

Canada's national laboratory for particle and nuclear physics and accelerator-based science

Neutrinoless Double Beta Decay with the Valence Space IMSRG

Ragnar Stroberg TRIUMF

Neutrinoless Double Beta Decay INT Program INT-17-2a Seattle, Washington June 20, 2017

Outline

- 1. Arguments for a valence space approach
- 2. Valence space IMSRG
- 3. Consistent evolution of operators
- 4. First $0\nu\beta\beta$ matrix elements and outlook

In collaboration with: A. Calci, J. Holt, P. Navrátil, C. Payne, S. Bogner, H. Hergert, N. Parzuchowski, K. Hebeler, R. Roth, A. Schwenk, J. Simonis, C. Stumpf, G. Hagen, T. Morris, and J. Engel

	DFT	GCM	RPA	IBM	SM	CC	MR-IMSRG	NCSM	QMC
χ_{EFT}	×	?	×	×	~	~	~	~	~
p-shell	×	×	×	×	~	~	✓*	~	~
⁴⁸ Ca	~	~	~	~	~	~	~	?	?
⁷⁶ Ge	~	~	~	~	~	×	?	×	×
82 Se	~	~	~	~	~	×	?	×	×
⁹⁶ Zr	~	~	~	~	~	×	?	×	×
^{100}Mo	~	~	~	~	?	×	?	×	×
^{116}Cd	~	~	~	~	?	×	?	×	×
124 Sn	~	~	~	~	~	×	?	×	×
¹³⁰ Te	~	~	~	~	~	×	?	×	×
^{136}Xe	~	~	~	~	~	×	?	×	×
^{150}Nd	~	~	~	~	×	×	?	×	×

- Most $0\nu\beta\beta$ candidates are accessible
- Compatible with χ_{EFT} interactions \Rightarrow consistent $0\nu\beta\beta$ operator (w/SRCs)
- Applicable in light systems \Rightarrow benchmark with exact NCSM/QMC results
- Pairing/deformation/shell effects are incorporated
- Many other observables: energies, radii, single β decay, E0, EM moments/transitions
- Quantified uncerainties?

Shell model / valence space approach

Magnus IMSRG (Canonical transformation)

Glazek and Wilson 1994, Wegner 1994, Bogner, Furnstahl, and Perry 2007, Tsukiyama, Bogner, and Schwenk 2011; Tsukiyama, Bogner, and Schwenk 2012, Hergert et al. 2013, Bogner et al. 2014, Morris, Parzuchowski, and Bogner 2015...

Many-body forces

$H + [\Omega, H] + \frac{1}{2!} [\Omega, [\Omega, H]] + \frac{1}{3!} [\Omega, [\Omega, [\Omega, H]]] + \dots$

Tsukiyama, Bogner, and Schwenk 2011, Bogner et al. 2014

What reference should be used when decoupling a valence space?

(i.e. what is the "medium"?)

Obvious choice: the inert core, e.g. ¹⁶O.

Somà et al. PRC (2013), Cipollone et al. PRC (2015), Jansen et al. PRL (2014), Roth et al. PRL (2012), Hergert et al. PRL (2013), Bogner et al. PRL (2014)

Ensemble normal ordering

SRS(2015), SRS(2016)

Simonis et al. (2017)

Simonis et al. (2017)

Consistently evolved operators

Hamiltonian:

$$\tilde{H} = UHU^{\dagger} = e^{\Omega}He^{-\Omega}$$
$$= H + [\Omega, H] + \frac{1}{2!}[\Omega, [\Omega, H]] + \dots$$

Operator with tensor rank λ :

$$\tilde{\mathcal{O}}^{\lambda} = U\mathcal{O}^{\lambda}U^{\dagger} = e^{\Omega}\mathcal{O}^{\lambda}e^{-\Omega}$$
$$= \mathcal{O}^{\lambda} + [\Omega, \mathcal{O}^{\lambda}] + \frac{1}{2!}[\Omega, [\Omega, \mathcal{O}^{\lambda}]] + \dots$$

Consistently evolved operators: Benchmark with NCSM

Parzuchowski et. al (2017)

Consistently evolved operators: Benchmark with NCSM

Parzuchowski et. al (2017)

Ragnar Stroberg (TRIUMF)

Consistently evolved operators: weak E2 strength

- Results converged w.r.t e_{max} , $\hbar\omega$
- Underpredicts experiment by 5-10 \times
- NO2B approximation?

Parzuchowski et. al (2017)

-20

12 16 20 24

 $\hbar\omega$ (MeV)

 $\hbar\omega$ (MeV)

24 28

28 12

16 20

Missing E2 strength

Toy problem: ¹⁴C in p-sd shell $Od_{3/2}$ $Od_{3/2}$ $Od_$

- Diagonalize with various truncations
- Compare with results of CC & IMSRG

Changing the valence space changes the results! Can't blame normal-ordering reference this time...

CC results from Gaute Hagen.

Ragnar Stroberg (TRIUMF)

Changing the valence space changes the results! Can't blame normal-ordering reference this time...

CC results from Gaute Hagen.

Ragnar Stroberg (TRIUMF)

Work done by Charlie Payne (UBC M.Sc. student)[†]

C.f. lwata et al. 2016 full sdpf: $M_F \rightarrow -0.3$, $M_{GT} \rightarrow 1.0$

† With help from Jon Engel

- In VS-IMSRG, bra and ket are expressed in the same frame.
- If all terms up to A-body are kept, VS-IMSRG is exact.
- But they're not kept. Normal ordering improves IMSRG(2) approximation.
- The *only* source of error is missing 3-,4-... body terms.
- This doesn't imply that this error is small or easy to estimate. .

 $M_{\beta\beta}$

$$U\mathcal{O}U^{\dagger} = e^{\Omega}\mathcal{O}e^{-\Omega} = \mathcal{O} + [\Omega, \mathcal{O}] + \frac{1}{2!}[\Omega, [\Omega, \mathcal{O}]] + \dots$$

Valence space	<u>Multi-reference</u>
IMSRG	<u>IMSRG</u>
76 GeV – U^{\dagger} 176 GeV	$ ^{76}Ge angle = U_{76Ce}^\dagger ^{76}Ge_{ref} angle$

- In VS-IMSRG, bra and ket are expressed in the same frame.
- If all terms up to A-body are kept, VS-IMSRG is exact.
- But they're not kept. Normal ordering improves IMSRG(2) approximation.
- The only source of error is missing 3-,4-... body terms.
- This doesn't imply that this error is small or easy to estimate. .

Ragnar Stroberg (TRIUMF)

$$U\mathcal{O}U^{\dagger} = e^{\Omega}\mathcal{O}e^{-\Omega} = \mathcal{O} + [\Omega, \mathcal{O}] + \frac{1}{2!}[\Omega, [\Omega, \mathcal{O}]] + \dots$$

Valence space	<u>Multi-reference</u>
IMSRG	<u>IMSRG</u>
$^{76}\text{Ge} angle = U_{vs}^{\dagger} ^{76}\text{Ge}_{vs} angle$	$ ^{76}Ge angle = U^\dagger_{76}{}_{Ge} ^{76}Ge_{ref} angle$

- In VS-IMSRG, bra and ket are expressed in the same frame.
- If all terms up to A-body are kept, VS-IMSRG is exact.
- But they're not kept. Normal ordering improves IMSRG(2) approximation.
- The *only* source of error is missing 3-,4-... body terms.
- This doesn't imply that this error is small or easy to estimate.

Ragnar Stroberg (TRIUMF)

$$U\mathcal{O}U^{\dagger} = e^{\Omega}\mathcal{O}e^{-\Omega} = \mathcal{O} + [\Omega, \mathcal{O}] + \frac{1}{2!}[\Omega, [\Omega, \mathcal{O}]] + \dots$$

Valence space	<u>Multi-reference</u>
IMSRG	<u>IMSRG</u>
$^{76}\text{Ge} angle = U_{vs}^{\dagger} ^{76}\text{Ge}_{vs} angle$	$ ^{76}Ge angle = U^\dagger_{76}{}_{Ge} ^{76}Ge_{ref} angle$

- In VS-IMSRG, bra and ket are expressed in the same frame.
- If all terms up to A-body are kept, VS-IMSRG is exact.
- But they're not kept. Normal ordering improves IMSRG(2) approximation.
- The only source of error is missing 3-,4-... body terms.
- This doesn't imply that this error is small or easy to estimate...

$$U\mathcal{O}U^{\dagger} = e^{\Omega}\mathcal{O}e^{-\Omega} = \mathcal{O} + [\Omega, \mathcal{O}] + \frac{1}{2!}[\Omega, [\Omega, \mathcal{O}]] + \dots$$

Valence space	<u>Multi-reference</u>
IMSRG	IMSRG
$^{76}\text{Ge} angle = U_{ns}^{\dagger} ^{76}\text{Ge}_{ns} angle$	$ ^{76}Ge angle = U^\dagger_{76}{}_{Ge} ^{76}Ge_{ref} angle$

- In VS-IMSRG, bra and ket are expressed in the same frame.
- If all terms up to A-body are kept, VS-IMSRG is exact.
- But they're not kept. Normal ordering improves IMSRG(2) approximation.
- The only source of error is missing 3-,4-... body terms.

This doesn't imply that this error is small or easy to estimate..

$$U\mathcal{O}U^{\dagger} = e^{\Omega}\mathcal{O}e^{-\Omega} = \mathcal{O} + [\Omega, \mathcal{O}] + \frac{1}{2!}[\Omega, [\Omega, \mathcal{O}]] + \dots$$

Valence space	<u>Multi-reference</u>
IMSRG	<u>IMSRG</u>
$^{76}\text{Ge} angle = U_{ns}^{\dagger} ^{76}\text{Ge}_{ns} angle$	$ ^{76}Ge angle = U^\dagger_{76}{}_{Ge} ^{76}Ge_{ref} angle$

- In VS-IMSRG, bra and ket are expressed in the same frame.
- If all terms up to A-body are kept, VS-IMSRG is exact.
- But they're not kept. Normal ordering improves IMSRG(2) approximation.
- The *only* source of error is missing 3-,4-... body terms.
- This doesn't imply that this error is small or easy to estimate...

- Quantification of many-body uncertainty
 - Perturbative estimation of omitted 3,4...-body terms
 - Full IMSRG(3): Include 3-body terms throughout the calculation
 - Invariant trace?
- Heavy-mass frontier
 - Improve handling of 3N forces
- Decoupling arbitrary valence spaces
 - How does the choice of reference affect the IMSRG(2) approximation?
 - How does the choice of valence space affect the IMSRG(2) approximation?
 - Why do some valence spaces blow up during decoupling?
- Improved basis
 - Two-frequency oscillator basis for halo systems?
 - Explicit inclusion of collective modes
 - Other d.o.f. relevant for 0
 uetaeta decay?

- Quantification of many-body uncertainty
 - Perturbative estimation of omitted 3,4...-body terms
 - Full IMSRG(3): Include 3-body terms throughout the calculation
 - Invariant trace?
- Heavy-mass frontier
 - Improve handling of 3N forces
- Decoupling arbitrary valence spaces
 - How does the choice of reference affect the IMSRG(2) approximation?
 - How does the choice of valence space affect the IMSRG(2) approximation?
 - Why do some valence spaces blow up during decoupling?
- Improved basis
 - Two-frequency oscillator basis for halo systems?
 - Explicit inclusion of collective modes?
 - Other d.o.f. relevant for 0
 uetaeta decay?

- Quantification of many-body uncertainty
 - Perturbative estimation of omitted 3,4...-body terms
 - Full IMSRG(3): Include 3-body terms throughout the calculation
 - Invariant trace?
- Heavy-mass frontier
 - Improve handling of 3N forces
- Decoupling arbitrary valence spaces
 - How does the choice of reference affect the IMSRG(2) approximation?
 - How does the choice of valence space affect the IMSRG(2) approximation?
 - Why do some valence spaces blow up during decoupling?
- Improved basis
 - Two-frequency oscillator basis for halo systems?
 - Explicit inclusion of collective modes?
 - Other d.o.f. relevant for 0
 uetaeta decay?

- Quantification of many-body uncertainty
 - Perturbative estimation of omitted 3,4...-body terms
 - Full IMSRG(3): Include 3-body terms throughout the calculation
 - Invariant trace?
- Heavy-mass frontier
 - Improve handling of 3N forces
- Decoupling arbitrary valence spaces
 - How does the choice of reference affect the IMSRG(2) approximation?
 - How does the choice of valence space affect the IMSRG(2) approximation?
 - Why do some valence spaces blow up during decoupling?
- Improved basis
 - Two-frequency oscillator basis for halo systems?
 - Explicit inclusion of collective modes?
 - Other d.o.f. relevant for $0\nu\beta\beta$ decay?

Thank you

Collaborators:

CALC A. Calci, J. Holt, P. Navrátil, C. Payne, O. Drozdowski, D. Fullerton, C. Gwak, L. Kemmler, S. Leutheusser, D. Livermore SNSCL/MSU S. Bogner, H. Hergert, N. Parzuchowski

🖔 TU Darmstadt 🛛 K. Hebeler, R. Roth, A. Schwenk, J. Simonis, C. Stumpf

ORNL/UT G. Hagen, T. Morris

Backup slides

$$\eta_s = \frac{1}{2} \operatorname{atan} \left(\frac{2H_{qp}(s)}{H_{qq}(s) - H_{pp}(s)} \right) - h.c.$$

Q-space configuration lower in energy. $\Delta N=0 \rightarrow \mathbf{negative}~\mathbf{denominators}$

Spectroscopy of tin isotopes

Capturing valence 3N effects w/ NN machinery:

Navrátil et al. PRL (2007), SRS et al. PRL (2017)

- Convergence not possible without proper normal ordering reference
- Two competing effects
 - Missing 3N forces
 - Bad single particle basis
- ${\sim}1\%$ error due to additional decoupling

Picking out spherical excited states

- Definition $Tr(H) = \sum_{\alpha} \langle \Phi_{\alpha} | H | \Phi_{\alpha} \rangle$
- Trace is invariant under unitary transformations:

$$Tr(\tilde{H}) = Tr(UHU^{\dagger} + X_{err})$$

= $Tr(HU^{\dagger}U) + Tr(X_{err})$
= $Tr(H) + Tr(X_{err})$

- Normalized trace gives average eigenvalue $Tr(H)/Tr(\mathbb{1}) = \left<\epsilon\right>$
- Difference gives average error $\left<\tilde{\epsilon}\right>-\left<\epsilon\right>\equiv\left<\delta\right>$

The many-body trace can be computed cheaply from the second-quantized Hamiltonian:

$$\begin{split} \dot{E} &= E_0 + \frac{Z}{M} \sum_p h_{pp} + \frac{N}{M} \sum_n h_{nn} \\ &+ \frac{Z(Z-1)}{M(M-1)} \sum_{pp'} h_{pp'pp'} + \frac{N(N-1)}{M(M-1)} \sum_{nn'} h_{nn'nn'} \\ &+ \frac{NZ}{M^2} \sum_{pn} h_{pnpn} \end{split}$$

($M \equiv$ number of s.p. *m*-states in basis)

Invariant trace

4 He in the 0s0p shell

Ragnar Stroberg (TRIUMF)

 $0\nu\beta\beta$ with VS-IMSRG

June 20, 2017 42 / 27

⁴He in the 0s0p1s0d shell

Ragnar Stroberg (TRIUMF)

- Bogner, S. K., R. J. Furnstahl, and R. J. Perry (2007). "Similarity renormalization group for nucleon-nucleon interactions". In: *Phys. Rev. C* 75.6, p. 061001. ISSN: 0556-2813. DOI: 10.1103/PhysRevC.75.061001. URL: http://link.aps.org/doi/10.1103/PhysRevC.75.061001.
- Bogner, S. K. et al. (2014). "Nonperturbative shell-model interactions from the in-medium similarity renormalization group". In: Phys. Rev. Lett. 113.14, p. 142501. ISSN: 0031-9007. DOI: 10.1103/PhysRevLett.113.142501. URL: http://link.aps.org/doi/10.1103/PhysRevLett.113.142501.
- Glazek, Stanislaw D. and Kenneth G. Wilson (1994). "Perturbative renormalization group for Hamiltonians". In: Phys. Rev. D 49.8, pp. 4214–4218. ISSN: 0556-2821. DOI: 10.1103/PhysRevD.49.4214. URL: http: //journals.aps.org.ezproxy.library.ubc.ca/prd/abstract/10.1103/PhysRevD.49.4214http://link.aps.org/doi/10.1103/PhysRevD.49.4214.
- Hergert, H. et al. (2013). "In-medium similarity renormalization group with chiral two- plus three-nucleon interactions". In: Phys. Rev. C 87.3, p. 034307. ISSN: 0556-2813. DOI: 10.1103/PhysRevC.87.034307. URL: http://link.aps.org/doi/10.1103/PhysRevC.87.034307.
- Iwata, Y. et al. (2016). "Large-Scale Shell-Model Analysis of the Neutrinoless ββ Decay of 48Ca". In: Phys. Rev. Lett. 116.11, p. 112502. ISSN: 0031-9007. DOI: 10.1103/PhysRevLett.116.112502. URL: http://link.aps.org/doi/10.1103/PhysRevLett.116.112502.
- Morris, T. D., N. M. Parzuchowski, and S. K. Bogner (2015). "Magnus expansion and in-medium similarity renormalization group". In: Phys. Rev. C 92.3, p. 034331. ISSN: 0556-2813. DOI: 10.1103/PhysRevC.92.034331. URL: http://journals.aps.org.ezproxy.library.ubc.ca/prc/abstract/10.1103/PhysRevC.92.034331.
- Tsukiyama, K., S. K. Bogner, and A. Schwenk (2011). "In-Medium Similarity Renormalization Group For Nuclei". In: Phys. Rev. Lett. 106.22, p. 222502. ISSN: 0031-9007. DOI: 10.1103/PhysRevLett.106.222502. URL: http://link.aps.org/doi/10.1103/PhysRevLett.106.222502.
- (2012). "In-medium similarity renormalization group for open-shell nuclei". In: Phys. Rev. C 85.6, p. 061304. ISSN: 0556-2813. DOI: 10.1103/PhysRevC.85.061304. URL: http://link.aps.org/doi/10.1103/PhysRevC.85.061304.
- Wegner, Franz (1994). "Flow-equations for Hamiltonians". In: Ann. der Physic 3, pp. 77-91.