture is

$$S(u) > E_{\mathrm{UG},0}u^{2/3} - \left[-B + \frac{\kappa_s}{18}(u-1)^2 + \cdots\right] \equiv S^{\mathrm{LB}}(u)$$

Thus, the symmetry energy parameters S_0 and L must satisfy

$$S(u = 1) = S_0 \ge S_0^{\text{LB}} = E_{\text{UG},0} + B \simeq 28.5 \text{ MeV}$$
$$L(u = 1) = L_0 = 3 (udS/du)_{u=1} = 2E_{\text{UG},0} \simeq 25.2 \text{MeV}$$

J. M. Lattimer

Neutron Star Constraints From Mergers and Cold Atoms

Symmetry Parameter Exclusions

J. M. Lattimer

Neutron Star Constraints From Mergers and Cold Atoms

Symmetry Parameter Correlations

Compilations from Dutra et al. (2012, 2014)

J. M. Lattimer

Neutron Star Constraints From Mergers and Cold Atoms

0

More Realistic Exclusion Region

Analytic Approximation for the Boundary

$$S(u_t) = S^{\text{LB}}(u_t), \qquad \left(\frac{dS}{du}\right)_{u_t} = \left(\frac{dS^{\text{LB}}}{du}\right)_{u_t}$$

gives

$$S_{0} + \frac{L}{3}(u_{t} - 1) + \frac{K_{sym}}{18}(u_{t} - 1)^{2} = E_{\text{UG},0}u_{t}^{2/3} + B - \frac{K_{s}}{18}(u_{t} - 1)^{2}$$
$$L + \frac{K_{sym}}{3}(u_{t} - 1) = 2E_{\text{UG},0}u_{t}^{-1/3} - \frac{K_{s}}{3}(u_{t} - 1)$$
Assume $K_{n} = 3L$ (i.e., $K_{\text{sym}} \approx 3L - K_{s}$). Then

 $S_0 = \frac{E_{\text{UG},0}}{3u_t^{4/3}} (1 + 2u_t^2) - E_0, \qquad L = \frac{2E_{\text{UG},0}}{u_t^{4/3}}$

or after eliminating u_t ,

$$S_0 = \frac{L}{6} \left[1 + 2 \left(\frac{2E_{\mathrm{UG},0}}{L} \right)^{3/2} \right] - E_0$$

Experimental Constraints

Isovector Skins and Isobaric Analog States from Danielewicz et al. (2017)

Other experimental constraints from Lattimer & Lim (2013)

Unitary gas constraints from Tews et al. (2017)

Experimental and neutron matter constraints are compatible with unitary gas bounds.

L (MeV)

Piecewise Polytropes

Crust EOS is known: $n < n_0 = 0.4 n_s$.

Read, Lackey, Owen & Friedman (2009) found high-density EOS can be modeled as piecewise polytropes with 3 segments.

They found universal break points $(n_1 \simeq 1.85 n_s, n_2 \simeq 3.7 n_s)$ optimized fits to a wide family of modeled EOSs.

For $n_0 < n < n_1$, assume neutron matter EOS. Arbitrarily choose $n_3 = 7.4n_s$.

For a given p_1 (or Γ_1): $0 < \Gamma_2 < \Gamma_{2c}$ or $p_1 < p_2 < p_{2c}$. $0 < \Gamma_3 < \Gamma_{3c}$ or $p_2 < p_3 < p_{3c}$.

Minimum values of p_2 , p_3 set by M_{max} ; maximum values set by causality.

Neutron Star Constraints From Mergers and Cold Atoms

Maximum Mass and Causality Constraints

J. M. Lattimer

Neutron Star Constraints From Mergers and Cold Atoms

Mass-Radius Constraints from Causality

PRE M - R Estimates

QLMXB M - R Estimates

J. M. Lattimer Neutron Star Constraints From Mergers and Cold Atoms

Combined R fits

Assume P(M) is that measured from pulsar timing $(\bar{M} = 1.4M_{\odot})$.

J. M. Lattimer Neutron Star Constraints From Mergers and Cold Atoms

<ロ> (日) (日) (日) (日) (日)

3

Piecewise-Polytrope Average Radius Distributions

Folding Observations with Piecewise Polytropes

Other Studies

Radius - p_1 Correlation

Binding Energy - Mass Correlations

Binding Energy - Mass - Radius Correlations

Moment of Inertia - Mass - Radius Correlations

Moment of Inertia - Radius Constraints

J. M. Lattimer Neutron Star Constraints From Mergers and Cold Atoms

Tidal Deformatibility - Moment of Inertia

Tidal Deformatibility - Mass

J. M. Lattimer Neutron Star Constraints From Mergers and Cold Atoms

Tidal Deformatibility - Mass - Radius

In a neutron star merger, both stars are tidally deformed. The most accurately measured deformability parameter is

$$ar{\Lambda}=rac{16}{13}\left[ar{\lambda}_1q^4(12q+1)+ar{\lambda}_2(1+12q)
ight]$$

where

$$q=\frac{M_1}{M_2}<1$$

For $S/N \approx 20 - 30$, typical measurement accuracies are expected to be (Rodriguez et al. 2014; Wade et al. 2014):

$$\Delta M_{chirp} \sim 0.01 - 0.02\%, \qquad \Delta \overline{\Lambda} \sim 20 - 25\%$$

 $\Delta(M_1 + M_2) \sim 1 - 2\%, \qquad \Delta q \sim 10 - 15\%$

・ 同 ト ・ ヨ ト ・ ヨ ト

Binary Tidal Deformatibility - $\overline{\Lambda}$

Binary Tidal Deformatibility - $M_{\rm chirp}$

J. M. Lattimer Neutron Star Constraints From Mergers and Cold Atoms

Binary Tidal Deformatibility - $M_{\rm chirp}$ - $R_{1.4}$

Hybrid Stars With First-Order Phase Transition

Mass-Radius Comparisons

J. M. Lattimer

Neutron Star Constraints From Mergers and Cold Atoms

Binding Energy - Compactness Comparisons

Moment of Inertia - Compactness Comparisons

Tidal Deformability Comparisons

