Tritium β decay in pionless EFT

Jared Vanasse

Ohio University

June 30, 2017

Recipe for $EFT(\pi)$

- For momenta $p < m_{\pi}$ pions can be integrated out as degrees of freedom and only nucleons and external currents are left.
- \triangleright Write down all possible terms of nucleons and external currents that respect symmetries (rotational, isospin).
- \triangleright Develop a power counting to organize terms by their relative importance.
	- \triangleright Organized by counting powers of momentum.
	- \blacktriangleright Ensure order-by-order results are renormalization group invariant (converge to finite values for $\Lambda \to \infty$).
	- \triangleright Check that various sets of observables converge as expected.
- \triangleright Calculate respective observables up to a given order in the power counting.

Two- and Three-Body Inputs of $EFT(\#)$

Two-body inputs for $EFT(\#)$:

- ► LO scattering lengths in a_1 (³S₁) and a_0 (¹S₀) non-perturbative
- \blacktriangleright NLO range corrections r_1 and r_0 perturbative
- \triangleright N²LO SD-mixing term **perturbative**
- Three-body inputs for $EFT(\#)$:
	- \triangleright LO three-body force H_0 fit to doublet S-wave nd scattering length non-perturbative (Bedaque et al.) nucl-th/9906032
	- \triangleright NNLO three-body energy dependent three-body force H_2 fit to triton binding energy **perturbative**

Total of 6 NNLO parameters, ignoring SD-mixing.

The LO dressed deuteron propagator is given by a bubble sum

LO Triton Vertex function

Triton vertex function given by infinite sum of diagrams at LO

Infinite sum is represented by integral equation that is solved numerically

NLO Triton Vertex function

NLO triton vertex function given by sum of diagrams

where

Can also be solved by set of integral equations

LO Three-Nucleon Propagator

Defining

The dressed three-nucleon propagator is given by the sum of diagrams

$$
\equiv \geq \equiv \; = \; + \; \equiv \Sigma_0 \equiv \; + \; \equiv \Sigma_0 \equiv \Sigma_0 \equiv \; + \; \cdots
$$

which yields

$$
i\Delta_3(E) = \frac{i}{\Omega} - \frac{i}{\Omega} H_{\text{LO}} \Sigma_0(E) \frac{i}{\Omega} + \cdots
$$

=
$$
\frac{i}{\Omega} \frac{1}{1 - H_{\text{LO}} \Sigma_0(E)},
$$

Higher-Order Three-Nucleon Propagator

Defining the functions

The NNLO three-nucleon propagator is

Jared Vanasse Tritium β [decay in pionless EFT](#page-0-0)

Properly Renormalized Vertex Function

- \triangleright Three-body forces are fit to ensure triton propagator has pole at triton binding energy.
- \triangleright Three-nucleon wavefunction renormalization given by the residue of the three-nucleon propagator about the pole.
- \triangleright IO three-nucleon wavefunction renormalization is

$$
Z_{\psi}^{\text{LO}} = \frac{\pi}{\Sigma_{0}'(B)}.
$$

- In NNLO three-body force h_2 fit to triton binding energy and NNLO correction to H_0 fit to doublet S-wave nd scattering length.
- \triangleright Total of 2 three-body inputs at NNLO.

$$
\equiv \sum_{0} \equiv \equiv \equiv \pmod{1} \equiv \pmod{1} \equiv \pmod{1} \equiv \pmod{1}
$$

Three-Nucleon "generic" Form Factor

Three-nucleon LO "generic" form factor given by the three diagrams

NLO "generic" form factor

Form Factor Couplings

Generic form factor can be expanded as

$$
\digamma(Q^2)=a\left(1-\frac{1}{6}\left\langle r^2\right\rangle Q^2+\cdots\right)
$$

The couplings for the form factors of interest are given by

Table: List of couplings for form factors of interest and their physical values at $Q^2 = 0$.

LO Form Factor

The LO form factor for $Q^2 = 0$ is

$$
F_0(0)=2\pi M_N\left(\widetilde{\Gamma}_0(q)\right)^{\mathsf{T}}\otimes\left\{\frac{\pi}{2}\frac{\delta(q-\ell)}{q^2\sqrt{\frac{3}{4}q^2-M_NB}}\left(\begin{array}{cc}c_{11}+a_{11}&c_{12}\\c_{21}&c_{22}+a_{22}\end{array}\right)\right.\\\left.+\frac{1}{q^2\ell^2-(q^2+\ell^2-M_NB)^2}\left(\begin{array}{cc}b_{11}-2a_{11}&b_{12}+3(a_{11}+a_{22})\\b_{21}+3(a_{11}+a_{22})&b_{22}-2a_{22}\end{array}\right)\right\}\otimes\widetilde{\Gamma}_0(\ell),
$$

The coefficients for various form factors are given by

Table: Values of coefficients for the LO 3H and 3He axial and charge form factors.

NLO Form Factor

NLO correction to "generic" form factor at $Q^2 = 0$

$$
F_{1}(0) = 2\pi M_{N} \left(\widetilde{\Gamma}_{1}(q)\right)^{T} \otimes \left\{\frac{\pi}{2} \frac{\delta(q-\ell)}{q^{2} \sqrt{\frac{3}{4}q^{2} - M_{N}B_{0}} \left(\begin{array}{cc} c_{11} + a_{11} & c_{12} \\ c_{21} & c_{22} + a_{22} \end{array}\right)\right. \\ \left. + \frac{1}{q^{2}\ell^{2} - (q^{2} + \ell^{2} - M_{N}B_{0})^{2}} \left(\begin{array}{cc} b_{11} - 2a_{11} & b_{12} + 3(a_{11} + a_{22}) \\ b_{21} + 3(a_{11} + a_{22}) & b_{22} - 2a_{22} \end{array}\right)\right\} \otimes \widetilde{\Gamma}_{0}(\ell) \\ + 2\pi M_{N} \left(\widetilde{\Gamma}_{0}(q)\right)^{T} \otimes \left\{\frac{\pi}{2} \frac{\delta(q-\ell)}{q^{2} \sqrt{\frac{3}{4}q^{2} - M_{N}B_{0}}} \left(\begin{array}{cc} c_{11} + a_{11} & c_{12} \\ c_{21} & c_{22} + a_{22} \end{array}\right)\right\} \otimes \widetilde{\Gamma}_{1}(\ell) \\ + \frac{1}{q^{2}\ell^{2} - (q^{2} + \ell^{2} - M_{N}B_{0})^{2}} \left(\begin{array}{cc} b_{11} - 2a_{11} & b_{12} + 3(a_{11} + a_{22}) \\ b_{21} + 3(a_{11} + a_{22}) & b_{22} - 2a_{22} \end{array}\right)\right\} \otimes \widetilde{\Gamma}_{1}(\ell) \\ - 4\pi M_{N} \left(\widetilde{\Gamma}_{0}(q)\right)^{T} \otimes \left\{\frac{\pi}{2} \frac{\delta(q-\ell)}{q^{2}} \left(\begin{array}{cc} \frac{1}{2}\rho_{t}a_{11} + d_{11} & d_{12} \\ d_{21} & \frac{1}{2}\rho_{s}a_{22} + d_{22} \end{array}\right)\right\} \otimes \widetilde{\Gamma}_{0}(\ell),
$$

NLO Form Factor (cont.)

Table: Values of coefficients for the NLO corrections to (d)-type diagrams for the ${}^{3}H$ and ${}^{3}He$ magnetic, charge, and axial form factors. Generic form factor given by

$$
\mathcal{F}(Q^2) = a\left(1 - \frac{1}{6}\left\langle r^2\right\rangle Q^2 + \cdots\right)
$$

Calculating only Q^2 contribution for diagram-(a) gives

$$
\frac{1}{2}\frac{\partial^2}{\partial Q^2}F_n^{(a)}(Q^2)\Big|_{Q^2=0}=Z_\psi^{\text{LO}}\sum_{i,j=0}^{i+j\leq n}\left\{\widetilde{\boldsymbol{\mathcal{G}}}_i^\mathsf{T}(p)\otimes \boldsymbol{\mathcal{A}}_{n-i-j}(p,k)\otimes \widetilde{\boldsymbol{\mathcal{G}}}_j(k)\right.\\ \left. +2\widetilde{\boldsymbol{\mathcal{G}}}_i^\mathsf{T}(p)\otimes \boldsymbol{\mathcal{A}}_{n-i}(p)\delta_{j0}+\boldsymbol{\mathcal{A}}_n\delta_{i0}\delta_{j0}\right\},
$$

Triton Charge Radius

LO EFT($\#$) $r_C = 2.1 \pm .6$ fm (Platter and Hammer (2005)) nucl-th/0509045 NLO EFT $(\#)$ $r_c = 1.6 \pm .2$ fm (Kirscher et al. (2010)) arXiv:0903.5538 NNLO EFT($\#$) $r_C = 1.62 \pm .03$ fm (Vanasse (2016)) arXiv:1512.03805

The iso-scalar and iso-vector combination of magnetic moments are

$$
\mu_{\rm s} = \frac{1}{2} (\mu_{\rm 3He} + \mu_{\rm 3H})
$$
, $\mu_{\rm v} = \frac{1}{2} (\mu_{\rm 3He} - \mu_{\rm 3H}),$

 $\mu_{\rm s}$ only depends on κ_0 and L_2 , while $\mu_{\rm v}$ only depends on κ_1 and L_1 at NLO.

Table: Table of three-nucleon iso-scalar and iso-vector magnetic moments compared to experiment. The different NLO rows are different fits for L_1 and are organized the same as the previous table.

NLO two-body magnetic currents given by

$$
\mathcal{L}_2^{mag} = \left(e\frac{L_1}{2}\hat{t}^{j\dagger}\hat{s}_3\mathbf{B}_j + \text{H.c}\right) - e\frac{L_2}{2}i\epsilon^{ijk}\hat{t}_i^{\dagger}\hat{t}_j\mathbf{B}_k.
$$

 L_2 is fit to deuteron magnetic moment and L_1 is typically fit to cold *np* capture cross section (σ_{np}) Magnetic moments and polarizabilities also calculated to NLO by (Kirscher et al. (2017)) arXiv:1702.07268

Table: Values of magnetic moments and magnet radii for three-nucleon systems and σ_{np} to NLO compared to experiment. The first NLO row is for L_1 fit to σ_{np} , the second NLO row for L_1 fit to the ³H magnetic moment (μ_{3H}), and the final NLO row is L_1 fit to both σ_{np} and μ_{3H} .

Bound State Observables for 3N Systems

$(Vanasse (2016)+(2017))$. arXiv:1512.03805 + arXiv:1706.02665

Calculation of LO triton charge radius in unitary limit gives

$$
mE_{3B}\left\langle r_c^2\right\rangle=0.224...
$$

Using analytical techniques in

(Braaten and Hammer (2006)) cond-mat/0410417 it can be shown that $mE_{3B}\left\langle r_{c}^{2}\right\rangle =(1+ s_{0}^{2})/9=0.224...$ in the unitary limit.

Tritium β-decay

Half life $t_{1/2}$ of tritium given by

$$
\frac{(1+\delta_R)f_V}{\mathcal{K}/\mathcal{G}_V^2}t_{1/2}=\frac{1}{\left\langle \mathbf{F}\right\rangle^2+f_A/f_Vg_A^2\left\langle \mathbf{GT}\right\rangle^2}
$$

The Gamow-Teller matrix element is

$$
\frac{\langle \text{GT} \rangle_\text{Exp}}{\sqrt{3}} = 0.9551 \quad , \quad \frac{\langle \text{GT} \rangle_0}{\sqrt{3}} = 0.9807 \quad , \quad \frac{\langle \text{GT} \rangle_{0+1}}{\sqrt{3}} = 0.9935
$$

Fitting L_{1A} to the GT-matrix element gives

$$
L_{1A} = 3.46 \pm 1.19 \text{ fm}^3
$$

Compares well to lattice prediction

$$
L_{1A} = 3.9(0.1)(1.0)(0.3)(0.9) \text{ fm}^3
$$

The GT-matrix element is given by

$$
\langle GT \rangle \simeq \sqrt{3}(P_S + P_D/3 - P_{S'}/3)
$$

In Wigner-SU(4) limit $P_{\mathcal{S}'} = 0$ and $P_{\mathcal{S}} = 1$ hence $\langle \mathbf{GT} \rangle = \sqrt{3}$ and can also be seen by

$$
\langle \mathbf{GT} \rangle = \langle {}^{3}\text{He} \Vert \sum_{i} \sigma^{(i)} \tau_{+}^{(i)} \Vert {}^{3}\text{H} \rangle
$$

$$
= \langle {}^{3}\text{He} \Vert \sum_{i} \sigma^{(i)} \Vert {}^{3}\text{He} \rangle
$$

$$
= \langle {}^{3}\text{He} \Vert \sigma \Vert {}^{3}\text{He} \rangle
$$

$$
= \sqrt{3}
$$

Half life $t_{1/2}$ of tritium given by

$$
\frac{(1+\delta_R)f_V}{\mathcal{K}/\mathcal{G}_V^2}t_{1/2}=\frac{1}{\left\langle \mathbf{F}\right\rangle^2+f_A/f_Vg_A^2\left\langle \mathbf{GT}\right\rangle^2}
$$

In the isospin limit the Fermi matrix element reduces to

$$
\langle \mathbf{F} \rangle = \langle {}^3\text{He} \| \sum_i \tau_+^{(i)} \|^3 \text{H} \rangle
$$

$$
= \langle {}^3\text{He} \| \mathbf{1} \|^3 \text{He} \rangle
$$

$$
= 1
$$

Indeed, we find $\langle \mathbf{F} \rangle = 1$.

Wigner-limit: $a_0 = a_1$ and $r_0 = r_1$ Unitary limit: $a_0 = a_1 = \infty$ Wigner-breaking $\mathcal{O}(\delta)$: $\delta = \frac{1/a_1-1/a_0}{1/a_1+1/a_0}$ Wigner-breaking all orders:

Table: $3H/3$ He charge radius in unitary and Wigner-limit (Vanasse and Phillips (2016)) arXiv:1607.08585

$$
\mu_{\rm (^3H)} = \mu_{\rm p} = 2.79 \frac{e}{2M_N} \quad , \quad \mu_{\rm (^3He)} = \mu_{\rm n} = -1.91 \frac{e}{2M_N}
$$

Wigner-limit: $a_0 = a_1$ and $r_0 = r_1$ Unitary limit: $a_0 = a_1 = \infty$ Wigner-breaking $\mathcal{O}(\delta)$: $\delta = \frac{1/a_1-1/a_0}{1/a_1+1/a_0}$ Wigner-breaking all orders:

Table: $3H/3$ He charge radius in unitary and Wigner-limit (Vanasse and Phillips (2016)) arXiv:1607.08585

$$
\mu_{\rm (^3H)} = \mu_{\rm p} = 2.79 \frac{e}{2M_N} \quad , \quad \mu_{\rm (^3He)} = \mu_{\rm n} = -1.91 \frac{e}{2M_N}
$$

Wigner-limit: $a_0 = a_1$ and $r_0 = r_1$ Unitary limit: $a_0 = a_1 = \infty$ Wigner-breaking $\mathcal{O}(\delta)$: $\delta = \frac{1/a_1-1/a_0}{1/a_1+1/a_0}$ Wigner-breaking all orders:

Table: $3H/3$ He charge radius in unitary and Wigner-limit (Vanasse and Phillips (2016)) arXiv:1607.08585

$$
\mu_{\text{(3H)}} = \mu_P = 2.79 \frac{e}{2M_N}
$$
, $\mu_{\text{(3He)}} = \mu_n = -1.91 \frac{e}{2M_N}$

Wigner-limit: $a_0 = a_1$ and $r_0 = r_1$ Unitary limit: $a_0 = a_1 = \infty$ Wigner-breaking $\mathcal{O}(\delta)$: $\delta = \frac{1/a_1 - 1/a_0}{1/a_1 + 1/a_0}$ Wigner-breaking all orders:

Table: $3H/3$ He charge radius in unitary and Wigner-limit (Vanasse and Phillips (2016)) arXiv:1607.08585

$$
\mu_{\rm (^3H)} = \mu_{\rm p} = 2.79 \frac{e}{2M_N} \quad , \quad \mu_{\rm (^3He)} = \mu_{\rm n} = -1.91 \frac{e}{2M_N}
$$

Wigner-limit: $a_0 = a_1$ and $r_0 = r_1$ Unitary limit: $a_0 = a_1 = \infty$ Wigner-breaking $\mathcal{O}(\delta)$: $\delta = \frac{1/a_1-1/a_0}{1/a_1+1/a_0}$ Wigner-breaking all orders:

Table: $3H/3$ He charge radius in unitary and Wigner-limit (Vanasse and Phillips (2016)) arXiv:1607.08585

$$
\mu_{\text{(3H)}} = \mu_P = 2.79 \frac{e}{2M_N}
$$
, $\mu_{\text{(3He)}} = \mu_n = -1.91 \frac{e}{2M_N}$

Conclusions and Future directions

- \triangleright Charge radii of ³H and ³He reproduced well at NNLO in $EFT(\#)$.
- \triangleright Magnetic moments and radii reproduced within errors at NLO in EFT (π) .
- \blacktriangleright L_{1A} prediction agrees with LQCD prediction. Better prediction for L_{1A} will further constrain EFT($\#$) prediction for pp fusion.
- \triangleright Wigner-symmetry gives good expansion for charge radii and is interesting limit for three-nucleon magnetic moments and GT-matrix element. Results should be used as benchmark.
- \triangleright Reproduce analytical results in unitary limit for charge radii. Should be used as benchmark for all such calculations.