Preliminary Results of PHOENIX NLTE Spectra of Toy Kilonova Models

Eddie Baron

University of Oklahoma, USA

Patrick Vallely

University of Oklahoma, USA Ohio State University, USA

2017-08-02

Merging NS

- Possible R-process site
 - Lattimer+ 1977

 EM Counterpart of GR Wave Li & Paczynski 98, Kulkarni 05, Metzger+10

Basic Picture

(From Metzger & Berger, 2012)

Bringing Coals to Newcastle

- Heard a talk by Masaomi Tanaka
- Asked about effect of edges
- Continua not included in Tanaka+ work
- Thought to use PHOENIX
- Put an excellent undergraduate, Patrick Vallely on project
- Have only proof of concept results

Event Rate/Brightness

Tanaka+16

•
$$R_{\rm NSM} \approx$$
 1000 Gpc⁻³ yr⁻¹

Fernández+17

BH-NS mergers

Fernández+17

Relativistic Velocities

Disk Wind Structure Kasen+15

Light Curves Kasen+15

Spectra Kasen+15

Light Curves BH-NS Merger Fernández+17

Spectra BH-NS Merger Fernández+17

1D/3D Radiative Transfer

- PHOENIX/3D: general detailed 3D modeling of radiation fields in gaseous environments (stars, planets, supernova, AGN, rooms).
 - 3D spatial problem is 6D or 7D computational problem since must solve full phase-space solution of Boltzmann Equation
 - Full Special and General Relativistic
- Non-local thermodynamic equilibrium (NLTE)
- Model atoms for Lanthanides/Actinides
- multi-layered/scale domain decomposition
 - one for the data
 - one for the wavelength
 - another internal one for the RT

Preliminary Results

Patrick Vallely

- Very good undergrad
- Gone off to OSU to work with Kris Stanek
- Took "conditions" from Tanaka+16 (Dynamical Ejecta) and Kasen+15 (Disk Wind)
- 61 NLTE species
- All Disk Wind Models are Lanthanide poor per Kasen+15

Dynamical Ejecta Model

Disk Wind Model

Line IDs Dynamical Ejecta

Line IDs

Disk Wind R-process Only

Line IDs I Disk Wind Fe Group + R-process

Model Atoms

Model Atoms

Model Atoms

Summary

- PHOENIX has a role in predictions/analysis
- Need to explore parameter space more even in simple mode
- Can't do it alone, need Hydro models from Tanaka+, Kasen+, Metzger+, ...
- Need improved atomic data, e.g. Fontes+17, Tanaka+17. "Easy" to add
- Lots of interesting science here:
 - EM Counterparts for Gravitational Wave detections
 - R-process site

Metzger, B. D. & Berger, E. 2012, ApJ, 746, 48