Mass ejection, nucleosynthesis and light

curves in binary mergers

Luke Bovard 03.08.2017

Collaborators: A. Arcones, F. Guercilena, O. Korobkin, D. Martin, L. Rezzolla

JOHANN WOLFGANG

UN

The Origin of the Solar System Elements

Astronomical Image Credits: ESA/NASA/AASNova

Graphic created by Jennifer Johnson

Nucleosynthesis

• What is the origin of the heavy elements in the universe?

• *r*-process requires a neutron rich environment

• Still a lot of uncertainty in nuclear physics of the rprocess see e.g. Eichler, Matthews, Steiner talk

Astrophysical origin of nucleosynthesis

- Supernovae
 - less favoured
 - scenarios still possible (SN with jets)
- Neutron star mergers?
 - neutron rich environment
- Experimental evidence?
 - Metal poor dwarf galaxies favour NS (Ji et al. 2016)
 - all talks on Tuesday

r-process in Ret II

Ji et al. 2016

see talk by Frebel

Categories of ejecta

Dynamic ejecta ~ O(10 ms)

Viscous Heating $\sim O(1 s)$

x (M)

Magnetic driven wind~ O(50 ms)

Numerical set-up

• EinsteinToolKit and WhiskyTHC (Radice et al. 2013)

• Neutrino leakage scheme (Galeazzi et al. 2013) see talks by Foucart, Just

• No magnetic fields

see talks by Giacomazzo, Shibata

Initial data and Procedure

- 3 EOS: LS220, DD2, SFHo see Lattimer talk
- 3 equal masses: 1.25, 1.35, 1.45 M_{\odot}
- 1 unequal mass: q=0.9 (1.22 M_{\odot} 1.35 $M_{\odot})$
- Compactness $\sim 0.140 0.181$
- Radii ~ 11.8 km 13.3 km

Initial data and Procedure

• Tracers are placed in simulation and used as input for the nuclear network* (Bovard & Rezzolla 2017)

• Fluid properties are measured through detectors placed at different radii (compare with volume integral)

• Requirement for unbound material $u_t < -1$ (geodesic) or $hu_t < -1$ (Bernoulli)

*and willing to share

Distributions

See Dietrich et al. 2016

How sensitive is mass ejection to simulation

set-up?

DD2 M1.35-M1.35	Mass ejection $(10^{-3} M_{\odot})$	Set-up
Sekiguchi 2015	2.1	M1 w/ heating high resolution
-	1.9	M1 w/ heating low resolution
-	0.9	Leakage low resolution
Bauswein 2013	3.07	SPH
Lehner 2016	0.43	Leakage
Bovard 2017	0.58	Leakage

Changing selection criteria can change mass ejection by factor of 3

Composition

 $<\!Y_e\!>\sim0.16$ compare with $<\!Y_e\!>\sim0.30$ from (Sekiguchi 2015) for SFHo 1.35-1.35 $<\!Y_e\!>\sim0.14$ compare with $<\!Y_e\!>\sim0.25$ from (Sekiguchi 2015) for DD2 1.35-1.35

Composition

Entropy

 $<\!\!s\!\!>\sim 15~k_{\rm \scriptscriptstyle B}/{\rm baryon}$

Velocity

 $<\!\!v_{ej}\!\!>\sim 0.23~c$ compare with $<\!\!v_{ej}\!\!>\sim 0.2~c$ from (Sekiguchi 2015)

Selection criteria

 $<Y_{e}>,<s>$ remain unchanged, $<v_{ej}> \sim 0.15c$

entropy, Ye correlations

Nucleosynthesis

Nucleosynthesis by D. Martin with Winnet

Nucleosynthesis

Nucleosynthesis by D. Martin with Winnet

Detectability

adapted from Hotokezaka 2015, Rosswog 2017

- Gravitational waves are exciting, EM counterparts even more so (multi-messenger astronomy)
- r-process material undergoes radioactive decay (Li & Paczyński 1998)
- \bullet Observed with GRB 130603B
- Recent reviews: Metzger 2016, Tanaka 2016

GRB 130603B

Tanaka 2016

Grossman et al. 2014

 $\alpha = 1.3$

$$t_{\text{peak}} = 4.9 \text{ days} \times \left(\frac{M_{ej}}{10^{-2}M_{\odot}}\right)^{\frac{1}{2}} \left(\frac{\kappa}{10\text{cm}^2\text{g}^{-1}}\right)^{\frac{1}{2}} \left(\frac{v_{\text{ej}}}{0.1}\right)^{-\frac{1}{2}},$$

$$L_{\text{peak}} = 2.5 \cdot 10^{40} \text{erg s}^{-1} \times \left(\frac{M_{ej}}{10^{-2}M_{\odot}}\right)^{1-\frac{\alpha}{2}} \left(\frac{\kappa}{10\text{cm}^2\text{g}^{-1}}\right)^{-\frac{\alpha}{2}} \left(\frac{v_{\text{ej}}}{0.1}\right)^{\frac{\alpha}{2}},$$

$$T_{\text{peak}} = 2200\text{K} \times \left(\frac{M_{ej}}{10^{-2}M_{\odot}}\right)^{-\frac{\alpha}{8}} \left(\frac{\kappa}{10\text{cm}^2\text{g}^{-1}}\right)^{-\frac{\alpha+2}{8}} \left(\frac{v_{\text{ej}}}{0.1}\right)^{\frac{\alpha-2}{8}}.$$

see talks next week on opacities + Tanaka

see talk by Korobkin

figure by O. Korobkin

figure by F. Guercilena

figure by F. Guercilena

Conclusions

• Dynamical mass ejection values are converging

• Robust r-process produced from different EOS and masses

• Improved neutrino treatment critical for kilonova/macronova modeling