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Recipe for EFT(/π)

I For momenta p < mπ pions can be integrated out as degrees
of freedom and only nucleons and external currents are left.

I Write down all possible terms of nucleons and external
currents that respect symmetries (rotational, isospin).

I Develop a power counting to organize terms by their relative
importance.

I Organized by counting powers of momentum.
I Ensure order-by-order results are renormalization group

invariant (converge to finite values for Λ→∞).
I Check that various sets of observables converge as expected.

I Calculate respective observables up to a given order in the
power counting.
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Two- and Three-Body Inputs of EFT(/π)

Two-body inputs for EFT(/π):

I LO scattering lengths in a1 (3S1) and a0 (1S0)
non-perturbative

I NLO range corrections r1 and r0 perturbative

I N2LO SD-mixing term perturbative

Three-body inputs for EFT(/π):

I LO three-body force H0 fit to doublet S-wave nd scattering
length non-perturbative (Bedaque et al.) nucl-th/9906032

I NNLO three-body energy dependent three-body force H2 fit
to triton binding energy perturbative

Total of 6 NNLO parameters, ignoring SD-mixing.
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The LO dressed deuteron propagator is given by a bubble sum
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3S1(S−matrix)

mπ

iγt

Re[p]

(γt ≈ 45MeV)

(Z -parametrization) At
LO coefficients are fit to
reproduce the deuteron
pole and at NLO to
reproduce the residue
about the deuteron pole
(Phillips et al. (2000))
nucl-th/9908054.



LO Triton Vertex function

Triton vertex function given by infinite sum of diagrams at LO

Infinite sum is represented by integral equation that is solved
numerically
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NLO Triton Vertex function

NLO triton vertex function given by sum of diagrams
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1

where

Can also be solved by set of integral equations
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1
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LO Three-Nucleon Propagator

Defining

Σ0

.

The dressed three-nucleon propagator is given by the sum of
diagrams

Σ0 Σ0Σ0

which yields

i∆3(E ) =
i

Ω
− i

Ω
HLOΣ0(E )

i

Ω
+ · · ·

=
i

Ω

1

1− HLOΣ0(E )
,
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Higher-Order Three-Nucleon Propagator

Defining the functions

Σ1 1 1

Σ2 2 2

The NNLO three-nucleon propagator is

(NNLO)

(NLO)

Σ0HNLOΣ1

HNLOΣ2 Σ0HNNLO

2HNLOΣ1 Σ1 Σ0 Σ1

h2Σ0 Σ0(HNLO)2

Σ1
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Properly Renormalized Vertex Function

I Three-body forces are fit to ensure triton propagator has pole
at triton binding energy.

I Three-nucleon wavefunction renormalization given by the
residue of the three-nucleon propagator about the pole.

I LO three-nucleon wavefunction renormalization is

ZLO
ψ =

π

Σ′0(B)
.

I NNLO three-body force h2 fit to triton binding energy and
NNLO correction to H0 fit to doublet S-wave nd scattering
length.

I Total of 2 three-body inputs at NNLO.

Σ0



Three-Nucleon “generic” Form Factor
Three-nucleon LO “generic” form factor given by the three
diagrams

(a) (b) (c)

NLO “generic” form factor

(a) (b) (c)

1 1 1

(d) (e)



Form Factor Couplings

Generic form factor can be expanded as

F (Q2) = a

(
1− 1

6

〈
r2
〉
Q2 + · · ·

)
The couplings for the form factors of interest are given by

Charge Magnetic Axial

1B LO −eN̂†N̂Â0 N̂†(κ0 + τ3κ1)σ · BN̂ gA√
2
N̂†σiτ+N̂Â+

i

2B NLO ec0t t̂
†
i t̂i Â0 e L1

2 t̂
j†ŝ3Bj − e L2

2 iε
ijk t̂†i t̂jBk l1,Aŝ

†
−t̂i Â

−
i

a Z µ 〈GT〉
Table: List of couplings for form factors of interest and their physical
values at Q2 = 0.
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LO Form Factor

The LO form factor for Q2 = 0 is

F0(0) = 2πMN

(
Γ̃0(q)

)T
⊗

π2 δ(q − `)
q2
√

3
4q

2 −MNB

(
c11 + a11 c12

c21 c22 + a22

)

+
1

q2`2 − (q2 + `2 −MNB)2

(
b11 − 2a11 b12 + 3(a11 + a22)

b21 + 3(a11 + a22) b22 − 2a22

)}
⊗ Γ̃0(`),

The coefficients for various form factors are given by

Form factor a11 a22 b11 b12 b21 b22 c11 c12 c21 c22
F

3H
C (Q2) 0 2

3 -1 1 1 1
3 1 0 0 1

3

F
3He
C (Q2) 1 1

3 0 2 2 - 43 1 0 0 5
3

FGT
W (Q2) - 13 - 13

5
3

1
3

1
3

5
3 0 2

3
2
3 0

FF
W (Q2) 1 - 13 1 1 1 - 53 0 0 0 4

3

Table: Values of coefficients for the LO 3H and 3He axial and charge
form factors.
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NLO Form Factor

NLO correction to “generic” form factor at Q2 = 0

F1(0) = 2πMN

(
Γ̃1(q)

)T
⊗

π2 δ(q − `)
q2
√

3
4q

2 −MNB0

(
c11 + a11 c12

c21 c22 + a22

)

+
1

q2`2 − (q2 + `2 −MNB0)2

(
b11 − 2a11 b12 + 3(a11 + a22)

b21 + 3(a11 + a22) b22 − 2a22

)}
⊗ Γ̃0(`)

+ 2πMN

(
Γ̃0(q)

)T
⊗

π2 δ(q − `)
q2
√

3
4q

2 −MNB0

(
c11 + a11 c12

c21 c22 + a22

)

+
1

q2`2 − (q2 + `2 −MNB0)2

(
b11 − 2a11 b12 + 3(a11 + a22)

b21 + 3(a11 + a22) b22 − 2a22

)}
⊗ Γ̃1(`)

− 4πMN

(
Γ̃0(q)

)T
⊗
{
π

2

δ(q − `)
q2

(
1
2ρta11 + d11 d12

d21
1
2ρsa22 + d22

)}
⊗ Γ̃0(`),
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NLO Form Factor (cont.)

Form factor d11 d12 d21 d22
F

3H
C (Q2) 1

2ρt 0 0 1
3
1
2ρs

F
3He
C (Q2) 1

2ρt 0 0 5
3
1
2ρs

F
3H
M (Q2) −2

3L2
1
3L1

1
3L1 0

F
3He
M (Q2) −2

3L2 −1
3L1 −1

3L1 0

FGT
W (Q2) 0 1

3 l1,A
1
3 l1,A 0

Table: Values of coefficients for the NLO corrections to (d)-type
diagrams for the 3H and 3He magnetic, charge, and axial form factors.
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Radii

Generic form factor given by

F (Q2) = a

(
1− 1

6

〈
r2
〉
Q2 + · · ·

)
Calculating only Q2 contribution for diagram-(a) gives

1

2

∂2

∂Q2
F
(a)
n (Q2)

∣∣∣
Q2=0

= ZLO
ψ

i+j≤n∑
i ,j=0

{
G̃

T

i (p)⊗An−i−j(p, k)⊗ G̃j(k)

+2G̃
T

i (p)⊗An−i (p)δj0 +Anδi0δj0

}
,

Jared Vanasse Tritium β decay in pionless EFT



Triton Charge Radius

LO EFT(/π) rC = 2.1± .6 fm (Platter and Hammer (2005)) nucl-th/0509045

NLO EFT(/π) rC = 1.6± .2 fm (Kirscher et al. (2010)) arXiv:0903.5538

NNLO EFT(/π) rC = 1.62± .03 fm (Vanasse (2016)) arXiv:1512.03805
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The iso-scalar and iso-vector combination of magnetic moments are

µs =
1

2
(µ3He + µ3H) , µv =

1

2
(µ3He − µ3H) ,

µs only depends on κ0 and L2, while µv only depends on κ1 and
L1 at NLO.

µs µv L1 fit

LO 0.440(152) -2.31(78) N/A
NLO 0.421(50) -2.20(26) σnp
NLO 0.421(50) -2.56(31) µ3H

NLO 0.421(50) -2.50(30) σnp and µ3H

Exp 0.426 -2.55 N/A

Table: Table of three-nucleon iso-scalar and iso-vector magnetic
moments compared to experiment. The different NLO rows are different
fits for L1 and are organized the same as the previous table.
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NLO two-body magnetic currents given by

Lmag
2 =

(
e
L1
2
t̂ j†ŝ3Bj + H.c

)
− e

L2
2
iεijk t̂†i t̂jBk .

L2 is fit to deuteron magnetic moment and L1 is typically fit to
cold np capture cross section (σnp)
Magnetic moments and polarizabilities also calculated to NLO by
(Kirscher et al. (2017)) arXiv:1702.07268

µ3H µ3He r
3H
M fm r

3He
M fm σnp mb

LO 2.75(95) -1.87(73) 1.40(24) 1.49(26) 325.2± 225.6
NLO 2.62(31) -1.78(33) 1.83(11) 1.92(11) 334.2± 79.7
NLO 2.98(36) -2.14(26) 1.77(11) 1.83(11) 370.47± 88.4
NLO 2.92(35) -2.08(25) 1.78(11) 1.85(11) 364.5± 87.0

Exp 2.979 -2.127 1.84(18) 1.97(15) 334.2(5)

Table: Values of magnetic moments and magnet radii for three-nucleon
systems and σnp to NLO compared to experiment. The first NLO row is
for L1 fit to σnp, the second NLO row for L1 fit to the 3H magnetic
moment (µ3H), and the final NLO row is L1 fit to both σnp and µ3H.
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Bound State Observables for 3N Systems

(Vanasse (2016)+(2017)). arXiv:1512.03805 + arXiv:1706.02665

Observable LO NLO NNLO Exp.
3H: rC [fm] 1.14(19) 1.59(8) 1.62(3) 1.5978(40)
3He: rC [fm] 1.26(21) 1.72(8) 1.74(3) 1.7753(54)
3H: rm [fm] 1.40(24) 1.78(11) – 1.840(181)
3He: rm [fm] 1.49(26) 1.85(11) – 1.965(153)
3H: µm [µN ] 2.75(92) 2.92(35) – 2.98
3He: µm [µN ] -1.87(73) -2.08(25) – -2.13

Calculation of LO triton charge radius in unitary limit gives

mE3B

〈
r2c
〉

= 0.224...

Using analytical techniques in
(Braaten and Hammer (2006)) cond-mat/0410417 it can be shown
that mE3B

〈
r2c
〉

= (1 + s20 )/9 = 0.224... in the unitary limit.



Tritium β-decay

Half life t1/2 of tritium given by

(1 + δR)fV
K/G 2

V

t1/2 =
1

〈F〉2 + fA/fV g
2
A 〈GT〉2

The Gamow-Teller matrix element is

〈GT〉Exp√
3

= 0.9551 ,
〈GT〉0√

3
= 0.9807 ,

〈GT〉0+1√
3

= 0.9935

Fitting L1A to the GT-matrix element gives

L1A = 3.46± 1.19 fm3

Compares well to lattice prediction

L1A = 3.9(0.1)(1.0)(0.3)(0.9) fm3
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Gamow-Teller and Wigner-symmetry

The GT-matrix element is given by

〈GT〉 '
√

3(PS + PD/3− PS ′/3)

In Wigner-SU(4) limit PS ′ = 0 and PS = 1 hence 〈GT〉 =
√

3 and
can also be seen by

〈GT〉 =
〈
3He

∣∣∣∣∑
i

σ(i)τ
(i)
+

∣∣∣∣3H〉
=
〈
3He

∣∣∣∣∑
i

σ(i)
∣∣∣∣3He〉

=
〈
3He

∣∣∣∣σ ∣∣∣∣3He〉
=
√

3

Jared Vanasse Tritium β decay in pionless EFT



Fermi matrix element

Half life t1/2 of tritium given by

(1 + δR)fV
K/G 2

V

t1/2 =
1

〈F〉2 + fA/fV g
2
A 〈GT〉2

In the isospin limit the Fermi matrix element reduces to

〈F〉 =
〈
3He

∣∣∣∣∑
i

τ
(i)
+

∣∣∣∣3H〉
=
〈
3He

∣∣∣∣1 ∣∣∣∣3He〉
= 1

Indeed, we find 〈F〉 = 1.
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Consequences of Wigner-symmetry and Unitarity

Wigner-limit: a0 = a1 and r0 = r1
Unitary limit: a0 = a1 =∞
Wigner-breaking O(δ): δ = 1/a1−1/a0

1/a1+1/a0
Wigner-breaking all orders:

Unitary Wigner O(δ) δ all orders

LO EFT(/π) 1.10 1.22 1.08/1.19 1.14/1.26

O(r) 1.42 1.66 1.58/1.70 1.59/1.72

Experiment 1.5978(40)/1.775(5)

Table: 3H/3He charge radius in unitary and Wigner-limit (Vanasse and
Phillips (2016)) arXiv:1607.08585

In Wigner-limit it can be shown both analytically and numerically

µ(3H) = µp = 2.79
e

2MN
, µ(3He) = µn = −1.91

e

2MN
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Conclusions and Future directions

I Charge radii of 3H and 3He reproduced well at NNLO in
EFT(/π).

I Magnetic moments and radii reproduced within errors at NLO
in EFT(/π).

I L1A prediction agrees with LQCD prediction. Better prediction
for L1A will further constrain EFT(/π) prediction for pp fusion.

I Wigner-symmetry gives good expansion for charge radii and is
interesting limit for three-nucleon magnetic moments and
GT-matrix element. Results should be used as benchmark.

I Reproduce analytical results in unitary limit for charge radii.
Should be used as benchmark for all such calculations.


