Neutron Star Constraints From Mergers and Cold Atoms

J. M. Lattimer

Department of Physics & Astronomy

Observational Signatures of Nucleosynthesis in Neutron Star Mergers INT, Seattle, Washington 31 July - 4 August, 2017

- \triangleright The Unitary Gas Constraint on the Nuclear Symmetry Energy
- \triangleright Neutron Star Universal Structure Relations
- \triangleright Using Tidal Deformabilities to Infer the Equation of State
- \triangleright Universal Structure Relations for Hybrid Stars

へのへ

Romani et al. 2012 vanKerkwijk 2010

Although simple average mass of w.d. companions is 0.23 M_☉ larger,
weighted average is 0.07 M_{\odot} larger

Demorest et al. 2010 Fonseca et al. 2016 Antoniadis et al. 2013 Barr et al. 2016

 $2Q$

Causality $+$ GR Limits and the Maximum Mass

A lower limit to the maximum mass sets a lower limit to the radius for a given mass.

Similarly, a precision upper limit to R , with a well-measured mass, \geq sets an upper limit to the maximum mass.

 $R_{1.4} > 8.15$ km if $M_{\rm max} > 2.01 M_{\odot}$.

If quark matter exists in the interior, the minimum radii are substantially larger.

The Unitary Gas

The **unitary gas** is an idealized system consisting of fermions interacting via a pairwise zero-range s-wave interaction with an infinite scattering length:

As long as the scattering length $a>>k_F^{-1}$ $\mathcal{F}_{\mathcal{F}_{-1}}^{-1}$ (interparticle spacing), and the range of the interaction $R << k_F^{-1}$ \bar{f}^{-1} , the properties of the gas are universal in the sense they don't depend on the details of the interaction.

The sole remaining length scale is $k_F=(3\pi^2 n)^{1/3}$, so the unitary gas energy is a constant times the Fermi energy $\hbar^2 k_F^2/(2m)$:

$$
E_{\rm UG}=\xi_0\frac{3\hbar^2k_F^2}{10m}.
$$

 $\xi_0 \simeq 0.37$ is known as the **Bertsch** parameter, measured in cold-atom experiments.

マーター マートマート

The Unitary Gas as Analogue of the Neutron Gas

A pure neutron matter (PNM) gas differs from the unitary gas:

- ► $|a| \simeq 18.5$ fm; $|ak_F|^{-1} \simeq 0.03$ for $n = n_s$.
- ► $R \simeq 2.7$ fm; $Rk_F \approx 4.5$ for $n = n_s$.
- \triangleright Repulsive 3-body interactions are additionally necessary for neutron matter to fit the energies of light nuclei.
- \triangleright Neutron matter has potentially atractive p-wave and higher-order interactions.

The first three imply $E_{\text{PNM}} > E_{\text{UG}}$:

- $\blacktriangleright \ \xi \simeq \xi_0 + 0.6 | a k_F |^{-1} + \dots \qquad | a k_F |^{-1} << 1$
- $\triangleright \xi \simeq \xi_0 + 0.12Rk_F + \dots$ $Rk_F << 1$

A reasonable conjecture would appear to be $(u = n/n_s)$

 $E_{\rm PNM}(u) = E(u, Y_\rho=0) \ge E_{\rm UG,0} u^{2/3} \simeq 12.6 u^{2/3} \,\, {\rm MeV}$

Consequences for the Nuclear Symmetry Energy

$$
S(u) = EPNM - E(u, Yp = 1/2).
$$

A good approximation for the Y_p −dependence of E is

$$
S(u) \simeq \frac{1}{8} \frac{\partial^2 E(u, Y_\rho)}{\partial Y_\rho^2}.
$$

Near n_s ,

$$
S(u) \simeq S_0 + \frac{L}{3}(u-1) + \frac{K_{sym}}{18}(u-1)^2 + \cdots
$$

$$
E(u, Y_\rho = 1/2) \simeq -B + \frac{K_s}{18}(u-1)^2 + \cdots
$$

In this case, the unitary gas conjecture is

$$
S(u) > E_{\text{UG},0}u^{2/3} - \left[-B + \frac{K_s}{18}(u-1)^2 + \cdots \right] \equiv S^{\text{LB}}(u)
$$

Thus, the symmetry energy parameters S_0 and L must satisfy

$$
S(u = 1) = S_0 \geq S_0^{\text{LB}} = E_{\text{UG},0} + B \simeq 28.5 \text{ MeV}
$$

$$
L(u = 1) = L_0 = 3 (udS/du)_{u=1} = 2E_{\text{UG},0} \simeq 25.2 \text{MeV}
$$

J. M. Lattimer [Neutron Star Constraints From Mergers and Cold Atoms](#page-0-0)

Symmetry Parameter Exclusions

J. M. Lattimer [Neutron Star Constraints From Mergers and Cold Atoms](#page-0-0)

 290

Symmetry Parameter Correlations

Compilations from Dutra et al. (2012, 2014)

J. M. Lattimer [Neutron Star Constraints From Mergers and Cold Atoms](#page-0-0)

 \circ

More Realistic Exclusion Region

Analytic Approximation for the Boundary

$$
S(u_t) = S^{\text{LB}}(u_t), \qquad \left(\frac{dS}{du}\right)_{u_t} = \left(\frac{dS^{\text{LB}}}{du}\right)_{u_t}
$$

gives

$$
S_0 + \frac{L}{3}(u_t - 1) + \frac{K_{sym}}{18}(u_t - 1)^2 = E_{\text{UG},0}u_t^{2/3} + B - \frac{K_s}{18}(u_t - 1)^2
$$

$$
L + \frac{K_{sym}}{3}(u_t - 1) = 2E_{\text{UG},0}u_t^{-1/3} - \frac{K_s}{3}(u_t - 1)
$$

Assume $K_n = 3L$ (i.e., $K_{\text{sym}} \approx 3L - K_s$). Then

$$
S_0 = \frac{E_{\text{UG},0}}{3u_t^{4/3}}(1+2u_t^2) - E_0, \qquad L = \frac{2E_{\text{UG},0}}{u_t^{4/3}}
$$

or after eliminating u_t ,

$$
S_0 = \frac{L}{6} \left[1 + 2 \left(\frac{2E_{\text{UG},0}}{L} \right)^{3/2} \right] - E_0
$$

 $2Q$

Experimental Constraints

Isovector Skins and Isobaric Analog States from Danielewicz et al. (2017)

Other experimental constraints from Lattimer & Lim (2013)

Unitary gas constraints from Tews et al. (2017)

Experimental and neutron matter constraints are compatible with unitary gas bounds.

 $L(MeV)$

Piecewise Polytropes

Crust EOS is known: $n < n_0 = 0.4 n_s$.

Read, Lackey, Owen & Friedman (2009) found high-density EOS can be modeled as piecewise polytropes with 3 segments. They found universal break points $(n_1\simeq 1.85n_{\rm s}, n_2\simeq 3.7n_{\rm s})$ optimized fits

to a wide family of modeled EOSs.

For $n_0 < n < n_1$, assume neutron matter EOS. Arbitrarily choose $n_3 = 7.4 n_s$.

For a given p_1 (or Γ_1): $0 < \Gamma_2 < \Gamma_{2c}$ or $p_1 < p_2 < p_{2c}$. $0 < \Gamma_3 < \Gamma_{3c}$ or $p_2 < p_3 < p_{3c}$.

Minimum values of p_2, p_3 set by M_{max} ; maximum values set by causality.

J. M. Lattimer **[Neutron Star Constraints From Mergers and Cold Atoms](#page-0-0)**

Maximum Mass and Causality Constraints

Mass-Radius Constraints from Causality

PRE $M - R$ Estimates

QLMXB $M - R$ Estimates

J. M. Lattimer | [Neutron Star Constraints From Mergers and Cold Atoms](#page-0-0)

Combined R fits

Assume $P(M)$ is that measured from pulsar timing $(\bar{M} = 1.4 M_{\odot})$.

a mills. J. M. Lattimer [Neutron Star Constraints From Mergers and Cold Atoms](#page-0-0)

→ 伊 → → ミ →

重

 $2Q$

Piecewise-Polytrope Average Radius Distributions

Folding Observations with Piecewise Polytropes

Other Studies

Binding Energy - Mass Correlations

Binding Energy - Mass - Radius Correlations

Moment of Inertia - Mass - Radius Correlations

Moment of Inertia - Radius Constraints

J. M. Lattimer | [Neutron Star Constraints From Mergers and Cold Atoms](#page-0-0)

Tidal Deformatibility - Moment of Inertia

Tidal Deformatibility - Mass

Tidal Deformatibility - Mass - Radius

In a neutron star merger, both stars are tidally deformed. The most accurately measured deformability parameter is

$$
\bar{\Lambda}=\frac{16}{13}\left[\bar{\lambda}_1q^4(12q+1)+\bar{\lambda}_2(1+12q)\right]
$$

where

$$
q=\frac{M_1}{M_2}<1
$$

For $S/N \approx 20 - 30$, typical measurement accuracies are expected to be (Rodriguez et al. 2014; Wade et al. 2014):

 $\Delta M_{chirp} \sim 0.01 - 0.02\%$, $\Delta \bar{\Lambda} \sim 20 - 25\%$

 $\Delta(M_1 + M_2) \sim 1 - 2\%$, $\Delta q \sim 10 - 15\%$

マーター マーティング

Binary Tidal Deformatibility - Λ¯

Binary Tidal Deformatibility - $M_{\rm chirp}$

J. M. Lattimer | [Neutron Star Constraints From Mergers and Cold Atoms](#page-0-0)

Binary Tidal Deformatibility - $M_{\rm chirp}$ - $R_{\rm 1.4}$

Hybrid Stars With First-Order Phase Transition

Mass-Radius Comparisons

J. M. Lattimer | [Neutron Star Constraints From Mergers and Cold Atoms](#page-0-0)

Binding Energy - Compactness Comparisons

Moment of Inertia - Compactness Comparisons

Tidal Deformability Comparisons

