

THE STORY OF RETICULUM II

Nuclear Astrophysics Stellar Archaeology

Cosmic origin of the chemical elements

Clues to the astrophysical site of r-process nucleosynthesis

Dwarf Galaxy Archaeology

Ancient, clean chemical enrichment signatures

ANNA FREBEL

6

ASTROPHYSIC

r

NUCLEA

UNIVERSAL R-PROCESS PATTERN OBSERVED IN METAL-POOR STARS

r-process abundance **patterns** are the same in the Sun and old metalpoor stars

r-process stars are all extremely metal-poor: [Fe/H]~-3.0 (= 1/1000th of solar Fe value)

Definition: $[Fe/H] = Iog_{10}(N_{Fe}/N_H)_{star} - Iog_{10}(N_{Fe}/N_H)_{Sun}$

RARE R-PROCESS STARS IN THE MILKY WAY

STELLAR ARCHAEOLOGY Using metal-poor stars to probe the early universe **Low-mass stars** with $M < 1 M_{\odot}$: Lifetimes > 10 billion years => they are still around! Through chemical abundance studies ow-mass stars found in our Metals Galaxy today! 12-13 billion years First Star forming stars gas cloud (e.g. early dwarf 6.5m Magellan galaxy) telescope

 $[Fe/H] \le -3$ => only ~1 progenitor star produced that iron => only ~1 nucleosynthesis event made heavier elements

THE (DETAILED) ASTRONOMER'S PERIODIC TABLE

THE (DETAILED) ASTRONOMER'S PERIODIC TABLE

57	30	33	00	01	02	0.5	04	00	00	07	00	09	/0	
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Lanthanum 138.905	Cerium 140.116	Praseodymium 140.908	Neodymium 144.243	Promethium 144.913	Samarium 150.36	Europium 151.964	Gadolinium 157.25	Terbium 158.925	Dysprosium 162.500	Holmium 164.930	Erbium 167.259	Thulium 168.934	Ytterbium 173.055	Lutetium 174.967
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Actinium 227.028	Thorium 232.038	Protactinium 231.036	Uranium 238.029	Neptunium 237.048	Plutonium 244.064	Americium 243.061	Curium 247.070	Berkelium 247.070	Californium 251.080	Einsteinium [254]	Fermium 257.095	Mendelevium 258.1	Nobelium 259.101	Lawrencium [262]

THE (DETAILED) ASTRONOMER'S PERIODIC TABLE

Pu

Plutonium

244 064

Np

237.048

Neptunit

Ac

Actinium

227.028

Th

Thorium

232.038

Pa

Protactiniun

231.036

U

Uranium

238.029

Bk

Berkelium

247.070

Cm

Curium

247.070

Am

Americium

243.061

Cf

Californium

251.080

Es

Einsteinium

[254]

Fm

Fermium

257.095

Md

Mendelevium

258.1

No

Nobelium

259,101

Lr

Lawrencium

[262]

THE BIG QUESTION

★ What is the (dominant) astrophysical site of the r-process?

- ➡ Core-collapse supernovae
- Neutron star mergers
- Others (e.g., jet-driven supernovae)

★ What is the rate and yield of the event?★ Is the dominant site changing over cosmic time?

CORE-COLLAPSE SUPERNOVA

(DEATH OF A MASSIVE STAR WITH M > 8 M_{\odot})

Supernovae are <u>common</u>; produce light elements w/ Z<30 in their cores Responsible for these light elements when observed in metal-poor stars

Theoretical element yield:

~10⁻⁶ M_{sun} of total r-process material

=> ~10^{-7.5} M_{sun} of Eu (per event)

Pros

✓ Metal-poor stars only have one/few progenitors

✓ Provides the fast enrichment needed; small & steady r-process yields

Con Theoretical difficulties for r-process nucleosynthesis to produce elements heavier than Ba (e.g. Arcones et al.)

NEUTRON STAR BINARY MERGER

(TWO COMPACT SUPERNOVA REMNANTS)

Pros Easily produces elements heavier than Ba

Cons <u>Rare</u> One binary per ~1000- 2000 supernovae Long(er) enrichment timescale => Inspiral time >100 Myr

Yield: ~10⁻³ -10⁻² M_{sun} of r-process material (across all n-cap elements)

=> ~10^{-4.5} M_{sun} of Eu (per event)

Additional (indirect) evidence for local r-process nucleosynthesis

1) Short gamma-ray bursts: Afterglow from decay of radioactive r-process elements detected (Tanvir et al. 13)

2) Radioactive deep sea measurements suggest local neutron star mergers (Wallner et al. 15, Hotokezaka et al.15)

ULTRA-FAINT DWARF GALAXY PROPERTIES (UFDS)

Low luminosity (300 - 3,000 L_{sun})

Щ

FREB

ANNA

ARCHAEOLOGY

GAL

DWARF

Dark matter-dominated (M/L > 100)

Metal-poor (mean [Fe/H] ~ -2)

Stars are old (mean age 13.3 +/- 1 Gyr)

Few bursts of star formation

Ideal targets for Dwarf Galaxy Archaeology Use entire galaxy as fossil record of the early universe. Bonus: get environmental information because we know where stars were born

(Dark Energy Survey, 2015)

MAGELLAN OBSERVATIONS

Simon et al. 2015: radial velocity members confirm Ret II to be a galaxy Brightest members (V=17-19) observable with high-resolution spectroscopy => Ji et al. (2015) spent 2-3 hours on each of 9 brightest targets (~23h)

Clay 6.5m Magellan telescope (on left) at Las Campanas Observatory, Chile

Color-magnitude-diagram of Ret II (red = confirmed members)

DWARF GALAXY ARCHAEOLOGY

(= USING AN ENTIRE DWARF GALAXY TO STUDY THE EARLY UNIVERSE)

How Rare?

Population of 10 UFDs:

- ➡1 of 10 r-process events
- ➡Est. stellar mass of *all* UFDs: ~2000 SNe expected

➡Consistent w/ expected NSM rate of 1 per 1000-2000 SNe (LIGO will deliver answer in 2+ yrs)

How Prolific?

Estimate gas mass of UFD:

Total gas in UFD galaxy
 ➡Max. dilution mass: ~10⁷ M_{sun}

Gas swept up by a 10⁵¹erg energy injection into typical ISM ➡Min. dilution mass: ~10⁵ M_{sun}

Back-of-the-envelope calculation

Mix NSM yield mass of $10^{-4.5}$ M_{sun} into 10^{6} M_{sun} of H gas (can NOW be estimated!) => [Eu/H] = -1.2 is abundance of next-generation star

=> Agrees with Ret II abundance results!

RET II ABUNDANCES CONSISTENT W/ NEUTRON-STAR MERGER YIELD

RARE AND PROLIFIC JET-DRIVEN SUPERNOVA REMAINS POSSIBILITY

...but ordinary supernovae remain ruled out!

RETICULUM II WAS ENRICHED BY A <u>RARE, PROLIFIC</u> AND <u>DELAYED</u> R-PROCESS EVENT

A typical core-collapse supernova could not be responsible for the Ret II r-process signature!

Can't you increase the # of supernovae to get higher yield?
 No, 1000+ supernovae would disrupt the system
 Need to be just one/few massive events

Aren't NSM taking too long to enrich the galaxy?

- After the few (initial) supernovae, it takes time for the system to reassemble again (~100 Myr)
- ➡ Minimum time scales for coalesence is ~100 Myr

ENRICHMENT AND STAR FORMATION TIMELINE

ANSWERS TO THE BIG QUESTION

★ What is the (dominant) astrophysical site of the r-process?

- ➡ Core-collapse supe → No, but a rare and prolific site
- ➡ Neutron star me Consistent w/ Ret II abundances

★ What is the rate and yield of the event?

FREBEL

ANNA

RETICULUM II

GA

-PROCESS

n

 \sim ~1 event per 2000 SN; ~10^{-2.5} M_{sun} of r-process

★ Is the dominant site changing over cosmic time?
Probably not!

COMMON NOMENCLATURE (FOCUSSED ON PHYSICS PROCESS)

Enables astronomers to identify nuclear physics processes among stellar observational data!

Table 2Nucleosynthesis processes that can contribute to neutron-capture element patterns observed in metal-poor stars

Name	Description	Elements	Ye	Site(s)	References	Star(s)	
Terminal QSE	insufficient n-rich α -, n-, p-capture and reverse extension from hot, dense state	$\frac{\text{produced}}{\text{Sr} \to \text{Ag}}$	< 0.5	"standard" proto-NS wind in CCSN shock-heated/disk ejecta	TBD	? light el. of rl/rl stars?	
ν p-process	p-rich, $\overline{\nu}_e$ -rich QSE + $\overline{\nu}_e$ -capture	$\begin{array}{c} \mathrm{Sr} \to \mathrm{Ag} \\ \to \mathrm{Mo} \end{array}$	> 0.5	"standard" proto-NS wind in CCSN shock-heated/disk ejecta		— ? light el. of rl/rl stars?	
Limited ^{a} r-process	$\begin{array}{ccc} \text{nited}^{a} & \text{n/s} \sim 100\\ \text{cocess} & \text{QSE} + (\text{limited}) \text{ n-capture}\\ & \text{no fission cycling} \end{array}$		< 0.5	modified proto-NS wind(?) NSM disk (after merger) ^b shock-heated ejecta (during merger) ^c		HD122563 ? light el. of rl/ rll stars?	
Main r-process	n/s >> 100; QSE + n-capture any fission cycling	$Ba \rightarrow U$	< 0.2	NSM tidal ejecta (during interaction) dynamical ejecta during merger		rl/ll stars	
Robust (main)n/s >> 100; QSE + n-capturer-processfission cycling limit		$Ba \rightarrow U$	< 0.2	NSM tidal ejecta (during interaction) dynamical ejecta during merger		rl/ll stars	

^a Sometimes referred to as weak r-process of Light Element Primary Process (LEPP); "Weak", however, does not well describe the nature of the actual r-process physics, and "LEPP" does not refer to a specific nuclear physics process.

On "viscous"/wind timescales.

On dynamical timescales.

ANYTHING ELSE TO LEARN?

A puzzle: Chemical Enrichment in Ret II

Need to explain: 7+1 r-process-rich, 2 n-capture poor stars

Sequential bursts of star formation? n-cap poor stars have lower [Fe/H]

FREBEL

ANNA

IMPLICATIONS

- Inhomogeneous metal mixing? Seems unlikely given homogeneity of light elements
- Accretion of other, smaller galaxy?
 No more than 1 accreted galaxy possible (Griffen et al. 2016, subm.)

Ideal system to model given all these obs constraints!

IS RETICULUM II THE ONLY R-PROCESS GALAXY?

Nope!

Ш

FREB

ANNA

Feb 2017: newly discovered UFD Tucana III hosts at least 1 mildly r-process enriched star with [Fe/H] = -2.25 !

=> 2/12 UFDs show strong r-process enrichment

6	Abdu Abohali	ma	JINA	BAS	E.				
		JEW DATA	BASE OF	META	L-POOR	STARS			
•	₩ NA-CEE		The Joint Institute for Nuclear Astrophy EMP Database	sics					
	Home	Query/Plot	Search	1	leferences	Contact			
			Query data from database	!					
			Data for axes						
		1	x-axis Fe \$ / H \$ From To						
		1	y-axis Ba \$ / Fe \$ From To						
Solar abundance for normalization Asplund 2009									
			User defined criteria						
			Filters						
	Location of stars	Stellar phas	e	Specific eleme	nt signatures				
	Select/Deselect All	Sel	ect/Deselect All	Selec	Select/Deselect All				
	Bulge	⊮ Sul	bgiants	□ r-l ric	h				
	Classical Dwarfs Ultra-faint Dwarfs	⊮ Dw ⊮ Ho	arfs rizontal branch	 r-II ric s-rict 	 r-II rich s-rich 				
•				□ r/s st □ CEMI	r/s stars CEMP				
				CEMI	2-no				
			References						
		Select by Author and y	ear: First Author/s Frebel, Roederer Year range	E From 1990 To 2017					
	Select/Deselect All Afsar et al. (2016)	 Cohen & Huang(2009) Cohen et al. (2013) 	 Ji et al. (2016a) Ji et al. (2016b) 		 Ren et al. (2012) Rich et al. (2009) 				
	Allen et al. (2012)	Collet et al. (2006)	Johnson & Bolt	e(2002a)	Reederer et al. (2008)				
	 Andrievsky et al. (2009) Andrievsky et al. (2010) 	Cowan et al. (2002) Cui et al. (2013)	 Johnson & Bolt Johnson & Bolt 	Solite(2002b) Roederer et al. (2009) Bolte (2004) Roederer et al. (2010)					
	Aoki et al. (2001)	Feltzing et al. (2009)	Jonsell et al. (2	005)	Roederer et al. (2012a)				
	Aoki et al. (2002a)	Prancois (2016)	Customize output table	506)	Roederer et al. (2012b)				
* Add element Remove element -									
	Select/Deselect All	Science key	Radial velocity Rythingda	I mag	□ Z				
	Priority key	Location	Umag	G H mag	Upper limits key				
	Reference Ster name	Stellar type	B mag	K mag					
		- nA	- Timey Outronize plat						
			ow duplicate stars Plot upper limits	Show legend for plot					
	ι	. Plot		Show data table					

THE FUTURE IS HERE

The first glimpse of the incredible potential of UFDs for early universe studies

From nuclear astrophysics to near-field cosmology

- \checkmark Clean nucleosynthesis event(s) w/ actual information on the site and environment
- ➡ Unprecedented astrophysics constraints for nuclear physics, early chemical evolution, first galaxy formation, metal mixing processes, galaxy assembly, etc.
- ✓ New dwarf galaxies are still being discovered (e.g. in Dark Energy Survey)
- New observable target stars; firm up fraction of r-process ultra-faint dwarf galaxies

✓ Only stars w/ V≤19mag can be observed w/ current telescopes (= only few stars per galaxy!)

 New telescopes are needed with highresolution spectrographs, i.e. GCLEF on GMT

