Atomic Structure and Opacities of r-process Elements

Chris Fontes, Chris Fryer, Aimee Hungerford

Los Alamos National Laboratory

INT Program on Electromagnetic Signatures of r-process Nucleosynthesis in Neutron Star Binary Mergers

Univ. of Washington, Seattle

August 7-11, 2017

LA-UR-17-26891

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Overview

- The theory of opacities
- Specific application: r-process opacities and light curves for neutron star mergers

A useful illustration: The classic opacity (transmission) experiment:

 Irradiate a thin slice of your favorite element and measure what gets transmitted to the other side:

Why are opacities/emissivities important?

- These quantities are necessary to solve the radiation transport equation
- Assuming problem is time-independent and onedimensional with isotropic radiation, the transport equation can be written:

The classic opacity (transmission) experiment: Optically thin plasma example

 If the plasma is "optically thin", then the emitted radiation will escape and need not be considered in the radation transport equation:

$$\frac{1}{\rho}\frac{dI_{v}}{dx} = \frac{\epsilon_{v}}{4\pi} - \kappa_{v}I_{v}$$

• This situation can be illustrated by the following diagram:

Optically thin plasma example (continued)

The previous differential equation has a well-known solution:

$$I_{\nu} = I_{\nu}^{0} e^{-(\rho \kappa_{\nu} t)}$$

- This sort of "transmission experiment" is the typical way in which opacities are measured
- The quantity $\lambda_v^{mfp} = (1/\rho\kappa_v)$ has the dimensions of length and is called the **optical mean free path**. The mean free path is a useful physical quantity and is defined as the average distance a photon can travel through a material without being absorbed or scattered. Optically thin plasmas have physical dimensions $<< \lambda_v^{mfp}$.

Connecting (macroscopic) opacity with (microscopic) atomic physics

Some helpful illustrations

Atomic kinetics modeling is an *ab-initio* effort

- There are far too many atomic processes to be measured experimentally
- Furthermore, there are not many experimental measurements of atomic physics data
- Nuclear data are obtained through evaluations which rely on both experimental data and theoretical calculations
- Atomic data (e.g. opacities) are obtained almost exclusively from first-principle calculations (quantum mechanics, wavefunctions, cross sections, etc.)

Road map to opacity

Excitation and de-excitation processes

Ionization and recombination processes

Solving for the atomic level populations, N_{il}

- To obtain an opacity at each point in our sample plasma, we require the fundamental cross sections and the level populations, N_{il}
- The level populations are determined by the following basic atomic processes and their inverses:

process

photoexcitation photoionization electron collisional excitation electron collisional ionization autoionization

inverse process

photo de-excitation radiative recombination electron collisional de-excitation three-body recombination dielectronic recombination

 The cross sections for these processes are used in coupled, differential equations, known as "rate equations", which determine the populations N_{il}

The rate equations

- In general, the level populations vary as a function of time
- One must consider all possible processes that can populate and depopulate each level
- The result is a set of non-linear, first-order differential equations
- $\frac{dN_{il}}{dt}$ = (Formation rates) (Destruction rates)
- In matrix form

$$\begin{pmatrix} dN_{11}/dt \\ \dots \\ dN_{il}/dt \\ \dots \\ dN_{nn}/dt \end{pmatrix} = \begin{pmatrix} R_{11} & R_{1l} & R_{1n} \\ \ddots & \ddots & \ddots \\ R_{i1} & R_{il} & R_{in} \\ \ddots & \ddots & \ddots \\ R_{n1} & R_{nl} & R_{nn} \end{pmatrix} \begin{pmatrix} N_{11} \\ \dots \\ N_{il} \\ \dots \\ N_{nn} \end{pmatrix}$$

The rate equations (continued)

- The order of the rate matrix can vary greatly depending on the complexity of the atomic model
- Average-atom: order ~10, very crude, very fast to compute
- Configuration-average: order ~100-10⁷, good compromise, some spectral detail, but maybe not enough to produce high-resolution spectra
- Fine-structure: order ~100-10¹⁰, spectrally resolved features, very accurate if complete model can be considered, but can be impractical to solve numerically

Constructing the rate matrix

- Each element of the rate matrix is computed from fundamental cross sections associated with each process
- A "rate coefficient" is calculated from the cross section and the appropriate energy distribution (for electrons or photons)
- Rate coefficient = $\int [distribution(E,T)] x [cross section(E)] dE$
- These concepts lead naturally to a discussion of LTE (local thermodynamic equilibrium) vs. non-LTE (NLTE) atomic physics

Free electrons in thermodynamic equilibrium

 If the free electrons are in thermodynamic equilibrium (TE) with themselves, then the energy distribution is given by the Maxwell-Boltzmann distribution at an electron temperature T_e

$$F(E,T_{e}) = \frac{2}{\sqrt{\pi}} \frac{\sqrt{E}}{(kT_{e})^{3/2}} e^{-E/kT_{e}}$$

 This distribution represents the fraction of electrons per unit energy interval that have energies between E and E+dE

Maxwellian distribution at $kT_e = 100 \text{ eV}$

Photons in thermodynamic equilibrium

 Similarly, if the photons are in thermodynamic equilibrium (TE) with themselves, then the energy density distribution is given by the Planck distribution at a radiation temperature T_r

$$B_{\nu}(T_{r}) = \frac{2}{(hc)^{2}} \frac{(h\nu)^{3}}{e^{h\nu/kT_{r}} - 1}$$

• This is a flux distribution that represents the amount of radiation energy per unit frequency interval per unit area per unit time per unit solid angle

Planckian distribution at kT_r=100 eV

Local Thermodynamic Equilibrium (LTE) from a practical (computational) perspective

 From a computational perspective, LTE means that the atomic level populations, N_{il}, can be solved from the (relatively) simple Saha equation and the Boltzmann relationship

$$N_{
m il} \propto (N_{
m i}) e^{-E_{
m il}/kT}$$

- In this case, the N_{il} can be determined from a simple analytic formula that depends on the energy and temperature; there is *no need to consider the fundamental cross sections*.
- Solving the detailed rate equations with a Maxwellian electron distribution and a Planckian radiation distribution results in a steady-state solution $(dN_{il}/dt = 0)$ which could have been found by solving the much simpler Botzmann relationship above

Non-LTE

from a practical (computational) perspective

- For the NLTE case, the detailed rate equations must be solved to obtain the atomic level populations, N_{il}
- In practice, this solution requires the use of large-scale computing
- NLTE calculations can take as much as 3-4 orders of magnitude more computing time than LTE calculations

Computing an opacity from fundamental atomic cross sections

• Basically,

opacity = (atomic population)(cross section)/(mass density)
(NB: we are only interested in *photo* cross sections now)

 When interacting with electrons, a photon can be absorbed (most/all energy given to electrons) or scattered (some energy given to electrons, but photon survives with slightly decreased energy)

$$\boldsymbol{\kappa}_{v}^{\text{TOT}}(\boldsymbol{\rho}, T_{e}, T_{r}) = \boldsymbol{\kappa}_{v}^{\text{ABS}}(\boldsymbol{\rho}, T_{e}, T_{r}) + \boldsymbol{\kappa}_{v}^{\text{SCAT}}(\boldsymbol{\rho}, T_{e}, T_{r}) \qquad \text{scattering}$$

$$\kappa_{v}^{ABS} = \frac{1}{\rho} \sum_{il} N_{il}(\rho, T_{e}, T_{r}) [\sigma_{il}^{(bound-bound)}(v) + \sigma_{il}^{(bound-free)}(v)] + \kappa_{v}^{(free-free)}$$
material photoexcitation photoionization cross sections photoionization cross sections Slide 22

How to compute an opacity

- Compton scattering uses a straightforward formula: $\kappa_v^{\text{SCAT}} = N_e \sigma^{\text{SCAT}}(v) / \rho ~ [\approx 0.4\overline{Z} / A ~ (\text{cm}^2/\text{g}) \text{ for Thomson scattering }]$
- The free-free contribution is straightforward (Kramers' formula)
- The bound-bound and bound-free contributions are obtained by summing over ALL bound levels of ALL important ion stages
- This sum requires the populations, N_{il} , as well as the relevant photo cross sections, σ_{il}^{photo}
- The previous opacity equations are valid for both LTE and NLTE conditions
- The LTE/NLTE difference is in how one calculates the atomic populations, N_{ii}

What about emissivities?

• Simple (Kirchoff) relation for LTE conditions:

- One only needs the opacity to obtain the emissivity when doing LTE calculations
- Non-LTE emissivities require the level populations, N_{il}, along with the cross sections for the *inverse* of the photoabsorption processes that were considered for opacities

A specific example: the total LTE opacity of aluminum plasma (40 eV, 10¹⁹ electrons/cm³)

The LANL Suite of Atomic Modeling Codes (Fontes et al, JPB 48, 144014 (2015))

Atomic Physics Codes \longrightarrow Atomic Models \longrightarrow	ATOMIC
	AIOMIC

CATS: Cowan Code

RATS: relativistic

ACE: e⁻ excitation

GIPPER: ionization

http://aphysics2.lanl.gov/tempweb

fine-structure config-average UTAs **MUTAs** energy levels gf-values e⁻ excitation e⁻ ionization photoionization autoionization

LTE or NLTE low or high-Z populations

spectral modeling emission absorption transmission power loss LTE OPLIB tables

http://aphysics2.lanl.gov/opacity/lanl

The LANL Suite has been used to produce new LTE OPLIB tables for the first 30 elements

Colgan et al, ApJ **817**, 116 (2016)

http://aphysics2.lanl.gov/opacity/lanl Slide 29

LTE Opacity Application: light curves for neutron star mergers

We have entered the age of gravitational wave spectroscopy!

Can we observe gravitational waves with an electromagnetic counterpart?

- Theory predicts that neutron star mergers will produce short gamma ray bursts (GRBs) and light curves
- The remainder of this talk deals with r-process opacities and their application to NSM light curves

Predicted elemental abundances in the ejecta of a neutron star merger (NSM)

The lanthanides and actinides

Supernova light-curve examples

NSM light-curve ("macronova") examples

???

Conditions for neutron star mergers

- Initial conditions: T \approx 1 MeV, $\rho \approx 10^{14}$ g/cm³
- Light curve approaching peak brightness: T ≈ 1 eV, ρ ≈ 10⁻²⁰ – 10⁻¹⁰ g/cm³ ("low"); (if <Z> ≈ 1, then N_e ≈ 10 – 10¹¹ el./cm³)
- The presence of heavy elements at such cold temperatures requires the calculation of near-neutral ions with many (> 50) bound electrons. (Very complicated and difficult to calculate!!!)

Consider the opacity of cold samarium (Z=62) as an example (Sm⁰⁺ - Sm³⁺)

,	1 IA		ALOI	nic F	rop	erties of the Elements							Standards and Technology U.S. Deportment of Commerce					
1	1 Hydrogen			Frequently used fundamental physical constants For the most accurate values of these and other constants, visit physics, risk gow/constants 1 second – 3 192 631 770 periods of radiation corresponding to the transition between the two hyperfine levels of the council static of ¹⁹⁶ Co.						s on				Physics Standard Laboratory Physics.nist.gov www.nist.gov/srd				
	13.5984	2 IIA		speed of ligh Planck const	in vacuum ant	c n	299 792 6.6261 x	458 m s ⁻¹ 10 ⁻³⁴ J s	(exact) (h = h/2π		Solids		13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	1s ² 24.587
	3 ² S.,	4 s.	e ementary charge e ectron mass		e 1.6022 x 10 ¹⁹ C m _e 9.1094 x 10 ²¹ kg				Gases			5 ² P ^a _{1/2}	6 °P.	7 ⁴ S ₃₀	8°P.	9 ² P ₁₂	10	
2	Lithium	Li DC Lithium Beryllium 5.941 9.012122 18 ² 21 18 ² 27 5.3017 9.3227		proton mass fino-structuro constant Rydberg constant		m _e c' mp		0.5110 MeV 1.6726 x 10 ¹²⁷ kg			Prepared		Boron	Carbon	Nitrogen	Oxyger	Fluprine	Neon 170 170
	5.541 *s ² 28 5.3017					α 1/137.036 R _e 10.973.732 r	6 32 m ⁻¹	2 m ⁻¹					15 ² 26 ² 27 15 ² 26 ² 27 8.2988 11.2603	14.0067 15.9994 18.996 1s ⁴ 2s ² 2s ³ 1s ⁴ 2s ² 2p ⁴ 1s ² 2s 14.5341 13.6181 17.4		18.8984632 18 ² 28 ⁴ 2p ⁵ 17.4228	p ³ 1s ² 2s ⁴ 2 9 21 584	
	11 's.,	12 's _e				R _m c R _m hc	3.289 84: 13.6057	2 × 10 ¹⁴ Hz eV					13 P.	14 °P,	15 ¹ S ₂ .	16 ³ P ₂	17 °P	18
3	Na Sedium	Magnosium	L	Boltzmann c	onstant	k	1.3807 x	10 ⁻²³ J K ⁻¹					Aluminum	Silicon	Phosphorus	Su fur	Chlorina	Argo
	22.98976928 [Ne]39	24.3050 [Ne 38 ²	3	4 IVB	5 VB	6 VIB	7 VIIB	8	9 \/III	10	11 IB	12 UB	26.9815386 [Ne]38 ² 3¢	28.0865 [Ne]39 ² 3p ²	39.973762 JN6 39 ² 3p ³	32.065 Ne[38 ² 3p ⁴	35.453 \\e[38 [°] 30 [°]	39.94 [Ne]38
ł	5.1391 19 ² S ₁₂	7.8462 20_ 'S _o	21_ ² D ₃	22_°F,	23 1F.	24_ ⁷ S,	25_*s	26_ ⁵D₄	27_ 4Fsp	28 °F.	29_ ² S ₁₀	30_ 's,	5.9858 31_ °P3,2	8.15'7 32_ ³ Pa	10.4867 33 ⁴ S ₇ ,	10.3600 34 ³ P,	12.9670 35_ ² P ₃₀	15.78 36
4	K Patasaium	Ca	Scaneium	Ti	V Nanadi im	Cr	Manganasa	Fe	Cobalt	Ni	Cu	Zn	Gallim	Germanium	As	Selection	Br	Kant
	39.0983 [Ai]4s	40.078 3rl4s ²	44.955912 Arl3:1s1	47.867 A 135 [°] 48 [°]	50.9415 Ari31 ⁴ 4s	51.9961 Arl3g ¹ 4s	54.938045 Arl3a 4s	55.845 Ari3d"4s ⁴	58.933195 IAr 3d 4s ²	58.6934 IAr 30 ⁶ 4s	63.546	65.38 IAr 3c ¹⁻ 4s ²	69.723	72.64 Arl3d ¹⁰ 4s ² 4e ²	74.92160 Art3d ¹⁰ 4s ⁴ 4s ²	76.96	79.904 1Ar 3d ¹² 4s ⁴ 4a ²	83.79 IAr 3s ¹¹ 4s
	4.3407 37 'S	6.1132 38 ¹ S.	6.5615 39 °D.	6.828 40 F.	8.7482 41 D	6.7665 42 ⁷ S.	7.4340	7.9024 44 ^b F.	7.5810 45 E	7.6399 46 S.	7.7264 47 S.	9.3942 48 S.	5.9993 49 ⁴ P.	7.8994 50 P.	9.7886 51 S.	9.7524 52 P.	11.8138	13.99 54
E	Rb	Sr	``Y ``	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
5	Rub dium B5.4678	Strontium B/ 62	Ytir um 88.90585	Zirconiu~ 91.224	N obium 92.90638	Molybdenum 95.96	Technetium (98)	Ruthenium 101.07	Rhodium 02.90550	Palladium 106.42	Silver 107.8682	Cadm um 112.411	Ind um 114.918	Tin 118.710	Antimony 121.760	Tellurium 127.60	lodine 126.90447	Xeno 131.29
	4.1771	5.6949	6.2173	6.6339	8.7589	7.0924	7.26	161,40,59 7,3605	7.4589	8.3369	7.5762	8.9936	5.7864	7.3439	6.6054	9.0096	10.4513	12.12
	Cs	Ba		^{′′} Hf [™]	ί ^σ Τa [¯]	``W ``	Re	Os	''Ir'**	'Pt ["]	Au	้ไล้	T	Pb	Bi	Po	At	Řr
6	Cesium 132.9054519	Barium 137.327		Hafnium 178.49	Tanta um 186.94788	Tungsten 183.84	Rheniu** 186.207	Osmiu~ 190.23	lridium 192.217	Plat num 185.084	Gold 196.966568	Mercury 208.59	Thallium 201.3833	Leac 207.2	Bismuth 208.98040	Polenium (209)	Astatine (210)	Rado (222
	[Xo]6s 3.8039	[Xo]6s ² 5.2117		[Xe'4f ¹⁴ 5o'6s' 6.825'	[Xe]4 ⁴² 5d ³ 6s ² 7.8498	[Xu]4 ⁷¹ 5d 6s ² 7.5640	[Xe 4F ⁴ 7d ⁹ 8 ² 7.8335	Xe]41 5d ⁶ 6s 5.4382	(Xe]41 5d788 8.9670	[Xu]4f ¹⁴ 5c ³ 5# 8.9588	[Xe]4f ¹¹ 5d ¹¹ 6s 9.2255	[Xe]41 54 968 ² 10.4375	[Hg]6: 6.1082	[Hg]8p ² 7.4167	[-g]\$p ³ 7.2855	[Hg 8p 8.414	(Hg)6°	[Hg]6p 10.748
	87 ² S₀ Fr	88 ¹ 5. Ra	\mathbf{Y}	104 °F.?	105 Dh	¹⁰⁶ Sа	107 Rh	108 He	109 Mt	110 De	111 Ra	112 Cn	113	114 Uura	115 1100	116	117 	118
7	Francium	Racium		Rutherford um	Dubnium	Seaborgium	Bohr um	Hass um	Meither um	Damslad.iun	Roenlgenium	Copernicium	Ununtrium	Ununquadium	Ununpertum	Ununhexium	Ununseptium	Ununoc
	(4.0727	[R1]75 5.2784		[Rn]SI ¹⁴ 6d17s ² ? 6.07	(200)	(211)	(212)	(271)	(270)	(2.7.)	(200)	(vee)	(7.04)	(203)	(zoay	(2.80)	(7.5%)	(2784)
A	tomic Gr	nund-state		57 in	59 (a)	E0 174	60 ia	C4	62 75	10 107	64 500	CE Sur	66 St	67 478	CO JU	60 200	70 0	74 2
N	umber	Level	nidae	La	Če	Pr	Ňď	Pm	Ŝ'n	Eu	Gd	Tb	Ďv.	Ho	Er	Ťm	Ϋ́Υb ື	Ĺ
nbol	58	G [°] ₄	et the	Lanthanom 138.90547	Cer um 140.116	Praseodymum 140.90765	Neodym um 144.242	Promobium (145)	Samarium 150.36	Europium 111.964	Gadolinium 157.25	Terbium 158.92535	Dysorosium 162.500	Holm um 164.93032	Erbiu** 167.258	Thulium 168.93421	Ytterbium 173.054	Lutetiu 174.98
ame	Cer	e		Xe]5s6s* 5.5769	[Xe]415d0e ² 5.5387	[Xe]4 ⁻¹ Ds ⁴ 5,473	[X 6]41 ⁴ 34 ⁴ 5.5250	[Xe]40 5.582	[Xe]41 ⁵ 8s ⁴ 5.6437	5,670≚ 5,670≚	(Xe)41'ådEs* 6.1498	(Xa)41 ² 8a ² 5,8638	[Xe]/1 ^{°6} 65° 5.9389	Xe 41 ¹⁴ 0s ¹ 6.0215	[Xe]41 ¹⁴ 3e ² 6.1077	[Xe]1 ⁻¹³ 6#* 8,1843	[Xe]/1 ⁶ 0s ² 6.2542	Xe]41 - 6 5,425
mic ioht		116 5d6s ²	dac	89 ^{°D}	90 'F. Th	91 ⁺ĸ.₁₂ Ра	¹⁹² ໃຕ້	93 12 No	Pu	95 's	06 02 Cm	97 "H _{ie2} Bk	⁹⁸ '', Cf	99 Ta	100 H, Fm	101 °F ₇₂ Md	102 's _ເ No	103 1
-9m	5.5	387	in the second seco	Actinium	Thorium 232.03806	Protact nium 231.03588	Uraniu~ 238.02891	Neptonium (237)	Pluton um	Americium (2/3)	Curium (217)	Berkelium (247)	Californium (251)	Einsteinium (252)	Fermium (257)	Mendelevium (258)	Nobe ium	Lawrend (262
Grou	nd-state gunation	Ionization nergy (eV)		[Rr]8(75 ²	[Kn]6d ² 7s ²	[R1]5f ² 6d7s ²	[Rr 5f 3c7s	"Rn 5f ¹ 8d7s ²	[Rn]5r ⁶ 7e ²	[R1 5f ⁷ 73 ²	[Rr 5f'8c7s ²	[Rr 5f 7s ²	[R1]51 ¹⁰ 7s ²	[Rr [5f ¹ 7s ²	[Rn]5 ²¹² 78 ²	[Rn]5' \$762	[R1]5f ⁻¹ 73 ²	[Rn]5 ⁴⁷ 7

Sm (Z=62) LTE ionization balance ($\rho = 10^{-13}$ g/cm³)

Consider opacity of Sm (Z=62) at T ~ 0.5 eV and $\rho = 10^{-13}$ g/cm³

- A simple estimate of the opacity: assume Thomson/Compton scattering is the dominant mechanism
- Opacity ~ 0.4 <Z>/A (cm²/g)
- Original light curve estimates were based on this simple approximation (e.g. Li & Paczyński 1998)

Consider opacity of Sm (Z=62) at T ~ 0.5 eV and $\rho = 10^{-13}$ g/cm³ (configuration list, assume [Xe])

- 25 configurations
- Sm⁰⁺: 4f⁶ 6s², 4f⁵ 5d 6s², 4f⁶ 5d 6s , 4f⁶ 5d², 4f⁵ 5d 6s 6p, 4f⁶ 5d 6p , 4f⁶ 6s 6p
- Sm¹⁺: 4f⁶ 6s, 4f⁶ 5d, 4f⁶ 6p, 4f⁵ 5d², 4f⁵ 5d 6s, 4f⁵ 5d 6p, 4f⁵ 6s 6p
- Sm²⁺: 4f⁶, 4f⁵ 6s, 4f⁵ 5d, 4f⁵ 6p, 4f⁴ 5d, 4f⁴ 5d 6s, 4f³ 5d² 6s
- Sm³⁺: 4f⁵, 4f⁴ 6s, 4f⁴ 5d, 4f⁴ 6p
- ~ 10⁵ energy levels
- ~ 3.3x10⁸ radiative transitions

Consider opacity of Sm (Z=62) at T ~ 0.5 eV and $\rho = 10^{-13}$ g/cm³

- Next, consider detailed bound-electron treatment
- Just 25 configurations leads to 100,000 levels and 330,000,000 lines!

Consider opacity of Sm (Z=62) at T ~ 0.5 eV and $\rho = 10^{-13}$ g/cm³

optical window

How to combine such detailed opacities with radiation transport?

- There are too many narrow lines to accurately resolve (w.r.t. photon energy) for a radiation transport calculation
- Recall the bound-bound opacity:

$$\kappa_{\rm bb}(\nu) = \frac{\pi e^2}{4\pi\varepsilon_0 m_{\rm e}c} \sum_i N_i |f_i| L(\nu, \Delta \nu_i)$$

- Natural broadening is inherently narrow: $\Delta v_i = \frac{A_i}{2\pi}$
- Doppler broadening becomes narrower as v decreases:

$$\Delta v_i = v_i \left(\frac{2kT}{Mc^2}\right)^{1/2}$$

Slide 44

Line shape profile

Effect of velocity gradients in expanding medium produces quasi-continuum opacity

Effect of velocity gradients in expanding medium produces quasi-continuum opacity

Make an approximation based on the rapidly expanding ejecta

- Option 1: traditional expansion opacity (based on Sobolev)
 - Simply sum all lines in a given wavelength bin
 - Fast and easy; assumes reduction in line opacity
 - Recently applied to NSMs (Kasen, Badnell, Barnes, ApJ 2013)

$$\kappa_{\rm bb}^{\rm exp}(\Delta \nu_{\rm bin}) = \frac{1}{\rho c t_{\rm eject}} \sum_{i} \frac{\nu_i}{\Delta \nu_{\rm bin}} (1 - e^{-\tau_i})$$

- Option 2: Explore *line smearing* using effective temperature
 - Apply a profile to every line that preserves area under curve
 - Requires ~10³ more time to calculate than Sobolev method
 - Assumes full strength of line opacity

$$\kappa_{bb}^{ls}(\nu) = \frac{\pi e^2}{4\pi\varepsilon_0 m_e c} \sum_i N_i |f_i| L(\nu, \Delta \nu_i); \ \Delta \nu_i = \nu_i \left(\frac{2kT_{ls}}{Mc^2}\right)^{1/2}$$

 $\sum 1/2$

1

Sobolev vs line-smeared opacity [Nd (Z=60) example]

Returning to Sm (Z=62) at T ~ 0.5 eV and $\rho = 10^{-13}$ g/cm³

- We investigate the limiting case of using the *full opacity* for determining which photons will escape the ejecta, using line-smeared opacities
- Assume a line smearing consistent with resolution allowed by spatial zone size
- Velocity change across a typical zone is (Δv/c) ~ 0.01, which can be used to obtain the effective line-smearing temperature

$$\frac{\Delta v}{c} = \frac{\Delta v}{v_i} = \left(\frac{2kT_{ls}}{Mc^2}\right)^{1/2} \Longrightarrow T_{ls} \approx 20 \text{ MeV}$$

Fontes et al HEDP (2015); arXiv:1702.02990 (2016)

Returning to Sm (Z=62) at T ~ 0.5 eV and $\rho = 10^{-13}$ g/cm³

- We investigate the limiting case of using the *full opacity* for determining which photons will escape the ejecta, using line-smeared opacities
- Assume a line smearing consistent with resolution allowed by spatial zone size
- Velocity change across a typical zone is (Δv/c) ~ 0.01, which can be used to obtain the effective line-smearing temperature

$$\frac{\Delta v}{c} = \frac{\Delta v}{v_i} = \left(\frac{2kT_{ls}}{Mc^2}\right)^{1/2} \Longrightarrow T_{ls} \approx 20 \text{ MeV}$$

arXiv:1702.02990 (2016)

Light curves for 3 different neutron star systems (R=relativistic, NR=semi-relativistic)

Atomic structure considerations

- There are a variety of atomic structure codes that are available to calculate energies and radiative transition probabilities (Einstein A coefficients or oscillator strengths)
- The LANL Suite has both semi- and fully relativistic options, based on solutions of the Schrödinger and Dirac equations, respectively
- Other structure codes that are generally available include AUTOSTRUCTURE, HULLAC, FAC, MCHF and GRASP
- A more accurate path to calculating cold r-process atomic data could be the many-body perturbation theory (MBPT) approach, e.g. I. Savukov, JPB **50**, 165001 (2017)

Semi- and fully relativistic calculations can produce different opacity features...

Versatility of the LANL Suite

- The LANL Suite has been used to calculate opacity data for a broader range of elements for simulating electromagnetic signatures of NSMs
- Current list of elements: Cr, Pd, Se, Te, Br, Zr, Sm, Ce, Nd, U
- See Wollaeger, Korobkin, et al, arXiv:1705.07084 (2017) for more detailed study of ejecta morphology and composition on electromagnetic signatures of NSMs

Summary

- Opacity is typically calculated from first principles, based on fundamental (microscopic) atomic physics theory
- The calculation of accurate atomic data for cold lanthanide and actinide elements is very challenging; this is a possible topic of future exploration
- The use of these opacities in rad-hydro simulations to model macronovae is complicated by the detailed line structure of these elements and LTE vs non-LTE conditions
- The assumption of line-smeared opacities produces macronovae that peak in the mid-IR, with slightly lower luminosities compared to light curves produced with the traditional expansion-opacity approach