
Introduction MR-IMSRG based on an empirical shell-model Hamiltonian MR-IMSRG based on a chiral Hamiltonian Summary

Multi-Reference In-Medium SRG for Neutrinoless
Double Beta Decay

Jiangming Yao (UNC)
J. Engel (UNC), H. Hergert (MSU), C.F. Jiao (CMU), L.J. Wang (UNC)

INT Program 17-2a, Neutrinoless Double-beta Decay, June 20, 2017,
Seattle



Introduction MR-IMSRG based on an empirical shell-model Hamiltonian MR-IMSRG based on a chiral Hamiltonian Summary

Matrix elements for the 0𝜈𝛽𝛽 decay

Half-life of neutrinoless DBD(exchange Majorana 𝜈)
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where 𝒥 †
𝜇 is the charge-exchange current operator and R = 1.2A1/2.

→ i = 𝜈L: Ai ≃ q(q + Ed), where Ed ≃ ⟨Em⟩ − (EI + EF )/2 (closure approx).
→ i = 𝜈H : Ai ≃ mpme
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Matrix elements for the 0𝜈𝛽𝛽 decay

Decomposition of the current-product
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Non-Relativistic Reduction:[︁
−hF(q2) + hGT(q2)𝜎12 + hT(q2)Sq

12

]︁
𝜏
(1)
− 𝜏

(2)
−

with 𝜎12 = 𝜎(1) · 𝜎(2) and
Sq

12 = 3(𝜎(1) · q̂)(𝜎(2) · q̂)− 𝜎12.

The Non-Rel. reduction is safe for computing M0𝜈
𝜈L

regardless of whether the SRCs are included.

NR reduction and SRC effect

GCM+CDFT: L.S. Song, JMY, P. Ring, and J. Meng, PRC(2017)

See J. Meng’s talk for a detailed
introduction.
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Matrix elements for the 0𝜈𝛽𝛽 decay

Many-body approaches for nuclear structure and the matrix elements
(exchange light Majorana neutrino)

GCM+CDFT: JMY, L.S Song, K. Hagino, P. Ring, J. Meng, PRC (2015)

GCM+EDF(Gogny): T. R. Rodriguez and G. Martinez-Pinedo, PRL(2010)

PHFB: P. K. Rath et al., PRC(2010)

(R)QRPA: A. Faessler et al., JPG(2012)

IBM: J. Barea and F. Iachello, PRC(2009)

CISM: J. Menendez et al., NPA(2009)

· · ·

Systematic uncertainties

Different approximation: Shell-Model, GCM, QRPA, IBM, PHFB
Different model space: one-shell or full shell
Different correlation: np pairing, collective v.s. non-collective

⇒ A factor of 2-3. J. Engel, JPG(2015)
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Towards ab-inition calculations for the 0𝜈𝛽𝛽 decay

Our goal

A full ab-initio calculation of
structure properties of medium-heavy (deformed) nuclei
and the nuclear matrix elements for the 0𝜈𝛽𝛽 decay

with a Multi-Reference In-Medium Similarity Renormalization Group approach.
Hergert, Bogner, Morris, Schwenk, & Tsukiyama, Phys. Rep.(2016)

√
GCM v.s. SM based on a HSM .
→ See T. R. Rodrı́guez and C.F. Jiao’s
talks.
IMSRG+GCM v.s. SM based a HSM .
IMSRG+GCM based on a H𝜒EFT .

IMSRG: a tool to tackle the missing correlations in GCM and the small model-space
problem in Shell-Model.
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IMSRG: decoupling in A-body space

See H. Hergert’s talk for the details.
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MR-IMSRG(2) for 48Ca-Ti

1. Generate a symmetry-conserved HFB (GCM) state |Φ⟩ and the density
matrix elements (see L.J. Wang’s talk)

𝜌nB = ⟨Φ|Ai1...in
j1...jn |Φ⟩

2. Normal-order all the operators Ô w.r.t the Ref. state |Φ⟩

Ô = ⟨Ô⟩ +
∑︁
i1 j1

O i1
j1 Ãi1

j1 +
1
4

∑︁
i1 i2 j1 j2

O i1 i2
j1 j2 Ãi1 i2

j1 j2 + · · ·
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MR-IMSRG(2) for 48Ca-Ti

3. Decouple the reference state from
excitations through the flow equation

dĤ(s)

ds
= [𝜂(s), Ĥ(s)],

where Ĥ(s) = eΩ̂(s)Ĥ0e−Ω̂(s). The
man-body operator 𝜂(s) (generator)
and Ω(s) are anti-hermitian
operators.

4. Compute observables (energy,
transition)

⟨Ô(∞)⟩ = ⟨Φ|eΩ̂(∞)Ô0e−Ω̂(∞)|Φ⟩.
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MR-IMSRG(2) for 48Ca-Ti

Spherical HFB state w/o np iso-scalar
pairing (projected onto N&Z )
→ s = 0: Enp = −0.648 MeV
→ s = ∞: Enp = −2.032 MeV

Deformed HFB state with np iso-scalar
pairing (projected onto J,N&Z )
→ s = 0: Enp = −1.345 MeV
→ s = ∞: Enp = −2.023 MeV

⇒ A deformed Ref. state is necessary for reproducing the total energy of
48Ti.
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MR-IMSRG(2) for the total GT strength in 48Ti

S𝛽+

GT ≡
∑︁

m

⃒⃒⃒⃒
⟨48Sc(1+

m)|𝜎𝜏+|48Ti(0+)⟩
⃒⃒⃒⃒2

=
∑︁
ijkl

⟨j |𝜎𝜏−|i⟩⟨l |𝜎𝜏+|k⟩⟨0+|a†
jp ain a†

ln akp |0+⟩.

Sph.HFB as the Ref. State

⟨0+|eΩ̂(∞)ŜGT e−Ω̂(∞)|0+⟩
= ⟨0+|ŜGT + [Ω̂, ŜGT ] + . . . |0+⟩
= 4.048−3.693 + 0.299 + . . .

= 0.801

Def.HFB as the Ref. State

⟨0+|eΩ̂(∞)ŜGT e−Ω̂(∞)|0+⟩
= ⟨0+|ŜGT + [Ω̂, ŜGT ] + . . . |0+⟩
= 2.616−1.774 + 0.015 + . . .

= 0.908

Shell-model (KB3G: 1.213)
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MR-IMSRG(2) for the nuclear matrix elements of 0𝜈𝛽𝛽

M0𝜈 = ⟨ΦF |eΩ̂F (∞)Ô0𝜈e−Ω̂I(∞)|ΦI⟩

Difficult to treat the operator with Ω̂F (∞) ̸= Ω̂I(∞).
Strategy:

⟨ΦF |eΩ̂F (∞)Ô0𝜈e−Ω̂I(∞)|ΦI⟩

→ ⟨ΦF |eΩ̂F (∞)Ô0𝜈e−Ω̂F (∞)|ΦI⟩
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MR-IMSRG(2) for 48Ca-Ti

A spherical HF state for |ΦI⟩.
Operators are truncated up to NO2B
level.

GT

⟨ΦF |eΩ̂F (∞)Ô0𝜈
GT e−Ω̂F (∞)|ΦI⟩

= ⟨ΦF |Ô0𝜈
GT + [Ω̂F , Ô0𝜈

GT ] + . . . |ΦI⟩
= 1.118+0.870 + 0.061 + . . .

= 2.051

SM (KB3G): 0.868

Fermi

⟨ΦF |eΩ̂F (∞)Ô0𝜈
FMe−Ω̂F (∞)|ΦI⟩

= ⟨ΦF |Ô0𝜈
FM + [Ω̂F , Ô0𝜈

FM ] + . . . |ΦI⟩
= −0.763−0.061−0.015 + . . .

= −0.840

SM (KB3G): −0.243
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MR-IMSRG(2) for 48Ca-Ti

Dominate correction to the matrix element: [Ω̂F , Ô0𝜈
GT ]

In the MR-IMSRG(2) calc. with the KB3G, Ω(1) = 0. The dominant terms are

[Ω̂, Ô0𝜈
GT ]

J
KL34 =

1
2

∑︁
CD

ΩJ
KLCDOJ

CD34(1 − nC − nD)−
1
2

∑︁
12

OJ
KL12Ω

J
1234(1 − n1 − n2).

where K ,L,C,D for protons and 1,2,3,4 for neutrons.
The 1st term (protons): 0.243
The 2nd term (neutrons): 0.602
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MR-IMSRG(2) for 48Ca-Ti

GT (eMax06)

⟨ΦF |eΩ̂F (∞)Ô0𝜈
GT e−Ω̂F (∞)|ΦI⟩

= ⟨ΦF |Ô0𝜈
GT + [Ω̂F , Ô0𝜈

GT ] + . . . |ΦI⟩
= 1.618+0.791 + 0.094 + . . .

= 2.505

Fermi (eMax06)

⟨ΦF |eΩ̂F (∞)Ô0𝜈
FMe−Ω̂F (∞)|ΦI⟩

= ⟨ΦF |Ô0𝜈
FM + [Ω̂F , Ô0𝜈

FM ] + . . . |ΦI⟩
= −0.682−0.011−0.027 + . . .

= −0.720
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NLDBD between isospin multiples: 6He →6Be
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No problem of ΩI ̸= ΩF .

M0𝜈 ≡ ⟨TTz − 2|[Ô0𝜈 ]2−2|TTz⟩
→ ⟨TTz |[�̂�0𝜈 ]20|TTz⟩

A benchmark for other ab-initio methods.
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NLDBD between isospin multiples:18O→18Ne
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Effects of 3NF at the NO2B level

Increases the energy (about 45 MeV) and decreases the M0𝜈 (about 10%).
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Summary and outlook

Summary:
- Different choice of reference state affects the solution of the flow equation.
- An ab-intio calculation of the M0𝜈 for isospin multiples (6He and 18O) has

been performed, which provides a test ground for other ab-initio methods.
- The effect of 3NF at the NO2B level decreases the M0𝜈

GT .

Next:
- The reason for the enhanced transition matrix elements.
- Application to the matrix elements for the 0𝜈𝛽𝛽 candidates.
- Extension of the MR-IMSRG(2) to MR-IMSRG(3).

Thanks for your attention!
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Development of IMSRG approaches

IMSRG for spherical closed (open)-shell nuclei
K. Tsukiyama, S. K. Bogner, A. Schwenk, PRL106, 222502 (2011); PRC 85, 061304(R) (2012)

IMSRG+PNP (Sph.HFB) for spherical open-shell nuclei
H. Hergert, S. Binder, A. Calci, J. Langhammer, R. Roth, PRL 110, 242501 (2013)

H. Hergert, S. K. Bogner, T. D. Morris, S. Binder, A. Calci, J. Langhammer, R. Roth, PRC90, 041302(R) (2014)

Valence-Space Shell-Model based on the IMSRG decoupled chiral
Hamiltonian
S. K. Bogner, H. Hergert, J. D. Holt, A. Schwenk, S. Binder, A. Calci, J. Langhammer, R. Roth, PRL 113, 142501 (2014)

S. R. Stroberg, H. Hergert, J. D. Holt, S. K. Bogner, A. Schwenk, PRC93, 051301 (2016)

S. R. Stroberg, A. Calci, H. Hergert, J. D. Holt, S. K. Bogner, R. Roth, A. Schwenk, PRL 118, 032502 (2017)

No-Core Shell-Model based on the MR-IMSRG decoupled chiral
Hamiltonian
E. Gebrerufael, K. Vobig, H. Hergert, and R. Roth, arXiv: 1610.05254v1 [nucl-th] 17 Oct 2016

IMSRG+EOM(TDA) for excited states
N. M. Parzuchowski, T. D. Morris, S. K. Bogner, PRC95, 044304 (2017)

IMSRG+GCM (Multi-Reference State) for deformed/transitional nuclei
...



Introduction MR-IMSRG based on an empirical shell-model Hamiltonian MR-IMSRG based on a chiral Hamiltonian Summary

MR-IMSRG(2*) for oxygen isotopes

Induced-NO3B in H at each s

BCH expansion for H(s):

eΩ̂(s)H0e−Ω̂(s) = H0 +
∑︁
n=1

1
n!

H̃(n)(s),

with

H̃(n) = H(n)
NO2B + [Ω(s), W̃ (n−1)]

+ [Ω(s),h(n−1)]

H(n)
NO2B = [Ω(s),H(n−1)

NO2B ]

W̃ (n−1) ≡ [Ω(s), H̃(n−2)]3B

h(n−1) for the difference between H̃(n−1)

and H(n−1)
NO2B



Introduction MR-IMSRG based on an empirical shell-model Hamiltonian MR-IMSRG based on a chiral Hamiltonian Summary

Oxygen isotopes
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MR-IMSRG for deformed 20Ne with SM Hamiltonian

Clustering structure in 20Ne: a
challenge for SM
MR state: PNAMP+HFB with
different deformation
The spherical (reference) state fails
to evolve to the deformed g.s.
About 1 MeV discrepancy:
something missing in the
MR-IMSRG(2)?
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Computing the NME for the neutrinoless DBD

If ΩI = ΩF = Ω,

M0𝜈

= ⟨ΦF |eΩ̂(∞)Ô0𝜈e−Ω̂(∞)|ΦI⟩

= ⟨ΦF |Ô0𝜈 +
∞∑︁

n=1

1
n!

[Ω̂(∞), Ô[n−1]]|ΦI⟩.

Diagrams for [Ω̂, Ô0𝜈 ]



Introduction MR-IMSRG based on an empirical shell-model Hamiltonian MR-IMSRG based on a chiral Hamiltonian Summary

Expression for [Ω,O0𝜈] (1B)

[Ω̂(1), Ô0𝜈 ]JKL34 =
∑︁

A

[︁
1 + (−1)J−jK −jL+1

]︁
Ω

(1)
K AOAL34 −

∑︁
1

[︁
1 + (−1)J−j3−j4+1

]︁
Ω

(1)
13 OKL14. (2)

where K ,L,C,D for protons and 1,2,3,4 for neutrons.
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Expression for [Ω,O0𝜈] (pp)

[Ω(2),O]JKL34(pp) =
1
2

∑︁
CD

ΩJ
KLCDOJ

CD34(1 − nC − nD)−
1
2

∑︁
12

OJ
KL12Ω

J
1234(1 − n1 − n2).

where K ,L,C,D for protons and 1,2,3,4 for neutrons.



Introduction MR-IMSRG based on an empirical shell-model Hamiltonian MR-IMSRG based on a chiral Hamiltonian Summary

Expression for [Ω,O0𝜈] (ph)

[Ω(2),O]Jkl34(ph)

= −
∑︁

J′
Ĵ ′2

{︂
jk jl J
j3 j4 J ′

}︂∑︁
a6

⟨(k 4̄)J ′|O|(6ā)J ′⟩(n6 − na)⟨(6ā)J ′|Ω|(3̄l)J ′⟩

−(−1)jk+jl+J+1
∑︁

J′
Ĵ ′2

{︂
jl jk J
j3 j4 J ′

}︂∑︁
a6

⟨(l 4̄)J ′|O|(6ā)J ′⟩(n6 − na)⟨(6ā)J ′|Ω|(3k̄)J ′⟩

+
∑︁

J′
Ĵ ′2

{︂
jk jl J
j3 j4 J ′

}︂∑︁
a6

⟨(k 4̄)J ′|Ω|(a6̄)J ′⟩(na − n6)⟨(a6̄)J ′|O|(3̄l)J ′⟩

+(−1)jk+jl+J+1
∑︁

J′
Ĵ ′2

{︂
jl jk J
j3 j4 J ′

}︂∑︁
a6

⟨(l 4̄)J ′|Ω|(a6̄)J ′⟩(na − n6)⟨(a6̄)J ′|O|(3k̄)J ′⟩(3)

where k , l , c,d ,a for protons and 1,2,3,4,6 for neutrons.
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MR-IMSRG(2) for 48Ca-Ti

Irreducible three-body density

𝜆pqr
stu ≡ 𝜌pqr

stu −𝒜(𝜆p
s𝜆

qr
tu ) −𝒜(𝜌p

s𝜌
q
t 𝜌

r
u),

important for decoupling the H(s), where 𝜆qr
tu ≡ 𝜌qr

tu −𝒜(𝜌q
t 𝜌

r
u).
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MR-IMSRG for 48Ca-Ti: comparison of Ω(2)

The Ω at NO2B level

ΩI/F (s) =
∑︁

ij

Ωij (s)Ãi
j +

1
4

∑︁
ijkl

Ωijkl (s)Ãij
kl

(4)
where

Ωij (s): zero by using the HSM.
The two-body M.E. in J-scheme:
⟨(ij)JM|Ω|(kl)JM⟩.

If ΩF ≃ ΩI , expansion in terms of ΩF − ΩI

eΩF O0𝜈e−ΩI = eΩF e−ΩI eΩI O0𝜈e−ΩI

≃ eΩI

[︂
1 + (ΩF − ΩI) −

1
2

[ΩI ,ΩF ]

]︂
O0𝜈e−ΩI (5)

IMSRG-ΩI : M0𝜈
GT = 2.169 → 2.449(NO2B), even larger?
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