Considerations for Next Generation 0vββ Experiments

INT Workshop on 0vββ Seattle, WA June 13, 2017

Searching for 0v\bbeta\beta Decay

Assuming LNV mechanism is light Majorana neutrino exchange and SM interactions (W)

2015 NSAC Long Range Plan for Nuclear Science

Next Gen ßß Expt. Considerations

June 13, 2017

Next Generation Considerations

• Is there a preferred $0\nu\beta\beta$ isotope?

Sensitivity to $\langle m_{\beta\beta} \rangle$

Sensitivity per unit mass of isotope

Isotopes have comparable sensitivities in terms of rate per unit mass

R.G.H. Robertson, MPL A **28** (2013) 1350021 (arXiv 1301.1323)

Inverse correlation observed between phase space and the square of the nuclear matrix element .

> geometric mean of the squared matrix element range limits & the phase-space factor evaluated at g_A=1

> > ββ-Decay Workshop, INT, Seattle June 13, 2017

Next Generation Considerations

- Is there a preferred 0vββ isotope?
 No preferred isotope in terms of per unit mass within current uncertainties on NME and g_A.
- What is required to cover Inverted Ordering masses?

Sensitivity vs. Exposure for ⁷⁶Ge

Next Gen ßß Expt. Considerations

3σ Discovery vs. Exposure for ⁷⁶Ge

Experimental searches for 0vββ-decay

Most sensitive experiments to date using ⁷⁶Ge,¹³⁰Te, and ¹³⁶Xe have attained results for $T_{1/2} > 5 \cdot 10^{25}$ to 10^{26} years.

(source mass) × (exposure times) of 30 - 125 kg-years

Covering IH region requires sensitivities of 0vββ T_{1/2} ~ 10²⁷- 10²⁸ years

 $(2\nu\beta\beta T_{1/2} \sim 10^{19} - 10^{21} \text{ years})$

Half life
(years)~Signal
(cnts/ton-year) 10^{25} 500 5×10^{26} 10 5×10^{27} 1 5×10^{28} 0.1 5×10^{29} 0.05

Next Generation Expts. aim for background of 0.1 cnts/t-y

Next Generation Considerations

- Is there a preferred 0vββ isotope?
 No preferred isotope in terms of per unit mass within current uncertainties on NME and g_A.
- What is required to cover Inverted Ordering masses? For a nearly ideal, background free experiment ~ 10 t-y
- Experimental Considerations

Potential contributions to the background

- Primordial, natural radioactivity in the detector and array components: U, Th, K
- Backgrounds from cosmogenic activation while material is above ground ($\beta\beta$ -isotope or shield specific, 60 Co, 3 H, 39 Ar, 42 Ar, ...)
- Backgrounds from the surrounding environment: external γ, (α,n), (n,α), Rn plate-out, etc.
- μ-induced backgrounds generated at depth:
 Cu, Pb(n,n' γ), ββ-decay specific(n,n),(n,γ), direct μ
- 2 neutrino double beta decay (for 1000 kg, impact depends on resolution)
- neutrino backgrounds (for 1000 kg, can be a contribution)

Reducing Backgrounds - Strategies

- Directly reduce intrinsic, extrinsic, & cosmogenic activities
 - Select and use ultra-pure materials
 - Minimize all non "source" materials
 - Clean (low-activity) shielding
 - Fabricate ultra-clean materials (underground fab in some cases)
 - Go deep reduced μ 's & related induced activities
- Utilize background measurement & discrimination techniques

 $0\nu\beta\beta$ is a localized phenomenon, many backgrounds have multiple site interactions or different energy loss interactions

- -Energy resolution
- -Active veto detector
- Tracking (topology)
- Particle ID, angular, spatial,& time correlations

- Fiducial self-consistent fits
- Single site / multi site fitting
- Granularity [multiple detectors]
- Pulse shape discrimination (PSD)
- Ion Identification

3σ Discovery : Exposure vs. Background

Next Gen ßß Expt. Considerations

3σ Discovery : Exposure vs. Background

Next Generation Considerations

- Is there a preferred 0vββ isotope?
 No preferred isotope in terms of per unit mass within current uncertainties on NME and g_A.
- What is required to cover Inverted Ordering masses? For a nearly ideal, background free experiment ~ 10 t-y
- Experimental Considerations
 - Backgrounds higher Q value (especially above ²⁰⁸Tl line) is good.
 - Enrichment ¹³⁰Te (34.5% nat. abundance) has an advantage.
 - $2\nu\beta\beta$ rate (irreducible background) ⁷⁶Ge ¹³⁰Te, ¹³⁶Xe are the best (longest $T_{1/2}$), but impact depends on resolution.

No clear leader. Need to evaluate on expt.-by-expt. basis. Backgrounds and resolution are critically important, in particular for discovery capable measurements.

Discovery of 0vββ-decay

• Evidence : a combination of

- Correct peak energy
- Single-site or localized energy deposit
- Proper detector distributions (spatial, temporal)
- Rate scales with isotope fraction
- Good signal to background (3 σ discovery)
- Full energy spectrum (backgrounds) understood.
- More direct confirmation : very difficult
 - Observe the two-electron nature of the event
 - Measure kinematic dist. (energy sharing, opening angle)
 - Observe the daughter
 - Observe the excited state decay(s)
- Convincing
 - Observe 0vββ in several different isotopes, using a variety of experimental techniques that meet the above definition of evidence

0vββ decay Experiments - Efforts Underway

CUORE

Collaboration	Isotope	Technique	mass (0vββ isotope)	Status
CANDLES	Ca-48	305 kg CaF2 crystals - liq. scint	0.3 kg	Construction
CARVEL	Ca-48	⁴⁸ CaWO ₄ crystal scint.	\sim ton	R&D
GERDA I	Ge-76	Ge diodes in LAr	15 kg	Complete
GERDA II	Ge-76	Point contact Ge in LAr	31	Operating
MAJORANA DEMONSTRATOR	Ge-76	Point contact Ge	25 kg	Operating
LEGEND	Ge-76	Point contact	~ ton	R&D
NEMO3	Mo-100 Se-82	Foils with tracking	6.9 kg 0.9 kg	Complete
SuperNEMO Demonstrator	Se-82	Foils with tracking	7 kg	Construction
SuperNEMO	Se-82	Foils with tracking	100 kg	R&D
LUCIFER (CUPID)	Se-82	ZnSe scint. bolometer	18 kg	R&D
AMoRE	Mo-100	CaMoO ₄ scint. bolometer	1.5 - 200 kg	R&D
LUMINEU (CUPID)	Mo-100	ZnMoO ₄ / Li ₂ MoO ₄ scint. bolometer	1.5 - 5 kg	R&D
COBRA	Cd-114,116	CdZnTe detectors	10 kg	R&D
CUORICINO, CUORE-0	Te-130	TeO ₂ Bolometer	10 kg, 11 kg	Complete
CUORE	Te-130	TeO ₂ Bolometer	206 kg	Operating
CUPID	Te-130	TeO ₂ Bolometer & scint.	~ ton	R&D
SNO+	Te-130	0.3% natTe suspended in Scint	160 kg	Construction
EXO200	Xe-136	Xe liquid TPC	79 kg	Operating
nEXO	Xe-136	Xe liquid TPC	~ ton	R&D
KamLAND-Zen (I, II)	Xe-136	2.7% in liquid scint.	380 kg	Complete
KamLAND2-Zen	Xe-136	2.7% in liquid scint.	750 kg	Upgrade
NEXT-NEW	Xe-136	High pressure Xe TPC	5 kg	Operating
NEXT	Xe-136	High pressure Xe TPC	100 kg - ton	R&D
PandaX - 1k	Xe-136	High pressure Xe TPC	\sim ton	R&D
DCBA	Nd-150	Nd foils & tracking chambers	20 kg	R&D

GERDA

Majorana

SNO+

$0\nu\beta\beta$ Detection Techniques

Next Gen ßß Expt. Considerations

June 13, 2017

Next generation ton scale experiments

- Active international collaborations building on current efforts.
 - ⁷⁶Ge : LEGEND, HPGE crystals, ~ton (builds on GERDA & MAJORANA) Detweiler
 - ⁸²Se : SuperNEMO : Se foils, tracking and calorimeter, 100 kg scale
 - ¹⁰⁰Mo : AMoRE : CaMoO₄ scint. bolometer, 200 kg scale
 - ¹³⁶Xe : nEXO Liquid TPC, 5 tons

NEXT — High pressure gas TPC, ton scale PandaX - III — High pressure gas TPC, ton scale KamLAND-Zen — ¹³⁶Xe in scintillator, 800 kg scale LZ — ^{nat}Xe liquid TPC, 7 tons, operating 2019

- ¹³⁰Te : CUPID (CUORE with Particle ID) Bolometer Scintillation Maruyama SNO+ Phase I & II — ¹³⁰Te in scintillator
- Experiments can be done in a staged (phased) approach. Most are considering stepwise increments.
- Isotope enrichment (⁷⁶Ge, ⁸²Se, ¹³⁶Xe) requires time and \$s.
- Potential underground lab sites
 - SNOLAB, JingPing, Gran Sasso, SURF, CanFranc, Frejus, Kamioka, ANDES, Y2L

Gratta

KamLAND-ZEN ¹³⁶Xe

- 136 Xe (90% enr) in liquid scintillator, balloon R=1.5 m
- $Q_{\beta\beta}=2457.8 \text{ keV}; \sigma \sim 114 \text{ keV} (4.6\%)$
- Phase II (PRL **117** 082503 (2016))
 - 380 kg (2.96% by Xe wt.)
 - R=1 m fiducial cut

Next Gen ββ Expt. Considerations

- 534.5 days, with 126 kg y exposure
- ^{110m}Ag contamination reduced by x10

T $_{1/2} > 1.07 \text{ x } 10^{26} \text{ y } (90\% \text{ CL})$

Sensitivity T 1/2 > 5.6 x 10²⁵ y (90% CL)

ββ-Decay Workshop, INT, Seattle June 13, 2017

Scintillation

KamLAND-ZEN ¹³⁶Xe

Scintillation

Next Gen ßß Expt. Considerations

ββ-Decay Workshop, INT, Seattle June 13, 2017

KamLAND-ZEN ¹³⁶Xe

- Scintillation
- 136 Xe (90% enr) in liquid scintillator, balloon R=1.5 m
- $Q_{\beta\beta}=2457.8 \text{ keV}; \sigma \sim 114 \text{ keV} (4.6\%)$
- Phase II (PRL **117** 082503 (2016))
 - 380 kg (2.96% by Xe wt.)
 - R=1 m fiducial cut
 - 534.5 days, with 126 kg y exposure
 - ^{110m}Ag contamination reduced by x10

T $_{1/2} > 1.07 \text{ x } 10^{26} \text{ y } (90\% \text{ CL})$

Sensitivity T 1/2 > 5.6 x 10²⁵ y (90% CL)

Unsuccessful new larger mini balloon deployment - 2016

Construction and deployment of new mini balloon with improved welding procedure for 800 kg (750 kg_{iso}) phase - 2017

Next Gen ßß Expt. Considerations

KamLAND-Zen future

Scintillation

Higher energy resolution for reducing 2v BG — KamLAND2-Zen

Winston cone

high q.e. PMT $17"\phi \rightarrow 20"\phi \varepsilon = 22 \rightarrow 30+\%$

New LAB LS (better transparency)

1000+ kg xenon

Far future:

Next Gen ßß Expt. Considerations

Super-KamLAND-Zen in connection with Hyper-Kamiokande

light collection ×1.8

light collection ×1.9

light collection ×1.4

expected $\sigma(2.6 \text{MeV}) = 4\% \rightarrow \sim 2\%$

target sensitivity: 20 meV

target sensitivity 8 meV

ββ-Decay Workshop, INT, Seattle June 13, 2017

SNO+ ¹³⁰Te (Phase I)

Scintillation

- 1357 kg 130 Te (34.5% nat.) in liquid scintillator, Acrylic Vessel
- $Q_{\beta\beta}=2530.3 \text{ keV}$; $\sigma \sim 82 \text{ keV}$ (4.6%)
- Present (June 2017) water-filled data taking underway
 - measuring backgrounds
 - stable data taking, processing, data flow
 - invisible nucleon decay analysis
- 2017 scintillator plant commissioning with LAB leading to scintillator filling, end of 2017
- 2018 tellurium purification and synthesis
 - systems installation completed leading to Te purification and Te loading, late 2018

3.8 tonnes Telluric acid UG (half since 01/15); cosmogenic activity decaying

First neutrino candidate: 2017-02-05, upward-going, no outward-looking PMTs triggered

SNO+ ¹³⁰Te (Phase I)

Scintillation

Next Gen ββ Expt. Considerations

• High pressure (10-15 bar) ¹³⁶Xe TPC for

operations, background, ββ2v

- high E- resolution + tracking capability
- $Q_{\beta\beta}=2457.8 \text{ keV}; \sigma \sim 7.3 \text{ keV} (0.3\%)$
- NEXT-NEW
 - 4.5 kg_{iso}, operating at Canfranc

NEXT-NEW (~5 kg)

- Planned : NEXT-100
 - 90 kg_{iso}, b = 44 c/(ROI-t-y)

V. Alvarez et al., JINST 7, T06001 (2012), arXiv:1202.0721

[2015 - 2018] Next Gen ββ Expt. Considerations

HVA Tracking plane Pressurized vessel (10 - 15 bar) Active volume **PMTs** SiPMs Ionization Scintillation Cathode Anode Ground NEXT-100 (~100 kg) [2018 - 2020's] Neutrinoless double beta decay searches NEXT-tonne (~1000 kg) [future generation] Underground and radio-pure

> ββ-Decay Workshop, INT, Seattle June 13, 2017

NEXT ¹³⁶Xe

- High pressure (10-15 bar) ¹³⁶Xe TPC for high E- resolution + tracking capability
- $Q_{\beta\beta}=2457.8 \text{ keV}$; $\sigma \sim 7.3 \text{ keV} (0.3\%)$
- NEXT-NEW
 - 4.5 kg_{iso}, operating at Canfranc
- Planned : NEXT-100
 - 90 kg_{iso}, b = 44 c/(ROI-t-y)

V. Alvarez et al., JINST 7, T06001 (2012), arXiv:1202.0721

NEXT-tonne (~1000 kg)

[future generation] ββ-Decay Workshop, INT, Seattle June 13, 2017

Underground and radio-pure operations, background, ββ2ν

next

NEXT-NEW

Topological Reconstruction

- Observe the two stopping electron tracks emitted from common vertex, characteristic of double beta decays
- Powerful handle for single-electron background suppression

PandaX-III ¹³⁶Xe

- High pressure (10 bar) TPC using 90% enr ¹³⁶Xe with Micro-MEsh Gaseous structure readout
- $Q_{\beta\beta}=2457.8 \text{ keV}; \sigma \sim 31 \text{ keV} (1.3\%)$
- Five, 180 kg_{iso} modules, in large water shield

High Voltage Feedthrough

• Located at China Jinping Laboratory

High Pressure Vessel

Ionization

X. Chen et al., arXiv:1610.08883

ββ-Decay Workshop, INT, Seattle June 13, 2017

26

AMORE ¹⁰⁰ Mo

- ⁴⁰Ca¹⁰⁰MoO₄ crystals (95% enr. ¹⁰⁰Mo, depleted ⁴⁸Ca) with bolometer (Metallic Magnetic Calorimeter) and light readout.
- Q_{ββ}=3034.4 keV
- Phases
 - AMoRE Pilot (1.5 kg) [2016-2017]
 - 6 cyrstals, operating at 8 mK
 - σ (@2.6 MeV) ~ 4.6 5.8 keV (0.2%)
 - AMoRE I (4.5 kg) [2017-2020]
 - AMoRE II (200 kg) [2020-2024]
 - Enriched material by 2018
 - Evaluating : Li₂MoO₄ and Na₂Mo₂O₇
- AMoRE Pilot and I at Yingyang Undeground Laboratory, AMoRE at new UG lab, Astroparticle Research Facility at Handuk mine.

Next Gen ßß Expt. Considerations

Scintillator - Phonons

AMoRE ¹⁰⁰ Mo

- ⁴⁰Ca¹⁰⁰MoO₄ crystals (95% enr. ¹⁰⁰Mo, depleted ⁴⁸Ca) with bolometer (Metallic Magnetic Calorimeter) and light readout.
- $Q_{\beta\beta}=3034.4 \text{ keV}$
- Phases
 - AMoRE Pilot (1.5 kg) [2016-2017]
 - 6 cyrstals, operating at 8 mK
 - σ (@2.6 MeV) ~ 4.6 5.8 keV (0.2%)
 - AMoRE I (4.5 kg) [2017-2020]
 - AMoRE II (200 kg) [2020-2024]
 - Enriched material by 2018
 - Evaluating : Li_2MoO_4 and $Na_2Mo_2O_7$
- AMoRE Pilot and I at Yingyang Undeground Laboratory, AMoRE at new UG lab, Astroparticle Research Facility at Handuk mine.

ββ-Decay Workshop, INT, Seattle June 13, 2017

Cryostat for AMoRE

Scintillator - Phonons

Discovery Sensitivity Comparison

Discovery probability of next-generation neutrinoless double-beta decay experiments Matteo Agostini, Giovanni Benato, and Jason Detwiler arXiv:1705.02996v1

Red : Achieved Backgrounds; Black : Projected Backgrounds

Width of bands based on range of NME values

Considerations for Next Gen 0v\beta\beta-decay experiments

- Significant experimental progress since the 2015 long range plan.
 - Experiments have attained or are approaching sensitivities of $T_{1/2} > 10^{26}$ years, with substantially reduced backgrounds.
- Large international collaborations are moving forward with next generation experiments based on lessons learned from the current measurements.
- For discovery of 0vββ, experiments require good energy resolution, low backgrounds ("background free") and large exposures (t-y).
- Discovery will require observation by independent experiments, using different isotopes.
- Reduced uncertainties on NME and g_A will have a critical impact on understanding sensitivity and discovery potential.

0vββ INT Workshop Discussions

- Sensitivity in the presence of backgrounds.
- Self-consistent fiducial vol. analysis (e.g. KamLAND-Zen).
- Bayesian vs. Frequentist approaches to sensitivity and discovery level.
- Incorporation of systematic uncertainties into overall estimates of sensitivity.