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Outline

I The Unitary Gas Constraint on the Nuclear
Symmetry Energy

I Neutron Star Universal Structure Relations

I Using Tidal Deformabilities to Infer the
Equation of State

I Universal Structure Relations for Hybrid Stars
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Although simple
average mass of
w.d. companions
is 0.23 M� larger,
weighted average is
0.07 M� larger

Demorest et al. 2010
Fonseca et al. 2016
Antoniadis et al. 2013
Barr et al. 2016

Romani et al. 2012

vanKerkwijk 2010
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Causality + GR Limits and the Maximum Mass

A lower limit to the
maximum mass sets a
lower limit to the
radius for a given mass.

Similarly, a precision
upper limit to R , with
a well-measured mass,
sets an upper limit to
the maximum mass.

R1.4 > 8.15 km if
Mmax ≥ 2.01M�.
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If quark matter exists in the interior, the minimum radii are
substantially larger.
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The Unitary Gas

The unitary gas is an idealized system consisting of fermions
interacting via a pairwise zero-range s-wave interaction with an
infinite scattering length:

As long as the scattering length a >> k−1
F (interparticle spacing),

and the range of the interaction R << k−1
F , the properties of the

gas are universal in the sense they don’t depend on the details of
the interaction.

The sole remaining length scale is kF = (3π2n)1/3, so the unitary
gas energy is a constant times the Fermi energy ~2k2F/(2m):

EUG = ξ0
3~2k2F
10m

.

ξ0 ' 0.37 is known as the Bertsch parameter, measured in
cold-atom experiments.
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The Unitary Gas as Analogue of the Neutron Gas

A pure neutron matter (PNM) gas differs from the unitary gas:

I |a| ' 18.5 fm; |akF |−1 ' 0.03 for n = ns .

I R ' 2.7 fm; RkF ≈ 4.5 for n = ns .

I Repulsive 3-body interactions are additionally necessary for
neutron matter to fit the energies of light nuclei.

I Neutron matter has potentially atractive p-wave and
higher-order interactions.

The first three imply EPNM > EUG:

I ξ ' ξ0 + 0.6|akF |−1 + . . . |akF |−1 << 1

I ξ ' ξ0 + 0.12RkF + . . . RkF << 1

A reasonable conjecture would appear to be (u = n/ns)

EPNM(u) = E (u,Yp = 0) ≥ EUG,0u
2/3 ' 12.6u2/3 MeV
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Consequences for the Nuclear Symmetry Energy

S(u) = EPNM − E (u,Yp = 1/2).

A good approximation for the Yp−dependence of E is

S(u) ' 1

8

∂2E (u,Yp)

∂Y 2
p

.

Near ns ,
S(u) ' S0 +

L

3
(u − 1) +

Ksym

18
(u − 1)2 + · · ·

E (u,Yp = 1/2) ' −B +
Ks

18
(u − 1)2 + · · ·

In this case, the unitary gas conjecture is

S(u) > EUG,0u
2/3 −

[
−B +

Ks

18
(u − 1)2 + · · ·

]
≡ SLB(u)

Thus, the symmetry energy parameters S0 and L must satisfy

S(u = 1) = S0 ≥ SLB
0 = EUG,0 + B ' 28.5 MeV

L(u = 1) = L0 = 3 (udS/du)u=1 = 2EUG,0 ' 25.2MeV

J. M. Lattimer Neutron Star Constraints From Mergers and Cold Atoms



S0 > SLB
0 :

(
S = SLB

)
ut
,
(
dS/du = dSLB/du

)
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Symmetry Parameter Exclusions
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Symmetry Parameter Correlations

Compilations from Dutra et al. (2012, 2014)
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More Realistic Exclusion Region

J. M. Lattimer Neutron Star Constraints From Mergers and Cold Atoms



Analytic Approximation for the Boundary

S(ut) = SLB(ut),

(
dS

du

)
ut

=

(
dSLB

du

)
ut

gives

S0 +
L

3
(ut − 1) +

Ksym

18
(ut − 1)2 = EUG,0u

2/3
t + B − Ks

18
(ut − 1)2

L +
Ksym

3
(ut − 1) = 2EUG,0u

−1/3
t − Ks

3
(ut − 1)

Assume Kn = 3L (i.e., Ksym ≈ 3L− Ks). Then

S0 =
EUG,0

3u
4/3
t

(1 + 2u2t )− E0, L =
2EUG,0

u
4/3
t

or after eliminating ut ,

S0 =
L

6

[
1 + 2

(
2EUG,0

L

)3/2
]
− E0
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Experimental Constraints

Isovector Skins and
Isobaric Analog States
from Danielewicz et al. (2017)

Other experimental constraints
from Lattimer & Lim (2013)

Unitary gas constraints from
Tews et al. (2017)

Experimental and neutron
matter constraints are compatible
with unitary gas bounds.
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Piecewise Polytropes
Crust EOS is known: n < n0 = 0.4ns .

Read, Lackey, Owen & Friedman (2009)
found high-density EOS can be modeled
as piecewise polytropes with 3 segments.

They found universal break points
(n1 ' 1.85ns , n2 ' 3.7ns) optimized fits
to a wide family of modeled EOSs.

For n0 < n < n1, assume neutron matter
EOS. Arbitrarily choose n3 = 7.4ns .

For a given p1 (or Γ1):
0 < Γ2 < Γ2c or p1 < p2 < p2c .
0 < Γ3 < Γ3c or p2 < p3 < p3c .

Minimum values of p2, p3 set by Mmax ;
maximum values set by causality.

◦
n3, p3

nm

◦
n0, p0

◦
n1, p1

◦n2, p2

13.8 14.814.3 15.3 15.7
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Maximum Mass and Causality Constraints

p 3
<

p 2
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Mass-Radius Constraints from Causality
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PRE M − R Estimates

Özel & Freire (2016)

0.164± 0.024
0.153± 0.039
0.171± 0.042
0.164± 0.037
0.167± 0.045
0.198± 0.047

αmin
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QLMXB M − R Estimates

Özel & Freire (2016)
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Combined R fits

Assume P(M) is that measured from pulsar timing
(M̄ = 1.4M�).

Özel & Freire (2015)
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Piecewise-Polytrope Average Radius Distributions
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Folding Observations with Piecewise Polytropes
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Other Studies

Hebeler, Lattimer, Pethick & Schwenk 2010 Özel & Freire 2016

↑
R1.4,min = 10.6 km
Mmax = 1.97M�

R1.4,min = 9.25 km
Mmax = 1.66M�

↑
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Radius - p1 Correlation
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Binding Energy - Mass Correlations
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Binding Energy - Mass - Radius Correlations
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Moment of Inertia - Mass - Radius Correlations
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Moment of Inertia - Radius Constraints

PSR 0737-3039A
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Tidal Deformatibility - Moment of Inertia

See also Yagi & Yunes (2013)
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Tidal Deformatibility - Mass
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Tidal Deformatibility - Mass - Radius
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Binary Tidal Deformability

In a neutron star merger, both stars are tidally deformed. The
most accurately measured deformability parameter is

Λ̄ =
16

13

[
λ̄1q

4(12q + 1) + λ̄2(1 + 12q)
]

where

q =
M1

M2
< 1

For S/N ≈ 20− 30, typical measurement accuracies are
expected to be (Rodriguez et al. 2014; Wade et al. 2014):

∆Mchirp ∼ 0.01− 0.02%, ∆Λ̄ ∼ 20− 25%

∆(M1 + M2) ∼ 1− 2%, ∆q ∼ 10− 15%
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Binary Tidal Deformatibility - Λ̄
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Binary Tidal Deformatibility - Mchirp
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Binary Tidal Deformatibility - Mchirp - R1.4

J. M. Lattimer Neutron Star Constraints From Mergers and Cold Atoms



Hybrid Stars With First-Order Phase Transition
Tianqi Zhou

Follows scheme of Alford, Burgio,

Han, Taranto & Zappalà (2015)
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Mass-Radius Comparisons
Tianqi Zhou

Green = hadronic; Blue = hybrid
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Binding Energy - Compactness Comparisons
Tianqi Zhou

Green = hadronic; Blue = hybrid
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Moment of Inertia - Compactness Comparisons
Tianqi Zhou

Green = hadronic; Blue = hybrid
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Tidal Deformability Comparisons

Tianqi Zhou

Green = hybrid c2s = 1

Blue = hadronic

Red = hybrid c2s = 1/3
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