Quantum Monte Carlo and double-beta decay

Robert B. Wiringa, Physics Division, Argonne National Laboratory

Alessandro Baroni, Old Dominon Joe Carlson, Los Alamos Stefano Gandolfi, Los Alamos Alessandro Lovato, Argonne & INFN Trento Saori Pastore, Los Alamos Maria Piarulli, Argonne Steven C. Pieper, Argonne Rocco Schiavilla, JLab & ODU

Work not possible without extensive computer resources Argonne Laboratory Computing Resource Center (Blues) Argonne Leadership Computing Facility (Theta)

Physics Division

Work supported by U.S. Department of Energy, Office of Nuclear Physics

$$H = \sum_{i} K_i + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk}$$

 K_i : Non-relativistic kinetic energy, m_n - m_p effects included

Argonne v₁₈: $v_{ij} = v_{ij}^{\gamma} + v_{ij}^{\pi} + v_{ij}^{I} + v_{ij}^{S} = \sum v_p(r_{ij})O_{ij}^p$

- 18 spin, tensor, spin-orbit, isospin, etc., operators
- full EM and strong CD and CSB terms included
- predominantly local operator structure
- fits Nijmegen PWA93 data with χ^2 /d.o.f.=1.1

Wiringa, Stoks, & Schiavilla, PRC 51, (1995)

Urbana & Illinois: $V_{ijk} = V_{ijk}^{2\pi} + V_{ijk}^{3\pi} + V_{ijk}^{R}$

- Urbana has standard $2\pi P$ -wave + short-range repulsion for matter saturation
- Illinois adds 2π S-wave + 3π rings to provide extra T=3/2 interaction
- Illinois-7 has four parameters fit to 23 levels in $A \leq 10$ nuclei

Pieper, Pandharipande, Wiringa, & Carlson, PRC **64**, 014001 (2001) Pieper, AIP CP **1011**, 143 (2008)

Norfolk v₁₇: $v_{ij} = v_{ij}^{\gamma} + v_{ij}^{\pi} + v_{ij}^{2\pi} + v_{ij}^{C} = \sum v_p(r_{ij})O_{ij}^p$

- derived in chiral effective field theory with Δ -intermediate states
- 17 spin, tensor, spin-orbit, isospin, etc., operators
- full EM and strong CD and CSB terms included
- predominantly local operator structure suitable for quantum Monte Carlo
- multiple models with varying regularization
- fit Granada PWA2013 data to $E_{lab} = 125$ MeV with $\chi^2/d.o.f.\sim 1.1$ (or 200 MeV with $\chi^2/d.o.f.\sim 1.4$)

Piarulli, Girlanda, Schiavilla, Perez, Armaro, & Arriola PRC 91, (2015)

Norfolk $V_{ijk} = V_{ijk}^{2\pi} + V_{ijk}^D + V_{ijk}^E$

- standard 2π S-wave and 2π P-wave terms consistent with NN potential
- short-range contact terms of c_D and c_E type
- two parameters fit to 3 H binding and nd scattering length

Piarulli, Baroni, Girlanda, Kievsky, Lovato, Marcucci, Pieper, Schiavilla, Viviani, & Wiringa (in preparation)

QUANTUM MONTE CARLO

Variational Monte Carlo (VMC): construct Ψ_V that

- Are fully antisymmetric and translationally invariant
- Have cluster structure and correct asymptotic form
- Contain non-commuting 2- & 3-body operator correlations from $v_{ij} \& V_{ijk}$
- Are orthogonal for multiple J^{π} states
- Minimize $E_V = \langle \Psi_V | H | \Psi_V \rangle \geq E$; automated optimization for variational parameters

These are $\sim 2^A {A \choose Z}$ component (540,672 for ¹²C) spin-isospin vectors in 3A dimensions Wiringa, PRC **43**, 1585 (1991)

Green's function Monte Carlo (GFMC): project out the exact eigenfunction

- $\Psi(\tau) = \exp[-(H E_0)\tau]\Psi_V = \sum_n \exp[-(E_n E_0)\tau]a_n\Psi_n \Rightarrow \Psi_0$ at large τ
- Propagation done stochastically in small time slices $\Delta \tau$
- Exact $\langle H \rangle$ for local potentials; mixed estimates for other $\langle O \rangle$
- Constrained-path propagation controls fermion sign problem for $A \ge 8$ ($A \ge 4$ for NV17)
- Multiple excited states for same J^{π} stay orthogonal

Many tests demonstrate 1–2% accuracy for realistic $\langle H \rangle$

Carlson, PRC **38**, 1879 (1988) Pudliner, Pandharipande, Carlson, Pieper & Wiringa PRC **56**, 1720 (1997)

M1 transitions w/ $\chi {\rm EFT}$

- dominant contribution is from OPE
- five LECs at N3LO
- d_2^V and d_1^V are fixed assuming Δ resonance saturation
- d^S and c^S are fit to experimental μ_d and $\mu_S({}^{3}\text{H}/{}^{3}\text{He})$
- c^V is fit to experimental $\mu_V({}^{3}\text{H}/{}^{3}\text{He})$
- $\Lambda = 600 \text{ MeV}$

Pastore, Pieper, Schiavilla, & Wiringa PRC **87**, 035503 (2013)

VMC-IA ELECTROWEAK TRANSITION SURVEY

VMC	IA cor	npai	rison					NV17-106	AV18+UX
6Li	2.19	->	0	3+	->	1+	E2	8.00 (5)	8.10 (5)
	3.56	->	0	0+;1	->	1+;0	Ml	3.737 (2)	3.664 (5)
	4.31	->	0	2+	->	1+	E2	6.07 (5)	6.10 (4)
	5.37	->	0	2+;1	->	1+;0	Ml	0.252 (3)	0.280 (8)
7Li	0.48	->	0	1/2-	->	3/2-	Ml	2.790 (6)	2.769 (6)
							E2	4.85 (4)	4.47 (3)
	4.65	->	0	7/2-	->	3/2-	E2	7.15 (4)	6.79 (3)
7Be	0.43	->	0	1/2-	->	3/2-	M1	2.447 (2)	2.429 (2)
8Li	0.98	->	0	1+	->	2+	Ml	3.315 (3)	3.628 (3)
	2.26	->	0	3+	->	2+	M1	1.123 (3)	1.095 (3)
8Be	3.03	->	0	2+	->	0+	E2	8.77 (6)	8.74 (5)
	11.4	->	3.03	4+	->	2+	E2	11.59 (6)	13.04 (6)
	16.6	->	0	2+	->	0+	E2	0.229 (5)	0.113 (4)
		->	3.03	2+	->	2+	Ml	0.0290 (6)	0.0145 (6)
	16.9	->	0	2+;1	->	0+	E2	0.423 (3)	0.326 (2)
		->	3.03	2+;1	->	2+	Ml	0.453 (3)	0.307 (2)
	17.6	->	0	1+;1	->	0+	Ml	0.653 (2)	0.571 (2)
		->	3.03	1+;1	->	2+	Ml	0.480 (2)	0.426 (1)
		->	16.6	1+;1	->	2+	Ml	2.488 (5)	2.453 (9)
		->	16.9	1+;1	->	2+;1	M1	0.181 (3)	0.172 (2)
	18.1	->	0	1+	->	0+	Ml	0.0162 (1)	0.0115 (1)
		->	3.03	1+	->	2+	Ml	0.020 (2)	0.0098 (2)
		->	16.6	1+	->	2+	Ml	0.188 (4)	0.217 (3)
		->	16.9	1+	->	2+;1	Ml	2.37 (1)	2.72 (1)

10Be	3.37 ->	• 0 2+	-> 0+	E2	6.22 (5)	6.40 (5)
	5.96 ->	• 0 2+	-> 0+	E2	1.45 (3)	0.32 (5)
10B	0.72 ->	• 0 1+	-> 3+	E2	3.10 (4)	3.58 (3)
	1.74 ->	• 0.72 0+;1	-> 1+	Ml	3.354 (3)	3.523 (3)
	2.15 ->	• 0 1+	-> 3+	E2	0.88 (1)	0.57 (1)
	->	• 0.72 1+	-> 1+	Ml	0.036 (3)	0.057(2)
				E2	3.58 (6)	2.88 (5)
	->	• 1.74 l+	-> 0+;1	Ml	0.98 (1)	1.05 (2)
	3.59 ->	• 0 2+	-> 3+	Ml	0.013 (6)	0.056 (2)
				E2	1.99 (5)	3.02 (5)
	5.16 ->	→ 1.74 2+;1	-> 0+;1	E2	5.91 (5)	5.58 (6)
10C	3.35 ->	0 2+	-> 0+	E2	5.44 (9)	4.84 (7)
бНе -	-> 6Li	0+;1 -> 1+;	D	GT	2.188 (2)	2.177 (2)
7Be -	-> 7Li	3/2> 3/2-	-	F	1.9997	1.9998
				GT	2.317 (1)	2.335 (1)
7Be -	-> 7Li*	3/2> 1/2-	-	GT	2.158 (3)	2.150 (1)
8He -	-> 8Li*	0+;1 -> 1+;2	1	GT	0.387 (3)	0.340 (1)
8Li -	-> 8Be*	2+;1 -> 2+;	C	GT	0.147 (1)	0.082 (1)
8B -	-> 8Be*	2+;1 -> 2+;0	C	GT	0.146 (1)	0.081 (1)
10C -	-> 10B	0+;1 -> 1+;	C	GT	1.942 (2)	2.062 (3)

Single β -decay

Pastore, Baroni, Carlson, Gandolfi, Pieper, Schiavilla & Wiringa (in preparation)

Wave function %	S=0	S=1	S=2	S=3
$^{6}\mathrm{He}(0^{+};1) \Psi_{J}\rangle$	1.0	0.0	0.0	0.0
$^{6}\mathrm{He}(0^{+};1) \Psi_{V}\rangle$	0.76	0.08	0.16	0.005
$^{6}\mathrm{Li}(1^{+};0) \Psi_{J}\rangle$	0.0	1.0	0.0	0.0
$^{6}\mathrm{Li}(1^{+};0) \Psi_{V}\rangle$	0.02	0.86	0.06	0.06
Wave function %	S=1/2	S=3/2	S=5/2	S=7/2
$^{7}\mathrm{Be}(3/2^{-};1/2) \Psi_{J}\rangle$	1.0	0.0	0.0	0.0
$^{7}\mathrm{Be}(3/2^{-};1/2) \Psi_{V}\rangle$	0.76	0.15	0.09	0.005
$^{7}\mathrm{Li}(3/2^{-};1/2) \Psi_{J}\rangle$	1.0	0.0	0.0	0.0
$7 \mathbf{T} \cdot (2 \cdot (2 - 1 \cdot (2)) + \mathbf{T} \cdot (2 \cdot (2 - 1 \cdot (2))) + \mathbf{T} \cdot (2 \cdot (2 - 1 \cdot (2 - 1)))$		~		

ORIGIN OF QUENCHING IN QMC WAVE FUNCTIONS

TWO-NUCLEON HALO DENSITIES

Preliminary 0ν double-beta decay matrix elements

 $O_V = \tau_1^+ \tau_2^+ / r_{12}$; $O_A = \sigma_1 \cdot \sigma_2 \tau_1^+ \tau_2^+ / r_{12}$; $O_T = S_{12} \tau_1^+ \tau_2^+ / r_{12}$

$\langle {}^{8}\mathrm{Be}(0^{+};0) O_{x} {}^{8}\mathrm{He}(0^{+};2)\rangle$	V	А	Т
AV18+UX	0.0227(8)	-0.0368(14)	0.0298(10)
NV17-106	0.0288(4)	-0.0513(10)	0.0415(5)
$\langle {}^{10}\text{Be}(0^+;1) O_x {}^{10}\text{He}(0^+;3)\rangle$	V	А	Т
AV18+UX	0.0174(7)	-0.0428(18)	0.0357(7)
NV17-106	0.0233(4)	-0.0575(10)	0.0645(8)
$\langle {}^{12}\mathrm{C}(0^+;0) O_x {}^{12}\mathrm{Be}(0^+;2)\rangle$	V	А	Т
AV18+UX	0.055(2)	-0.137(4)	
NV17-106			

What about 2ν double-beta decay?

Basis for 2ν double-beta decay calculation?

CONCLUSIONS

- Accurate quantum Monte Carlo calculations up to $A \le 12$ available for realistic nuclear Hamiltonians, including new local chiral Δ -ful models
- Energies and low-lying transitions in good agreement with experiment
- Variety of benchmark calculations for ββ decay are possible, including MEC (see Pastore talk)
- QMC calculations for larger nuclei to be made by AFDMC method, possibly starting with β decay in A = 15, 17, 39, 41 (see Carlson talk)

HAVE WAVE FUNCTIONS — WILL COLLABORATE