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FIG. 5. Top panel: Nuclear matrix elements (M0⌫) for
0⌫�� decay candidates as as a function of the mass number
A. All the plotted results are obtained with the assumption
that the axial coupling constant gA is unquenched and are
from di↵erent nuclear models: the shell model (SM) from the
Strasbourg-Madrid (black circles) [109], Tokyo (black circle
in 48Ca) [110], and Michigan groups (black bars) [111]; the
interacting boson model (IBM-2, green squares) [107]; dif-
ferent versions of the quasiparticle random-phase approxima-
tion (QRPA), obtained by the Tübingen (red bars) [112, 113],
Jyväskylä (orange times signs) [81], and Chapel Hill (magenta
crosses) [114] groups; and energy density functional theory
(EDF), relativistic (downside cyan triangles) [115, 116] and
non-relativistic (blue triangles) [117]. Error bars in the QRPA
indicate matrix elements obtained based on two realistic nu-
clear interactions, while shell model error bars indicate uncer-
tainties corresponding to di↵erent treatments of short range
correlations. Bottom panel: Associated 0⌫�� decay half-lives,
scaled by the square of the unknown parameter m�� .

too large [118–120]. The problems are usually “cured” by
reducing the strength of the spin-isospin Gamow-Teller
operator �⌧ , an adjustment that can be obtained by
using an e↵ective value of the axial coupling constant
(which multiplies this operator) rather than its “bare”
value gA ' 1.27. This phenomenological modification is
sometimes referred to as the “quenching” or “renormal-
ization” of gA. In Sec. IV we review proposed explana-
tions of the renormalization, none of which has yet been
shown to fully explain this e↵ect, and their consequences
for 0⌫�� decay matrix elements.

A. Shell Model

The nuclear shell model is a well-established many-
body method, routinely used to describe the properties
of medium-mass and heavy nuclei [118, 121, 122], includ-
ing candidates for ��-decay experiments. The model,
also called the “configuration interaction method” (par-
ticularly in quantum chemistry [123, 124]), is based on
the idea that the nucleons near the Fermi level are the
most important for low-energy nuclear properties, and
that all the correlations between these nucleons are rele-
vant. Thus, instead of solving the Schrödinger equation
for the full nuclear interaction in the complete many-
body Hilbert space, one restricts the dynamics to a lim-
ited configuration space (sometimes called the valence
space) containing only a subset of the system’s nucleons.
In the configuration space one uses an e↵ective nuclear
interaction, He↵, defined (ideally) so that the observables
of the full-space calculation are reproduced, e.g.

H |�ii = Ei |�ii ! He↵ |�̄ii = Ei |�̄ii . (17)

The states |�ii and |�̄ii are defined in the full space and
the configuration space, respectively, and have associated
energy Ei.
The configuration space is usually constructed by con-

sidering only a number of “active” nucleons, outside an
inert core (this is, some nucleons are frozen in the lowest-
energy orbitals and not included in the calculations), and
requiring them to occupy a limited set of single-particle
levels around the Fermi surface. Many-body states are
linear combinations of orthogonal Slater determinants
| ii (usually from a harmonic-oscillator basis) for nucle-
ons in those single-particle states,

|�̄ii =
X

j

cij | ji , (18)

with the cij determined by exact diagonalization of He↵

in the configuration space.
The shell model describes ground-state nuclear proper-

ties such as masses, separation energies, and charge radii
quite well. It also does a good job with low-lying ex-
citation spectra, or electromagnetic moments and tran-
sitions [118, 121, 122]. The wide variety of successes
over a broad range of isotopes reflects the shell model’s
ability to capture both single-particle excitations in the
spirit of the original simpler shell model [125, 126] (by in-
cluding orbitals around the Fermi surface) and collective
correlations (by diagonalizing He↵ exactly). The exact
diagonalization means that the shell model states |�̄ii
contain all correlations (isovector and isoscalar pairing,
quadrupole collectivity, etc.) that can be induced byHe↵.

This careful treatment of correlations, on the other
hand, restricts the range of shell model calculations to
relatively small configuration spaces, at present those
for which the Hilbert-space dimension is less than about
(1011) [127, 128]. For this reason most shell model cal-
culations of 0⌫�� decay have been performed in a single

➡ Different many-body methods 
provide different 0νββ  NMEs


➡ Where the differences come from?


✓ Correlations are not the same.

✓ Interactions are different.

✓ Valence spaces are different.

✓ Transition operator is 

(sometimes) different.

J. Menéndez, J. Engel 2016

NME: the problem
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• Leading lepton number violating process contributing to 0νββ decay

- Exchange of light Majorana neutrino.

- Exchange of heavy Majorana neutrino.

- Leptoquarks.

- Supersymmetric particles.

- … 


• Transition operator connecting initial and final states

- Relativistic/Non-relativistic.

- Nucleon size effects.

- Two-body weak currents.

- Form factors.

- Short-range correlations.

- Closure approximation.

- …


• Nuclear structure method (fully consistent or not with the operator) for 
calculating these NME.


- Correlations.

- Symmetry conservation.

- Valence space.

- …

NME: Starting points
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This is a general method based on the concept of configuration mixing. 
The wave function that describes the system in this framework can be 
expressed as:

| �i =
Z

f�(~q)|�(~q)id~q

! f�(~q) are found by minimizing the energy: 

                  is a set of (in general) non-orthonormal many-body wave 
functions that depends parametrically on the collective variables    , called 
generating coordinates.

! {|�(~q)}
~q

E [| �] =
h �|Ĥ| �i
h �| �i

Generator Coordinate Method
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The wave function that describes the system in this framework can be 
expressed as:

| �i =
Z

f�(~q)|�(~q)id~q

! f�(~q) are found by minimizing the energy: E [| �] =
h �|Ĥ| �i
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�E [| �i] = 0 )
Z

H(~q, ~q 0)f�(~q 0)d~q 0 = E�

Z
N (~q, ~q 0)f�(~q 0)d~q 0

Hill-Wheeler-Griffin (HWG) equations

Generator Coordinate Method
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This is a general method based on the concept of configuration mixing. 
The wave function that describes the system in this framework can be 
expressed as:

| �i =
Z

f�(~q)|�(~q)id~q

! f�(~q) are found by minimizing the energy: E [| �] =
h �|Ĥ| �i
h �| �i

�E [| �i] = 0 )
Z

H(~q, ~q 0)f�(~q 0)d~q 0 = E�

Z
N (~q, ~q 0)f�(~q 0)d~q 0

Hill-Wheeler-Griffin (HWG) equations

H(~q, ~q 0) = h�(~q)|Ĥ|�(~q 0)i
N (~q, ~q 0) = h�(~q)|�(~q 0)i norm overlap matrix

hamiltonian overlap matrix

Generator Coordinate Method
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�E [| �i] = 0 )
Z

H(~q, ~q 0)f�(~q 0)d~q 0 = E�

Z
N (~q, ~q 0)f�(~q 0)d~q 0How to solve the  

HGW equations

Generator Coordinate Method
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�E [| �i] = 0 )
Z

H(~q, ~q 0)f�(~q 0)d~q 0 = E�

Z
N (~q, ~q 0)f�(~q 0)d~q 0How to solve the  

HGW equations

1. Find the eigenvalues and eigenvectors of the norm overlap matrix:Z
N (~q, ~q 0)u⇤(~q

0)d~q 0 = n⇤u⇤(~q)

Generator Coordinate Method
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2. From the eigenvalues and eigenvectors of the norm overlap matrix, build an orthonormal basis 
removing the linear dependencies (natural basis):

|⇤i = 1
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n⇤

Z
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Generator Coordinate Method



1. Introduction 2. EDF applications 3. GCM vs Shell Model 4. Summary and open questions

Tomás R. Rodríguez0νββ decay nuclear matrix elements with the GCMINT double-beta decay workshop

�E [| �i] = 0 )
Z

H(~q, ~q 0)f�(~q 0)d~q 0 = E�

Z
N (~q, ~q 0)f�(~q 0)d~q 0How to solve the  

HGW equations

1. Find the eigenvalues and eigenvectors of the norm overlap matrix:Z
N (~q, ~q 0)u⇤(~q

0)d~q 0 = n⇤u⇤(~q)

2. From the eigenvalues and eigenvectors of the norm overlap matrix, build an orthonormal basis 
removing the linear dependencies (natural basis):

|⇤i = 1
p
n⇤

Z
u⇤(~q)|�(~q)id~q ; n⇤ > 0 h⇤|⇤0i = �⇤⇤0

3. Re-write the GCM wave functions and the HWG equation in the natural basis:

| �i =
X

⇤

g�⇤|⇤i =
Z

|�(~q)i
X

⇤

1
p
n⇤

g�⇤u⇤(~q)d~q

Generator Coordinate Method
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HGW equations are now 
regular eigenvalue problems

Generator Coordinate Method
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How to solve the  
HGW equations

)
X

⇤0

h⇤|Ĥ|⇤0ig�⇤0 = E�g�⇤

4. Hamiltonian (or any other operator    ) matrix elements in the natural basis:Ô

h⇤|Ô|⇤0i =
Z ✓

u⇤(~q)p
n⇤

◆⇤
h�(~q)|Ô|�(~q 0)i

✓
u⇤0(~q 0)
p
n⇤0

◆
d~qd~q 0

Generator Coordinate Method
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How to solve the  
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)
X

⇤0

h⇤|Ĥ|⇤0ig�⇤0 = E�g�⇤

matrix elements between 
different “deformations”

4. Hamiltonian (or any other operator    ) matrix elements in the natural basis:Ô

h⇤|Ô|⇤0i =
Z ✓

u⇤(~q)p
n⇤

◆⇤
h�(~q)|Ô|�(~q 0)i

✓
u⇤0(~q 0)
p
n⇤0

◆
d~qd~q 0

Generator Coordinate Method
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How to solve the  
HGW equations

)
X

⇤0

h⇤|Ĥ|⇤0ig�⇤0 = E�g�⇤

4. Hamiltonian (or any other operator    ) matrix elements in the natural basis:Ô

5. Hamiltonian (or any other operator    ) expectation values in the GCM states (and transitions):Ô

h �|Ô| �i =
X

⇤⇤0

g�⇤⇤ h⇤|Ô|⇤0ig�⇤0
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◆⇤
h�(~q)|Ô|�(~q 0)i

✓
u⇤0(~q 0)
p
n⇤0

◆
d~qd~q 0

6. Collective wave functions: Weight of the different     in the GCM wave function: ~q

F�(~q) =
X

⇤

g�⇤u⇤(~q)

Generator Coordinate Method
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How to solve the  
HGW equations

)
X

⇤0

h⇤|Ĥ|⇤0ig�⇤0 = E�g�⇤

7. Transition matrix elements in the natural basis:

8. Transition matrix elements between GCM states:

h⇤f |T̂ i!f |⇤ii =
Z  

u⇤f (~qf )p
n⇤f

!⇤

h�(~qf )|T̂ i!f |�(~qi)i
✓
u⇤i(~qi)p

n⇤i

◆
d~qfd~qi

h �f

f |T̂ i!f | �i
i i =

X

⇤f⇤i

g
�f⇤
⇤f

h⇤f |T̂ i!f |⇤iig�i
⇤i

Generator Coordinate Method
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- GCM ground states are variational approaches to the exact ground state 
wave functions. 

- The quality of the approximation depends on the sensitivity of the collective 
coordinates to the nuclear Hamiltonian and/or transition operators. 

- Very intuitive physical insight about the role of collective degrees of freedom 
on 0νββ NMEs.

- Non-relativistic Gogny and Relativistic energy density functionals (EDF). 

- SO(8) and Pairing (isoscalar and isovector) plus quadrupole Hamiltonians. 

- Shell Model interactions in reduced valence spaces (in progress).

REMARKS

IMPLEMENTATIONS

Generator Coordinate Method
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  Effective nucleon-nucleon interaction: Gogny force (D1S/D1M)

V (1, 2) =
2�

i=1

e�(⌥r1�⌥r2)
2/µ2

i (Wi + BiP
⇥ �HiP

⇤ �MiP
⇥P ⇤ )

+iW0(⇥1 + ⇥2)⌥k ⇥ �(⌥r1 � ⌥r2)⌥k

+t3(1 + x0P
⇥)�(�r1 � �r2)⇥� ((�r1 + �r2)/2)

+VCoulomb(⌅r1,⌅r2)

Gogny interaction
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  Effective nucleon-nucleon interaction: Gogny force (D1S/D1M)

V (1, 2) =
2�

i=1
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+VCoulomb(⌅r1,⌅r2) 2-body potential

Density dependent ter
m

  Other alternatives: Skyrme, relativistic Lagrangians, BCPM, …

Gogny interaction
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 (M. Anguiano et al., Nucl. Phys. A 683, 227 (2001))• Initial intrinsic states: PN-VAP

EDF axial

ENZ [|�(~q)i] = h�(~q)|ĤP̂N P̂Z |�(~q)i
h�(~q)|P̂N P̂Z |�(~q)i

� ~�~q

⇣
h�(~q)| ~̂Q|�(~q)i � ~q

⌘
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Good agreement between experimental and theoretical Q-values, radii and total strength (quenched)

440 T.R. Rodríguez, G. Martinez-Pinedo / Progress in Particle and Nuclear Physics 66 (2011) 436–440

Table 1
Masses, rms charge radii and total Gamow–Teller strengths S�(+) for mother (granddaughter) calculated with Gogny D1S GCM+PNAMP functional
compared to experimental values. Theoretical values for S+/� are quenched by a factor (0.74)2.

Isotope BEth (MeV) BEexp (MeV) [27] Rth (fm) Rexp(fm) [28] Stheo�/+ Sexp�/+
48Ca 420.623 415.991 3.465 3.473 13.55 (14.4 ± 2.2 [29])
48Ti 423.597 418.699 3.557 3.591 1.99 (1.9 ± 0.5 [29])
76Ge 664.204 661.598 4.024 4.081 20.97 (19.89 [30])
76Se 664.949 662.072 4.074 4.139 1.49 (1.45

± 0.07 [31])
82Se 716.794 712.842 4.100 4.139 23.56 (21.91 [30])
82Kr 717.859 714.273 4.130 4.192 1.24
96Zr 829.432 828.995 4.298 4.349 27.63
96Mo 833.793 830.778 4.319 4.384 2.56 (0.29

± 0.08 [32])
100Mo 861.526 860.457 4.372 4.445 27.87 (26.69 [30])
100Ru 864.875 861.927 4.388 4.453 2.48
116Cd 988.469 987.440 4.556 4.628 34.30 (32.70 [30])
116Sn 991.079 988.684 4.567 4.626 2.61 (1.09+0.13

�0.57 [33])
124Sn 1051.668 1049.96 4.622 4.675 40.65
124Te 1051.562 1050.69 4.664 4.717 1.63
128Te 1082.257 1081.44 4.686 4.735 40.48 (40.08 [30])
128Xe 1080.996 1080.74 4.723 4.775 1.45
130Te 1096.627 1095.94 4.695 4.742 43.57 (45.90 [30])
130Xe 1097.245 1096.91 4.732 4.783 1.19
136Xe 1143.333 1141.88 4.756 4.799 46.71
136Ba 1143.202 1142.77 4.786 4.832 0.96
150Nd 1234.512 1237.45 5.034 5.041 50.32
150Sm 1235.936 1239.25 5.041 5.040 1.45
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FIG. 2: (Color online) Low-energy spectra of 150Nd and
150Sm. The numbers on arrows are E2 (solid line) and E3
(dashed line) transition strengths, in Weisskopf units. Data
are from Ref. [64].

FIG. 3: (Color online) Excitation energies of parity doublet
states in 150Nd (a) and 150Sm (b). The available data (!)
are compared with the GCM results (") and the results pro-
duced by the single-configuration of J = 0 energy minimum
(△) and by the configuration with deformation parameters de-
termined by measured transition strengths B(E2 : 0+1 → 2+1 )
and B(E3 : 0+1 → 3−1 ) (▽) [64].

and 150Sm. The octupole degree of freedom reduces the
E2 transition strengths between positive-parity states
significantly in both nuclei. It worsens the agreement in
150Nd but improves it in 150Sm. Our GCM describes the
negative-parity band built on the 1− state rather well, de-
spite overestimating the transition strengthB(E3 : 0+1 →
3−1 ) in

150Nd and underestimating it in 150Sm.
Figure 3 compares the GCM excitation energies with

those of two single-configuration calculations, one based
on the J = 0 energy minimum and the other on a state

FIG. 4: (Color online) Normalized nuclear matrix elements
M̃0ν(qI , qF ) for the neutrinoless double-beta decay of 150Nd,
where {q} ≡ {β2,β3}. Panel (a) plots M̃0ν versus the initial
and final octupole deformation parameters, with the quadru-
ple deformation parameters βI

2 and βF
2 fixed at 0.2 Panel (b)

plots the same quantity with the restriction βI
3 = βF

3 .

with deformation parameters determined by the experi-
mental B(E2 : 0+1 → 2+1 ) and B(E3 : 0+1 → 3−1 ) values
[64]. The GCM results are in much better agreement with
the data than are the single-configuration results. As spin
increases, however, the GCM increasingly over-predicts
the data, indicating that some important correlations
are missing. Time-reversal-symmetry-breaking reference
states, produced in a cranking calculation, would likely
lower the energies of high-spin states [65].
Figure 4 displays the normalized 0νββ matrix el-

ement between reference states, which we denote by
M̃0ν(qI , qF ):

M̃0ν(qI , qF )

≡
⟨qF |Ô0ν P̂ J=0P̂NI P̂ZIP π=+|qI⟩

√

N
0+
qI ,qIN

0+
qF ,qF

, (14)

with the norms N for each nucleus defined in Eq. (9).
The function M̃0ν(qI , qF ) represents the contribution of
particular initial and final configurations to the full ma-
trix element. Panel (a) of Fig. 4 plots the function in
the βI

3 ,β
F
3 plane, with βI

2 and βF
2 fixed at 0.2, the value

that minimizes the energy in both nuclei. The figure
shows that unequal octupole deformation in the two nu-
clei causes a rapid drop in the 0νββ matrix element.
Panel (b) of Fig. 4 extracts the behavior of M̃0ν from
the diagonal of panel (a), where the octupole deforma-
tion is the same size in both nuclei. Increasing deforma-
tion causes even this diagonal contribution to drop, from
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C. Nuclear matrix element for 0νββ decay

The 0νββ decay nuclear matrix element is

M0ν =
4πR

g2A(0)

∫ ∫

d3x1d
3x2

∫

d3q

(2π)3
eiq·(x1−x2)

q

×
∑

m

⟨0+F |J
†
µ (x1)|m⟩⟨m|J µ†(x2)|0

+
I ⟩

q + Em − (EI + EF )/2
, (10)

where J †
µ is the charge-changing nuclear current operator

[61] and q is the momentum transferred from leptons to
nucleons. The nuclear radius R = 1.2A1/3 makes the ma-
trix element dimensionless. In the closure approximation
and with the GCM state vectors from Eq. (7) as ground
states |0+I/F ⟩ of the initial and final nuclei, we obtain

M0ν =
∑

qI ,qF

f
0+
I

qI f
0+
F

qF ⟨qF |Ô
0ν P̂ J=0

00 P̂N P̂ZP̂ π=+|qI⟩ ,

(11)
with the transition operator given by

Ô0ν =
4πR

g2A(0)

∫

d3q

(2π)3

∫ ∫

d3x1d
3x2

eiq·(x1−x2)

q(q + Ed)

× [J †
µ (x1)J

µ†(x2)] , (12)

and Ed set to 1.12A1/2 ≃ 13.72 Mev [62].
The operator [J †

µ (x1)J µ†(x2)], when Fourier trans-
formed, contains the terms [46],

V V : g2V (q
2)

(

ψ̄γµτ−ψ
)(1) (

ψ̄γµτ−ψ
)(2)

(13)

AA : g2A(q
2)
(

ψ̄γµγ5τ−ψ
)(1) (

ψ̄γµγ5τ−ψ
)(2)

AP : 2gA(q
2)gP (q

2)
(

ψ̄γγ5τ−ψ
)(1) (

ψ̄qγ5τ−ψ
)(2)

PP : g2P (q
2)
(

ψ̄qγ5τ−ψ
)(1) (

ψ̄qγ5τ−ψ
)(2)

MM : g2M (q2)

(

ψ̄
σµi
2mN

qiτ−ψ

)(1) (

ψ̄
σµj

2mN
qjτ−ψ

)(2)

,

where τ− is the isospin lowering operator that changes
neutrons into protons, σµν = i

2 [γµ, γν ], and V,A, P,M
denote the vector, axial vector, pseudoscalar, and mag-
netic pieces of the one-nucleon current. Following Ref.
[63], we take the form factors gV (q2), gA(q2), gM (q2),

and gP (q2) to be V (q2) =
gV (0)

(1 + q2/Λ2
V )

2
, gA(q2) =

gA(0)

(1 + q2/Λ2
A)

2
, gP (q2) = gA(q2)

2mN

q2 +m2
π
(1 −

m2
π

Λ2
A

), and

gM (q2) = (µp − µn)gV (q2), with gV (0) = 1.0, gA(0) =
1.254, µp − µn = 3.70, Λ2

V = 0.710 (GeV)2, ΛA = 1.09
GeV, mN = 0.93827 GeV and mπ = 0.13957 GeV. For
the sake of simplicity, we neglect short-range correlations.
We include, alongside the generator coordinates from

Ref. [46], the octupole deformation parameter β3. The
parity breaking (and subsequent projection) and the
larger number of reference states caused by the inclu-
sion of octupole deformation increase computing time but

FIG. 1: (Color online) Mean-field energy surfaces for 150Nd
(a) and 150Sm (b), projected energy surfaces for 150Nd (c)
and 150Sm (d), and the square of the collective ground-state
wave function for 150Nd (e) and 150Sm (f), all in the β2-β3

plane.

otherwise cause no problems in our calculation. We ini-
tially include 50 reference states with β3 > 0. From this
set, 29 natural states turn out to sufficient to include
essentially all the contributions of the original 50 states
to both structure properties and 0νββ decay matrix ele-
ments.

III. RESULTS AND DISCUSSION

Figure 1 shows the mean-field and quantum-number-
projected energy surfaces, as well as the collective
wave functions |gJα(q)|

2, for the ground states of 150Nd
and 150Sm. The collective wave functions, defined

as gJπα (q) ≡
∑

q′
[

N Jπ
q,q′

]1/2
fJπα
q′ , provide information

about the importance of deformation with parameters q
in the state |Jπ

α ⟩. The mean-field energy surfaces in both
nuclei around the quadrupole-deformed minima with β2
around 0.2 are almost flat in the octupole direction. This
kind of surface often signifies a critical point symmetry
[5, 7, 11]. Our surface, however, is flat only before pro-
jection of the states that determine it onto the subspace
with Jπ = 0+ and well-defined N and Z; after projec-
tion it shows pronounced minima around β3 ∼ 0.1. In
addition, valleys connects the prolate and oblate min-
ima through octupole shapes in both nuclei, leading to
a reduction of quadrupole collectivity and large octupole
shape fluctuations.
Figure 2 shows the low-lying energy spectra in 150Nd
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FIG. 2: (Color online) Low-energy spectra of 150Nd and
150Sm. The numbers on arrows are E2 (solid line) and E3
(dashed line) transition strengths, in Weisskopf units. Data
are from Ref. [64].

FIG. 3: (Color online) Excitation energies of parity doublet
states in 150Nd (a) and 150Sm (b). The available data (!)
are compared with the GCM results (") and the results pro-
duced by the single-configuration of J = 0 energy minimum
(△) and by the configuration with deformation parameters de-
termined by measured transition strengths B(E2 : 0+1 → 2+1 )
and B(E3 : 0+1 → 3−1 ) (▽) [64].

and 150Sm. The octupole degree of freedom reduces the
E2 transition strengths between positive-parity states
significantly in both nuclei. It worsens the agreement in
150Nd but improves it in 150Sm. Our GCM describes the
negative-parity band built on the 1− state rather well, de-
spite overestimating the transition strengthB(E3 : 0+1 →
3−1 ) in

150Nd and underestimating it in 150Sm.
Figure 3 compares the GCM excitation energies with

those of two single-configuration calculations, one based
on the J = 0 energy minimum and the other on a state

FIG. 4: (Color online) Normalized nuclear matrix elements
M̃0ν(qI , qF ) for the neutrinoless double-beta decay of 150Nd,
where {q} ≡ {β2,β3}. Panel (a) plots M̃0ν versus the initial
and final octupole deformation parameters, with the quadru-
ple deformation parameters βI

2 and βF
2 fixed at 0.2 Panel (b)

plots the same quantity with the restriction βI
3 = βF

3 .

with deformation parameters determined by the experi-
mental B(E2 : 0+1 → 2+1 ) and B(E3 : 0+1 → 3−1 ) values
[64]. The GCM results are in much better agreement with
the data than are the single-configuration results. As spin
increases, however, the GCM increasingly over-predicts
the data, indicating that some important correlations
are missing. Time-reversal-symmetry-breaking reference
states, produced in a cranking calculation, would likely
lower the energies of high-spin states [65].
Figure 4 displays the normalized 0νββ matrix el-

ement between reference states, which we denote by
M̃0ν(qI , qF ):

M̃0ν(qI , qF )

≡
⟨qF |Ô0ν P̂ J=0P̂NI P̂ZIP π=+|qI⟩

√

N
0+
qI ,qIN

0+
qF ,qF

, (14)

with the norms N for each nucleus defined in Eq. (9).
The function M̃0ν(qI , qF ) represents the contribution of
particular initial and final configurations to the full ma-
trix element. Panel (a) of Fig. 4 plots the function in
the βI

3 ,β
F
3 plane, with βI

2 and βF
2 fixed at 0.2, the value

that minimizes the energy in both nuclei. The figure
shows that unequal octupole deformation in the two nu-
clei causes a rapid drop in the 0νββ matrix element.
Panel (b) of Fig. 4 extracts the behavior of M̃0ν from
the diagonal of panel (a), where the octupole deforma-
tion is the same size in both nuclei. Increasing deforma-
tion causes even this diagonal contribution to drop, from
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FIG. 5: (Color online) The final matrix element M0ν from
the GCM calculation with and without [46] octupole shape
fluctuations (REDF) and those of the QRPA (“QRPA F” [66],
“QRPA M” [45], “QRPA T” [47]), the IMB-2 [67], and the
non-relativistic GCM, based on the Gogny D1S interaction,
with [68] and without [44] pairing fluctuations.

6.4 to 2.2 as β3 increases to 0.3 At the configurations
that minimize the projected energies, with both values
of β2 about 0.2 and both values of β3 about 0.1, M̃0ν is
4.76. At the configuration that best fits the experimental
B(E2 : 0+1 → 2+1 ) and B(E3 : 0+1 → 3−1 ) values, corre-
sponding to deformation parameters βI

2 = 0.285,βI
3 =

0.113,βF
2 = 0.193,βF

3 = 0.145, M̃0ν is only 1.38.
As already discussed in Refs. [46, 48], M̃0ν near spher-

ical shapes is much larger than predicted by the Gogny
D1S interaction [44]. The difference arises at least in part
from a difference in average pairing gaps, which for the
neutrons in 150Nd and 150Sm are about 30% larger here
than in Ref. [44] (even though the gaps are similar at the
mean-field minima).
When all configurations are appropriately combined,

we obtain a final value for the matrix element M0ν(0+1 →
0+1 ) of 5.2, which is just 7% smaller than the result 5.6
obtained without octupole deformation [46]. (The con-
tributions from the V V,AA,AP, PP , and MM terms are
1.03, 4.87,−1.65, 0.70, and 0.21, respectively). The small
reduction, significantly less than what would result from
the use of the single configuration in each nucleus that
minimizes the energy (4.76) shows that shape fluctua-
tions wash out the effects of octupole deformation. For
the 0νββ decay to the excited 0+ state in 150Sm, we find

M0ν(0+1 → 0+2 ) = 0.72.

Figure 5 compares the ground-state to ground-state
matrix elements M0ν(0+1 → 0+1 ) from several models.
Our relativistic EDF-based GCM result is still about
twice those of the deformed quasiparticle random phase
approximation (QRPA) and the interacting boson model
(IBM), and about three times that of the non-relativistic
Gogny-based GCM. A more careful study of shell struc-
ture and pairing will help resolve the last discrepancy.
And we can expect both GCM matrix elements to shrink
once the isoscalar pairing amplitude is included as a gen-
erator coordinate [69, 70].

IV. SUMMARY

We have used covariant multi-reference density func-
tional theory to treat low-lying positive- and negative-
parity states in 150Nd and 150Sm. The GCM mixes
symmetry-projected states with different amounts of
quadrupole and octupole deformation. The results indi-
cate that octupole shape fluctuations significantly reduce
quadrupole collectivity in the low-lying states of both nu-
clei. Both static quadrupole and octupole deformation
quench the nuclear matrix element for 0νββ decay, but
shape fluctuations moderate the effect, so that adding
octupole degrees of freedom ends up reducing the matrix
element by only 7%.
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V. Umatov, L. Vála, I. Vanyushin, V. Vasiliev,
V. Vorobel, and T. Vylov (NEMO Collaboration),
Phys. Rev. C 80, 032501 (2009).

[2] M. Bongrand, Physics Procedia 61, 211 (2015), 13th In-
ternational Conference on Topics in Astroparticle and
Underground Physics, {TAUP} 2013.

[3] R. F. Casten and N. V. Zamfir,
Phys. Rev. Lett. 87, 052503 (2001).

[4] R. Krücken, B. Albanna, C. Bialik, R. F. Casten,



Tomás R. Rodríguez0νββ decay nuclear matrix elements with the GCMINT double-beta decay workshop

1. Introduction 2. EDF applications 3. GCM vs Shell Model 4. Summary and open questions

T. R. R., J. Phys. G 44, 034002 (2017)

0

10

20

30
40

50
60

γ

β
0 0.2 0.4 0.6 0.8

 

0

0.2

0.4

0.6

0.8

0

10

20

30
40

50
60

γ

β
0 0.2 0.4 0.6 0.8

 

0

0.2

0.4

0.6

0.8

0
1
2
3
4
5
6
7
8
9
10

11

11

9

9

755 3

3

1

1

0

10

20

30

40

50

60

γ

β2

0 0.2 0.4 0.6 0.8
 

0

0.2

0.4

0.6

0.8

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E x
 (M

eV
)

01

21

41

01

21

41

61

0+

2+

4+

6+

8+

Theory Experiment

76Ge

0
1
2
3
4
5
6
7
8
9
10

11

11

9

9

7

7

5

5

3

3

1

1

0

10

20

30

40

50

60

γ

β2

0 0.2 0.4 0.6 0.8
 

0

0.2

0.4

0.6

0.8

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E x
 (M

eV
)

01

21

41

61

01

21

41

61

81

0+

2+

4+

6+

8+

Theory Experiment

76Se

PES J=0 PES J=0

A=76

NME: triaxial quadrupole deformation



Tomás R. Rodríguez0νββ decay nuclear matrix elements with the GCMINT double-beta decay workshop

1. Introduction 2. EDF applications 3. GCM vs Shell Model 4. Summary and open questions

T. R. R., J. Phys. G 44, 034002 (2017)

0

10

20

30
40

50
60

γ

β
0 0.2 0.4 0.6 0.8

 

0

0.2

0.4

0.6

0.8

0

10

20

30
40

50
60

γ

β
0 0.2 0.4 0.6 0.8

 

0

0.2

0.4

0.6

0.8

0
1
2
3
4
5
6
7
8
9
10

11

11

9

9

755 3

3

1

1

0

10

20

30

40

50

60

γ

β2

0 0.2 0.4 0.6 0.8
 

0

0.2

0.4

0.6

0.8

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E x
 (M

eV
)

01

21

41

01

21

41

61

0+

2+

4+

6+

8+

Theory Experiment

76Ge

0
1
2
3
4
5
6
7
8
9
10

11

11

9

9

7

7

5

5

3

3

1

1

0

10

20

30

40

50

60

γ

β2

0 0.2 0.4 0.6 0.8
 

0

0.2

0.4

0.6

0.8

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E x
 (M

eV
)

01

21

41

61

01

21

41

61

81

0+

2+

4+

6+

8+

Theory Experiment

76Se

PES J=0 PES J=0

NME?? 

(work in progress…
)

A=76

NME: triaxial quadrupole deformation



Tomás R. Rodríguez0νββ decay nuclear matrix elements with the GCMINT double-beta decay workshop

1. Introduction 2. EDF applications 3. GCM vs Shell Model 4. Summary and open questions

 
0

1

2

3

4

5

6

b

0

0.01

0.02

0.03

0.04

0.05

0.06136Xe

-0.4 0 0.4
`2

0

1

2

3

4

5

6
b

-0.4 0 0.4
`2

0

1

2

3

4

5

6
b

0

0.01

0.02

0.03

0.04

0.05136Ba
 

0

1

2

3

4

5

6

b

0

2

4

6

8

10

12

14

2

4

4
66 8

8
10

10

136Xe

-0.4 0 0.4
`2

0

1

2

3

4

5

6

b

-0.4 0 0.4
`2

0

1

2

3

4

5

6

b

0

2

4

6

8

10

12

14

2
2

44
6

6

8

8

8

10

10

136Ba

(a)

(b)

(c)

(d)

MeV

MeV

NME: Shape and pp/nn pairing 
fluctuations

Angular momentum projected 
potential energy surfaces

Collective ground state 
wave functions

N. López-Vaquero, T.R.R., J.L. Egido, PRL 111, 142501 (2013)



Tomás R. Rodríguez0νββ decay nuclear matrix elements with the GCMINT double-beta decay workshop

1. Introduction 2. EDF applications 3. GCM vs Shell Model 4. Summary and open questions

1 2 3 4 5 6
b (136Xe)

1

2

3

4

5

6

b’
 (13

6 Ba
)

0

1

2

3

4

5

5

5

4

4

3

3

2

2

11

1

-0.4 0 0.4 0.8
`2 (136Xe)

-0.4

0

0.4

0.8

`’
2 

(13
6 Ba

)

0

1

2

3

4

5

4

3

3

2

2

2

2

1

1
1

1

(a) (b)

GT GT

Dependence on deformation Dependence on pp/nn pairing

N. López-Vaquero, T.R.R., J.L. Egido, PRL 111, 142501 (2013)

NME: Shape and pp/nn pairing 
fluctuations



Tomás R. Rodríguez0νββ decay nuclear matrix elements with the GCMINT double-beta decay workshop

1. Introduction 2. EDF applications 3. GCM vs Shell Model 4. Summary and open questions

4

T1/2 (136Xe) (yr)

T 1
/2

 (7
6 G

e)
 (y

r)

X
e 

co
m

bi
ne

d

Ge combined

GERDA phase I

K
am

LA
N

D
-Z

en

E
X

O
-2

00

NME (β2,δ)

NME (β2)

0ν

0ν
1024 1025 1026 1027

 

1024

1025

1026

1027

 

HdM claim

FIG. 3: (color online) Correlation between half-lives in 76Ge
and 136Xe calculated with (�2) -red dotted line- and (�2, �)
-blue continuous line- and the lower experimental limits (90%
CL) from HdM [2], IGEX [40], GERDA [5], KamLAND-
Zen [4] and EXO-200 [3].

already reported in previous works within the EDF and
LSSM frameworks [28–31]. On the other hand, we study
the dependence of the NME on the pairing degree of free-
dom fixing the deformations of the initial and final states
at the values where the maximum of the 136Ba collective
wave function is found (�

2

= 0.1) and leaving free the
values for (�, �0) -see Fig. 2(b).

Vanishing matrix elements are obtained for � < 2 and
�0 < 2. However, for �(�0) values larger than 2 the matrix
element grows rapidly with increasing �(�0) in the band
region �0 ⇡ � � 3 and �0 ⇡ � + 3. A correlation between
pairing and NME has been also previously reported in-
directly [21, 28, 30] but it is explicitly shown for the first
time in this work. Furthermore, the distribution is quite
wide meaning that pairing mixing plays an important
role.

The final step in the calculation of the NME is to con-
sider the shape and pairing fluctuations present in the
initial and final wave functions (Fig. 1(c)-(d)). Taking
into account the wave function shapes and looking at
Fig. 2(b) we find that the relevant part is the square de-
fined by the intersection of the horizontal and vertical
lines. Here we see that the pairing fluctuations allow
a large richness of values of the nuclear matrix element
(from zero up to approximately 5) which definitively con-
tribute to the final value.

The results for the most probable candidates to detect
0⌫�� decays are summarized in Table I. We find in the
136Xe decay discussed above a 14% larger NME when
the pairing degree of freedom is explicitly included which
leads to a reduction of the half-life in a factor 0.77. This
result is consistent with exploring regions with larger val-
ues of the NME in the pairing degree of freedom thanks
to the fluctuations in � included in the collective wave
functions. The same e↵ect happens for the rest of can-
didates where the NME obtained including both defor-

mation and pairing fluctuations are increased from 10%
to 40% with respect to the values found by considering
only shape mixings. The 48Ca is the only particular case
where, due to its double magic character, the initial wave
function is significantly moved towards less pairing cor-
relations, thus giving a slightly smaller NME. Except for
this decay, the updated NMEs lead to a reduction of the
predicted half-lives up to factors from 0.81 (82Se) to 0.52
(128Te). Furthermore, a shorter 76Ge half-life as a func-
tion of the 136Xe one is predicted in the region allowed
by HdM, IGEX [40], GERDA, EXO-200 and KamLAND-
Zen experiments, as it is represented in Fig. 3. However,
the HdM claim is incompatible both with the previous
and these new values of the NMEs.
Recently the large values of the Fermi part obtained

within QRPA, IBM and EDF methods compared to the
LSSM ones has been discussed in terms of isospin sym-
metry violation. Hence, spurious contributions to Fermi
-and possibly GT- matrix elements exist in those cases
where the initial and final states are not isospin eigen-
states. In Ref. [41] is shown in the QRPA framework
that correcting the parameters to have the Fermi part of
the 2⌫�� decay equal to zero, the M0⌫

F is reduced but
M0⌫

GT is barely a↵ected. In Table I we show separately
the GT and F components of the NME and we see that
the gain including pairing fluctuations is similar in both
channels. This fact could indicate that the observed in-
crease is not produced by a stronger isospin symmetry
violation. Nevertheless, the e↵ect on the NMEs of the
restoration of the isospin symmetry within this frame-
work is beyond the scope of the present paper but some
work is in progress along this line.
In summary, we have presented calculations for 0⌫��

matrix elements within the EDF framework, including for

Isotope �Q(�2) �Q(�2, �) M0⌫
(�2) M0⌫

(�2, �) Var (%)

T1/2(�2,�)

T1/2(�2)

48
Ca 0.265 0.131 2.3701.9140.456 2.2291.7970.431 -6 1.13

76
Ge 0.271 0.190 4.6013.7150.886 5.5514.4701.082 21 0.69

82
Se -0.366 -0.246 4.2183.3810.837 4.6743.7430.931 11 0.81

96
Zr 2.580 2.628 5.6504.6181.032 6.4985.2961.202 15 0.76

100
Mo 1.879 1.757 5.0844.1490.935 6.5885.3611.227 30 0.60

116
Cd 1.365 1.337 4.7953.9310.864 5.3484.3720.976 12 0.80

124
Sn -0.830 -0.687 4.8083.8930.916 5.7874.6801.107 20 0.69

128
Te -0.564 -0.594 4.1073.0791.027 5.6874.2551.432 38 0.52

130
Te -0.348 -0.628 5.1304.1410.989 6.4055.1611.244 25 0.64

136
Xe -1.027 -0.787 4.1993.6730.526 4.7734.1700.604 14 0.77

150
Nd -0.380 -0.282 1.7071.2780.429 2.1901.6390.551 29 0.61

TABLE I: Di↵erence between theoretical and experimental
Q values and nuclear matrix elements for the most probable
0⌫�� emitters considering shape fluctuations (�2) and both
shape and pairing fluctuations (�2, �) explicitly. Superscript
(underscript) values correspond to the Gamow-Teller (Fermi)
components. The last two columns are the variation of the
NME and half-lives when the additional pairing degree of free-
dom is included.

N. López-Vaquero, T.R.R., J.L. Egido, PRL 111, 142501 (2013)

NME: Shape and pp/nn pairing 
fluctuations



Tomás R. Rodríguez0νββ decay nuclear matrix elements with the GCMINT double-beta decay workshop

1. Introduction 2. EDF applications 3. GCM vs Shell Model 4. Summary and open questions

2

nuclear radius, inserted by convention to make the ma-
trix element dimensionless. The form factors hF(q) and
hGT(q) contain the vector and axial vector coupling con-
stants, forbidden corrections to the weak current, nucleon
form factors, and the “Argonne” short-range correlation
function [13]. See, e.g., Ref. [14] for details; note that
we absorb the inverse square of the axial-vector coupling
constant into our definition of hF .

To compute the matrix element in Eq. (1) we need
good representations of the initial and final ground states
|Ii and |F i. In this first application to A = 76 nuclei,
we construct the states in a Hilbert space consisting of
36 particles moving freely in the oscillator fp and sdg
shells. Our Hamiltonian has the form

H = h0 �
1X

µ=�1

gT=1
µ S†

µSµ � �

2

2X

K=�2

Q†
2KQ2K

� gT=0
1X

⌫=�1

P †
⌫P⌫ + gph

1X

µ,⌫=�1

Fµ†
⌫ Fµ

⌫ , (2)

where h0 contains spherical single particle energies, Q2K

are the components of a quadrupole operator defined in
Ref. [15], and

S†
µ =

1p
2

X

l

l̂[c†l c
†
l ]
001
00µ , P †

µ =
1p
2

X

l

l̂[c†l c
†
l ]
010
0µ0 ,

Fµ
⌫ =

1

2

X

i

�µ
i ⌧

⌫
i =

X

l

l̂[c†l c̄l]
011
0µ⌫ . (3)

In this last equation, c†l is a creation operator, l labels
single-particle multiplets with good orbital angular mo-
mentum, l̂ ⌘

p
2l + 1, S†

µ creates a correlated isovector
pair with orbital angular momentum L = 0 and spin
S = 0 (and with µ labeling the isospin component Tz),
P †
µ creates an isoscalar pn pair with L = 0 and S = 1

(Sz = µ), and the Fµ
⌫ are the components of the Gamow-

Teller operator. Although the Hamiltonian is not fully
realistic, it combines and extends both the SO(8) model
[16, 17] and the pairing-plus-quadrupole model [15, 18],
and contains the most important (collective) parts of
shell-model interaction [19]. We discuss the values of the
couplings in Eq. (2) shortly.

A direct diagonalization in a space this large is not
possible, even with our simple Hamiltonian, and we have
already discussed the drawbacks of the QRPA. We there-
fore turn to the GCM, which has been reviewed in many
places (see, e.g., Ref. [4]) and is useful in very-large-scale
shell-model problems. The procedure is variational, with
an ansatz for the ground state of the form

| i =
X

a1a2...an

f(a1, a2, . . . , an)P |a1, a2, . . . , ani . (4)

Here the kets |a1, a2, . . . , ani are mean-field states —
Slater determinants or, in our case, quasiparticle vacua
— with n expectation values ai specified, P is an operator

that projects onto states with well-defined values for an-
gular momentum and neutron and proton particle num-
bers, and f is a weight function. The starting point, if
we want to include the e↵ects of pn pairing, is a Hartree-
Fock-Bogoliubov (HFB) code that mixes neutrons and
protons in the quasiparticles, i.e. (schematically):

↵† ⇠ upc
†
p + vpcp + unc

†
n + vncn . (5)

The actual equations contain sums over single particle
states as well, so that each of the u’s and v’s above are
replaced by matrices as described, e.g., in Ref. [20].
We use the generalized HFB (neglecting the Fock terms

in this step) without any symmetry restriction to con-
struct a set of quasiparticle vacua that are constrained
to have a particular deformation � (defined here as
0.438 fm2 MeV�1 � hQ20i) and isoscalar-pairing ampli-
tude � = hP0 + P †

0 i /2 (these are the ai in Eq. (4)), that
is, we solve the HFB equations for the Hamiltonian with
linear constraints

H 0 = H��ZNZ��NNN��QQ20�
�P

2

⇣
P0 + P †

0

⌘
, (6)

where the NZ and NN are the proton and neutron num-
ber operators — they are part of the usual HFB min-
imization — and the other �’s are Lagrange multipli-
ers to fix the deformation and isoscalar pairing ampli-
tude. (When computing the Fermi part of the 0⌫��
matrix element we substitute the isovector pn operators
(S0 � S†

0)/2i for (P0 + P †
0 )/2 in Eq. (6).) As already

noted, without the last multiplier the isoscalar pairing
amplitude vanishes unless the strength gT=0 of the cor-
responding interaction is larger than some critical value.
For realistic Hamiltonians that is never the case, hence
the need to generate amplitudes by force, as it were.
Having obtained a set of HFB vacua with varying

amounts of axially symmetric deformation and pn pair-
ing, we project the vacua onto states with the correct
number of neutrons and protons and with angular mo-
mentum zero. We then solve the Hill-Wheeler equa-
tion [4], which amounts to diagonalizing H in the space
spanned by our nonorthogonal projected vacua, to deter-
mine the weight function f in Eq. (4).
To carry out a fairly realistic calculation, we need ap-

propriate values for the couplings in the Hamiltonian of
Eq. (2). We determine them by trying to reproduce the
results of calculations with two di↵erent Skyrme interac-
tions (SkO0 [21] and SkM* [22]) in 76Ge and neighbor-
ing nuclei. We first do Skyrme-HFB calculations [23] in
76Ge to determine appropriate volume pairing constants.
We then take single-particle energies for each nucleus,
which we show for SkO0 in Table I, from the results of
constrained HFB calculations for 76Ge and 76Se, which
we temporarily force to be spherical. Next we adjust
the like-particle part of our isovector pairing interaction
(gT=1

1 and gT=1
�1 ) to get the same pairing gaps as the

original Skyrme calculations. The resulting occupation
numbers are close to the spherical Skyrme-HFB numbers
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0)/2i for (P0 + P †
0 )/2 in Eq. (6).) As already

noted, without the last multiplier the isoscalar pairing
amplitude vanishes unless the strength gT=0 of the cor-
responding interaction is larger than some critical value.
For realistic Hamiltonians that is never the case, hence
the need to generate amplitudes by force, as it were.
Having obtained a set of HFB vacua with varying

amounts of axially symmetric deformation and pn pair-
ing, we project the vacua onto states with the correct
number of neutrons and protons and with angular mo-
mentum zero. We then solve the Hill-Wheeler equa-
tion [4], which amounts to diagonalizing H in the space
spanned by our nonorthogonal projected vacua, to deter-
mine the weight function f in Eq. (4).
To carry out a fairly realistic calculation, we need ap-

propriate values for the couplings in the Hamiltonian of
Eq. (2). We determine them by trying to reproduce the
results of calculations with two di↵erent Skyrme interac-
tions (SkO0 [21] and SkM* [22]) in 76Ge and neighbor-
ing nuclei. We first do Skyrme-HFB calculations [23] in
76Ge to determine appropriate volume pairing constants.
We then take single-particle energies for each nucleus,
which we show for SkO0 in Table I, from the results of
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TABLE II. The 0⌫�� matrix element M0⌫ for the decay of
76Ge in a simplified calculation that neglects deformation, at
various levels of approximation. The first column contains the
source of the couplings in Eq. (2), the second the matrix ele-
ment when the spin-isospin and isoscalar pairing interactions
are absent, the third the matrix element with only isoscalar
pairing missing, the fourth the full GCM result, and the last
the result of the QRPA with the same Hamiltonian (except
for a slightly modified gT=0). The matrix elements in paren-
theses are obtained by quenching our B(GT+).

Skyrme no gph, g
T=0 no gT=0 full QRPA

SkO0 14.0 9.5 5.4 (5.4) 5.6 (5.0)

SkM* 11.8 9.4 4.1 (2.8) 3.5 (2.5)

called gpp when divided by ḡT=1) in exactly the same
way. The values we obtain are only slightly di↵erent.
The last column of Table II contains the QRPA 0⌫��
matrix elements. They are fairly close to those of the
GCM calculation, but much more sensitive to gT=0.

To clarify this last statement, we show the GCM and
QRPA matrix elements as functions of gT=0/ḡT=1 in Fig.
2. The QRPA curves lie slightly above their GCM coun-
terparts until gT=0/ḡT=1 reaches a critical value slightly
larger than 1.5; at that point a mean-field phase tran-
sition from an isovector pair condensate to an isoscalar
condensate causes the famous QRPA “collapse.” The col-
lapse is spurious, as the GCM results show. Its presence
in mean-field theory makes the QRPA unreliable near the
critical point. It is actually a bit of a coincidence that
the QRPA matrix elements in the table are as close as
they are to those of the GCM; a small change in gT=0

would a↵ect them substantially (though because it also
alters B(GT+) a lot, fitting to B(GT+) = 0.62 rather
than 1.0 does not have a huge e↵ect on the 0⌫�� matrix
element). The GCM result is not only better behaved
near the critical point but also, we believe, quite accu-
rate. In the SO(8) model used to test many-body meth-
ods in �� decay many times, the GCM result is nearly
exact for all gT=0. That is not the case for extensions of
the QRPA that attempt to ameliorate its shortcomings
[32, 33], though some of those work better around the
phase transition than others.

To show why the GCM behaves well, we display
in the bottom right part of Fig. 3 the quantity
N�IN�F h�F | PF M̂0⌫PI |�Ii, where |�Ii is a quasiparti-
cle vacuum in 76Ge constrained to have isoscalar pairing
amplitude �I , �F is an analogous state in 76Se, PI , PF

project onto states with angular momentum zero and the
appropriate values of Z and N , and N�I ,N�F normalize
the projected states. This quantity is the contribution to
the 0⌫�� matrix element from states with particular val-
ues of the initial and final isoscalar pairing amplitudes.
The contribution is positive around zero condensation in
the two nuclei and negative when the final pairing ampli-
tude is large. Thus the GCM states must contain compo-
nents with significant pn pairing when gT=0 is near its fit
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FIG. 2. (Color online.) Dependence of the GCM (solid) and
QRPA (dashed) 0⌫�� matrix elements on the strength gT=0

of the isoscalar pairing interaction. The red (upper) and blue
(lower) lines of each type correspond to the interaction pa-
rameters extracted from SkO0 and SkM*. The divergence in
the QRPA near gT=0/ḡT=1 = 1.5 is discussed in the text.

value. The appearance of this plot is di↵erent from those
in which the matrix element is plotted versus initial and
final deformation [6–8]. Here the matrix element is small
or negative even if the initial and final pairing ampli-
tudes have the same value, as long as that value is large.
The behavior reflects the qualitatively di↵erent e↵ects of
isovector and isoscalar pairs on the matrix element [3],
e↵ects that have no analog in the realm of deformation.
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vacua with di↵erent values of the initial and final isoscalar
pairing amplitudes �I and �F , from the SkO0-based interac-
tion (see text). Top and bottom left: Square of collective
wave functions in 76Ge and 76Se.
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nuclear radius, inserted by convention to make the ma-
trix element dimensionless. The form factors hF(q) and
hGT(q) contain the vector and axial vector coupling con-
stants, forbidden corrections to the weak current, nucleon
form factors, and the “Argonne” short-range correlation
function [13]. See, e.g., Ref. [14] for details; note that
we absorb the inverse square of the axial-vector coupling
constant into our definition of hF .

To compute the matrix element in Eq. (1) we need
good representations of the initial and final ground states
|Ii and |F i. In this first application to A = 76 nuclei,
we construct the states in a Hilbert space consisting of
36 particles moving freely in the oscillator fp and sdg
shells. Our Hamiltonian has the form

H = h0 �
1X
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gT=1
µ S†

µSµ � �
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Q†
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where h0 contains spherical single particle energies, Q2K

are the components of a quadrupole operator defined in
Ref. [15], and
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In this last equation, c†l is a creation operator, l labels
single-particle multiplets with good orbital angular mo-
mentum, l̂ ⌘

p
2l + 1, S†

µ creates a correlated isovector
pair with orbital angular momentum L = 0 and spin
S = 0 (and with µ labeling the isospin component Tz),
P †
µ creates an isoscalar pn pair with L = 0 and S = 1

(Sz = µ), and the Fµ
⌫ are the components of the Gamow-

Teller operator. Although the Hamiltonian is not fully
realistic, it combines and extends both the SO(8) model
[16, 17] and the pairing-plus-quadrupole model [15, 18],
and contains the most important (collective) parts of
shell-model interaction [19]. We discuss the values of the
couplings in Eq. (2) shortly.

A direct diagonalization in a space this large is not
possible, even with our simple Hamiltonian, and we have
already discussed the drawbacks of the QRPA. We there-
fore turn to the GCM, which has been reviewed in many
places (see, e.g., Ref. [4]) and is useful in very-large-scale
shell-model problems. The procedure is variational, with
an ansatz for the ground state of the form

| i =
X

a1a2...an

f(a1, a2, . . . , an)P |a1, a2, . . . , ani . (4)

Here the kets |a1, a2, . . . , ani are mean-field states —
Slater determinants or, in our case, quasiparticle vacua
— with n expectation values ai specified, P is an operator

that projects onto states with well-defined values for an-
gular momentum and neutron and proton particle num-
bers, and f is a weight function. The starting point, if
we want to include the e↵ects of pn pairing, is a Hartree-
Fock-Bogoliubov (HFB) code that mixes neutrons and
protons in the quasiparticles, i.e. (schematically):

↵† ⇠ upc
†
p + vpcp + unc

†
n + vncn . (5)

The actual equations contain sums over single particle
states as well, so that each of the u’s and v’s above are
replaced by matrices as described, e.g., in Ref. [20].
We use the generalized HFB (neglecting the Fock terms

in this step) without any symmetry restriction to con-
struct a set of quasiparticle vacua that are constrained
to have a particular deformation � (defined here as
0.438 fm2 MeV�1 � hQ20i) and isoscalar-pairing ampli-
tude � = hP0 + P †

0 i /2 (these are the ai in Eq. (4)), that
is, we solve the HFB equations for the Hamiltonian with
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where the NZ and NN are the proton and neutron num-
ber operators — they are part of the usual HFB min-
imization — and the other �’s are Lagrange multipli-
ers to fix the deformation and isoscalar pairing ampli-
tude. (When computing the Fermi part of the 0⌫��
matrix element we substitute the isovector pn operators
(S0 � S†

0)/2i for (P0 + P †
0 )/2 in Eq. (6).) As already

noted, without the last multiplier the isoscalar pairing
amplitude vanishes unless the strength gT=0 of the cor-
responding interaction is larger than some critical value.
For realistic Hamiltonians that is never the case, hence
the need to generate amplitudes by force, as it were.
Having obtained a set of HFB vacua with varying

amounts of axially symmetric deformation and pn pair-
ing, we project the vacua onto states with the correct
number of neutrons and protons and with angular mo-
mentum zero. We then solve the Hill-Wheeler equa-
tion [4], which amounts to diagonalizing H in the space
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mine the weight function f in Eq. (4).
To carry out a fairly realistic calculation, we need ap-

propriate values for the couplings in the Hamiltonian of
Eq. (2). We determine them by trying to reproduce the
results of calculations with two di↵erent Skyrme interac-
tions (SkO0 [21] and SkM* [22]) in 76Ge and neighbor-
ing nuclei. We first do Skyrme-HFB calculations [23] in
76Ge to determine appropriate volume pairing constants.
We then take single-particle energies for each nucleus,
which we show for SkO0 in Table I, from the results of
constrained HFB calculations for 76Ge and 76Se, which
we temporarily force to be spherical. Next we adjust
the like-particle part of our isovector pairing interaction
(gT=1

1 and gT=1
�1 ) to get the same pairing gaps as the

original Skyrme calculations. The resulting occupation
numbers are close to the spherical Skyrme-HFB numbers
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|Ii and |F i. In this first application to A = 76 nuclei,
we construct the states in a Hilbert space consisting of
36 particles moving freely in the oscillator fp and sdg
shells. Our Hamiltonian has the form

H = h0 �
1X

µ=�1

gT=1
µ S†

µSµ � �

2

2X

K=�2

Q†
2KQ2K

� gT=0
1X

⌫=�1

P †
⌫P⌫ + gph

1X

µ,⌫=�1

Fµ†
⌫ Fµ

⌫ , (2)

where h0 contains spherical single particle energies, Q2K

are the components of a quadrupole operator defined in
Ref. [15], and

S†
µ =

1p
2

X

l

l̂[c†l c
†
l ]
001
00µ , P †

µ =
1p
2

X

l

l̂[c†l c
†
l ]
010
0µ0 ,

Fµ
⌫ =

1

2

X

i

�µ
i ⌧

⌫
i =

X

l

l̂[c†l c̄l]
011
0µ⌫ . (3)

In this last equation, c†l is a creation operator, l labels
single-particle multiplets with good orbital angular mo-
mentum, l̂ ⌘

p
2l + 1, S†

µ creates a correlated isovector
pair with orbital angular momentum L = 0 and spin
S = 0 (and with µ labeling the isospin component Tz),
P †
µ creates an isoscalar pn pair with L = 0 and S = 1

(Sz = µ), and the Fµ
⌫ are the components of the Gamow-

Teller operator. Although the Hamiltonian is not fully
realistic, it combines and extends both the SO(8) model
[16, 17] and the pairing-plus-quadrupole model [15, 18],
and contains the most important (collective) parts of
shell-model interaction [19]. We discuss the values of the
couplings in Eq. (2) shortly.

A direct diagonalization in a space this large is not
possible, even with our simple Hamiltonian, and we have
already discussed the drawbacks of the QRPA. We there-
fore turn to the GCM, which has been reviewed in many
places (see, e.g., Ref. [4]) and is useful in very-large-scale
shell-model problems. The procedure is variational, with
an ansatz for the ground state of the form

| i =
X

a1a2...an

f(a1, a2, . . . , an)P |a1, a2, . . . , ani . (4)

Here the kets |a1, a2, . . . , ani are mean-field states —
Slater determinants or, in our case, quasiparticle vacua
— with n expectation values ai specified, P is an operator

that projects onto states with well-defined values for an-
gular momentum and neutron and proton particle num-
bers, and f is a weight function. The starting point, if
we want to include the e↵ects of pn pairing, is a Hartree-
Fock-Bogoliubov (HFB) code that mixes neutrons and
protons in the quasiparticles, i.e. (schematically):

↵† ⇠ upc
†
p + vpcp + unc

†
n + vncn . (5)

The actual equations contain sums over single particle
states as well, so that each of the u’s and v’s above are
replaced by matrices as described, e.g., in Ref. [20].
We use the generalized HFB (neglecting the Fock terms

in this step) without any symmetry restriction to con-
struct a set of quasiparticle vacua that are constrained
to have a particular deformation � (defined here as
0.438 fm2 MeV�1 � hQ20i) and isoscalar-pairing ampli-
tude � = hP0 + P †

0 i /2 (these are the ai in Eq. (4)), that
is, we solve the HFB equations for the Hamiltonian with
linear constraints

H 0 = H��ZNZ��NNN��QQ20�
�P

2

⇣
P0 + P †

0

⌘
, (6)

where the NZ and NN are the proton and neutron num-
ber operators — they are part of the usual HFB min-
imization — and the other �’s are Lagrange multipli-
ers to fix the deformation and isoscalar pairing ampli-
tude. (When computing the Fermi part of the 0⌫��
matrix element we substitute the isovector pn operators
(S0 � S†

0)/2i for (P0 + P †
0 )/2 in Eq. (6).) As already

noted, without the last multiplier the isoscalar pairing
amplitude vanishes unless the strength gT=0 of the cor-
responding interaction is larger than some critical value.
For realistic Hamiltonians that is never the case, hence
the need to generate amplitudes by force, as it were.
Having obtained a set of HFB vacua with varying

amounts of axially symmetric deformation and pn pair-
ing, we project the vacua onto states with the correct
number of neutrons and protons and with angular mo-
mentum zero. We then solve the Hill-Wheeler equa-
tion [4], which amounts to diagonalizing H in the space
spanned by our nonorthogonal projected vacua, to deter-
mine the weight function f in Eq. (4).
To carry out a fairly realistic calculation, we need ap-

propriate values for the couplings in the Hamiltonian of
Eq. (2). We determine them by trying to reproduce the
results of calculations with two di↵erent Skyrme interac-
tions (SkO0 [21] and SkM* [22]) in 76Ge and neighbor-
ing nuclei. We first do Skyrme-HFB calculations [23] in
76Ge to determine appropriate volume pairing constants.
We then take single-particle energies for each nucleus,
which we show for SkO0 in Table I, from the results of
constrained HFB calculations for 76Ge and 76Se, which
we temporarily force to be spherical. Next we adjust
the like-particle part of our isovector pairing interaction
(gT=1

1 and gT=1
�1 ) to get the same pairing gaps as the

original Skyrme calculations. The resulting occupation
numbers are close to the spherical Skyrme-HFB numbers

4

TABLE II. The 0⌫�� matrix element M0⌫ for the decay of
76Ge in a simplified calculation that neglects deformation, at
various levels of approximation. The first column contains the
source of the couplings in Eq. (2), the second the matrix ele-
ment when the spin-isospin and isoscalar pairing interactions
are absent, the third the matrix element with only isoscalar
pairing missing, the fourth the full GCM result, and the last
the result of the QRPA with the same Hamiltonian (except
for a slightly modified gT=0). The matrix elements in paren-
theses are obtained by quenching our B(GT+).

Skyrme no gph, g
T=0 no gT=0 full QRPA

SkO0 14.0 9.5 5.4 (5.4) 5.6 (5.0)

SkM* 11.8 9.4 4.1 (2.8) 3.5 (2.5)

called gpp when divided by ḡT=1) in exactly the same
way. The values we obtain are only slightly di↵erent.
The last column of Table II contains the QRPA 0⌫��
matrix elements. They are fairly close to those of the
GCM calculation, but much more sensitive to gT=0.

To clarify this last statement, we show the GCM and
QRPA matrix elements as functions of gT=0/ḡT=1 in Fig.
2. The QRPA curves lie slightly above their GCM coun-
terparts until gT=0/ḡT=1 reaches a critical value slightly
larger than 1.5; at that point a mean-field phase tran-
sition from an isovector pair condensate to an isoscalar
condensate causes the famous QRPA “collapse.” The col-
lapse is spurious, as the GCM results show. Its presence
in mean-field theory makes the QRPA unreliable near the
critical point. It is actually a bit of a coincidence that
the QRPA matrix elements in the table are as close as
they are to those of the GCM; a small change in gT=0

would a↵ect them substantially (though because it also
alters B(GT+) a lot, fitting to B(GT+) = 0.62 rather
than 1.0 does not have a huge e↵ect on the 0⌫�� matrix
element). The GCM result is not only better behaved
near the critical point but also, we believe, quite accu-
rate. In the SO(8) model used to test many-body meth-
ods in �� decay many times, the GCM result is nearly
exact for all gT=0. That is not the case for extensions of
the QRPA that attempt to ameliorate its shortcomings
[32, 33], though some of those work better around the
phase transition than others.

To show why the GCM behaves well, we display
in the bottom right part of Fig. 3 the quantity
N�IN�F h�F | PF M̂0⌫PI |�Ii, where |�Ii is a quasiparti-
cle vacuum in 76Ge constrained to have isoscalar pairing
amplitude �I , �F is an analogous state in 76Se, PI , PF

project onto states with angular momentum zero and the
appropriate values of Z and N , and N�I ,N�F normalize
the projected states. This quantity is the contribution to
the 0⌫�� matrix element from states with particular val-
ues of the initial and final isoscalar pairing amplitudes.
The contribution is positive around zero condensation in
the two nuclei and negative when the final pairing ampli-
tude is large. Thus the GCM states must contain compo-
nents with significant pn pairing when gT=0 is near its fit

-10
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0

5

10

0 0.5 1 1.5 2 2.5 3

M
0n

gT=0/ḡT=1

GCM SkO0

QRPA SkO0

GCM SkM*
QRPA SkM*

FIG. 2. (Color online.) Dependence of the GCM (solid) and
QRPA (dashed) 0⌫�� matrix elements on the strength gT=0

of the isoscalar pairing interaction. The red (upper) and blue
(lower) lines of each type correspond to the interaction pa-
rameters extracted from SkO0 and SkM*. The divergence in
the QRPA near gT=0/ḡT=1 = 1.5 is discussed in the text.

value. The appearance of this plot is di↵erent from those
in which the matrix element is plotted versus initial and
final deformation [6–8]. Here the matrix element is small
or negative even if the initial and final pairing ampli-
tudes have the same value, as long as that value is large.
The behavior reflects the qualitatively di↵erent e↵ects of
isovector and isoscalar pairs on the matrix element [3],
e↵ects that have no analog in the realm of deformation.
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FIG. 3. (Color online.) Bottom right:

N�IN�F h�F | PF M̂0⌫PI |�Ii for projected quasiparticle
vacua with di↵erent values of the initial and final isoscalar
pairing amplitudes �I and �F , from the SkO0-based interac-
tion (see text). Top and bottom left: Square of collective
wave functions in 76Ge and 76Se.

N. Hinohara and J. Engel, PRC 031031(R) (2014)

NME: Shape and pn pairing 
fluctuations

Very difficult (perhaps impossible) to 
implement with current EDFs!
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We want to study the role of


- Pairing pp/nn correlations.

- Deformation.

- Shell effects.

- Spatial dependence of the neutrino potentials.


in the nuclear matrix elements in a whole isotopic chain 
using state-of-the-art energy density functional methods.

NME in isotopic chains
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Collective wave functions for Cd and Sn 

- Sn isotopes are 
spherical and Cd slightly 
prolate deformed when 
beyond mean field 
correlations are included.
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Ground state properties
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Collective wave functions for Cd and Sn 

- Sn isotopes are 
spherical and Cd slightly 
prolate deformed when 
beyond mean field 
correlations are included.
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- Good agreement 
between experimental and 
theoretical Q-values within 
the accuracy of the force 
(Gogny D1S).
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A=116 (possible candidate for detection) 
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A=116 (possible candidate for detection) 

- Reduction of the NME 
with respect to the 
spherical value when 
shape mixing is included 
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A=116 (possible candidate for detection) 

- Reduction of the NME 
with respect to the 
spherical value when 
shape mixing is included 
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correlations in mother/
daughter nuclei produces 
larger NMEs.

NME: 116Cd→116Sn
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found with using constant 
neutrino potentials.  

-0.4 -0.2 0 0.2 0.4 0.6
 

-0.4

-0.2

0

0.2

0.4

0.6

 

0

1

2

3

4

5

6

4.5

2.5

2.5

2.5

2.5

0.5

0.5

0.5

0.5

-0.4 -0.2 0 0.2 0.4 0.6
 

-0.4

-0.2

0

0.2

0.4

0.6

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.9

0.9

0.9 0.9

0.9

0.1

0.1
0.1

0.1

A=116

β2 Cd68

β 2
 S
n 6

6

β2 Cd68

β 2
 S
n 6

6

c⌧�⌧�

c0��⌧�⌧�

NME: 116Cd→116Sn



Tomás R. Rodríguez0νββ decay nuclear matrix elements with the GCMINT double-beta decay workshop

1. Introduction 2. EDF applications 3. GCM vs Shell Model 4. Summary and open questions

A=116 (possible candidate for detection) 

-0.4 -0.2 0 0.2 0.4 0.6
`2

10

15

20

25

-E
pp

 (M
eV

)

116Cd
116Sn(b)

2
3
4
5
6
7
8

M
0i

NMEdiag
(a)

-0.4 -0.2 0 0.2 0.4 0.6
β2

|F
(β

2)
|2

116Cd (0i
+)

 

 

0.9

0.9 0.9

0.9

0.1

0.1
0.1

0.1

 

 

4.5

4.5 2.5

2.5

2.5

2.5

0.5

0.5

0.5

0.5

-0
.4

-0
.2

0
0.

2
0.

4
0.

6
β 2

|F(β2)|2

11
6 Sn

 (0
f+ )

-0
.4

-0
.2

0
0.

2
0.

4
0.

6
β 2

|F(β2)|2

11
6 Sn

 (0
f+ )

6

5

4

3

2

1

0

A=116

β2 Cd68

β 2
 S
n 6

6

β2 Cd68

β 2
 S
n 6

6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

GT

Fermi

-0.4 -0.2 0 0.2 0.4 0.6
 

-0.4

-0.2

0

0.2

0.4

0.6

 

0

1

2

3

4

5

6

4.5

2.5

2.5

2.5

2.5

0.5

0.5

0.5

0.5

-0.4 -0.2 0 0.2 0.4 0.6
 

-0.4

-0.2

0

0.2

0.4

0.6

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.9

0.9

0.9 0.9

0.9

0.1

0.1
0.1

0.1

A=116

β2 Cd68

β 2
 S
n 6

6

β2 Cd68

β 2
 S
n 6

6

c⌧�⌧�

c0��⌧�⌧�

- Reduction of the NME 
with respect to the 
spherical value when 
shape mixing is included 

- Larger pairing 
correlations in mother/
daughter nuclei produces 
larger NMEs.

- NMEs almost 
proportional to the ones 
found with using constant 
neutrino potentials.  

NME: 116Cd→116Sn
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- GT component is always larger than 
Fermi.

T.R.R., Martínez-Pinedo, PLB 719, 174 (2013)

NME: ACd→ASn Shell Effects
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- GT component is always larger than 
Fermi.

- Shell effects associated to the filling 
of neutrons in the corresponding 
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that annihilates a correlated pair of neutrons and creates a
correlated pair of protons. This operator can be written, to a
good approximation, as [23]

P
(0)
+πP

(0)
−ν = απανs

†
π (%π − Nπ )1/2 (%ν − Nν)1/2 s̃ν, (42)

where %π and %ν are the pair degeneracies of the major shells
and Nπ and Nν are the boson numbers (numbers of pairs). The
matrix elements of the operator in Eq. (42) are

⟨Nπ + 1, Nν − 1
∣∣P (0)

+πP
(0)
−ν

∣∣Nπ , Nν⟩

= απαν

√
(Nπ + 1)(%π − Nπ )(%ν − Nν + 1)Nν . (43)

The coefficients απ ,αν are characteristic quantities of each
major shell. The behavior (43) is shown in Fig. 6. (This
is slightly different from the realistic calculation of Fig. 5
obtained with single-particle levels for protons slightly differ-
ent than for neutron.) Equation (43) provides a simple estimate
of M (0ν). As an example of application of Eq. (43), consider the
ratio 128

52 Te76/
130
52 Te78. For Te, protons and neutrons are in the

50–82 shell, %π = %ν = 16 and Nπ = 1 and Nν = 13(128Te),
Nν = 14 (130Te). From (43) one obtains

M (0ν)(128Te)
M (0ν)(130Te)

= 1.11. (44)

The result of our calculation (IBM-2 in Table IV) gives
M (0ν)(128Te)/M (0ν)(130Te) = 4.517

4.059 = 1.11. This calculation
includes FSC and SRC effects. Formula (43), derived in GS
and spherical nuclei, appears also to be valid for the full
calculation (IBM-2) and weakly deformed nuclei. The analogy
between neutrinoless double-β decay and 2n and 2p transfer
suggests that the physical decay occurs in a correlated pair
and is thus enhanced by pairing correlations. It also allows a
model-independent prediction for ratios of matrix elements,
by resorting to experimental data for 2n (and 2p) transfer
reactions

A
ZXN (p, t)AZXN−2. (45)

The intensities of these reactions are proportional to the square
of the matrix elements of the operator P

(0)
−ν and thus, for fixed

proton number, to the square of the matrix elements M (0ν). As
reported in Ref. [23], the experimental two-neutron transfer
reactions in Te appear to be well described by Eq. (43).

The relation described above is also well satisfied by
QRPA. For example, from Table IV, row QRPA, we have
M (0ν)(128Te)/M (0ν)(130Te) = 3.770

3.338 = 1.13.
We suggest that the relation

M (0ν) ≃ απαν

√
Nπ + 1

√
Nν

√
%π − Nπ

√
%ν − Nν + 1

(46)

be used to estimate M (0ν) for spherical and weakly deformed
nuclei with A >∼ 60. By fitting our calculation in 76Ge with (43)
we find απαν = 0.186 for protons and neutrons in the 28–
50 shell and by fitting in 128Te we find απαν = 0.114 for
protons and neutrons in the 50–82 shell. These values are used
in Fig. 6, where also the two points 128Te and 130Te are shown.

As mentioned above, this estimate applies to spherical
and weakly deformed nuclei. For strongly deformed nuclei,
it should be modified as discussed in Ref. [23].

C. Effects of deformation

The effects of deformation can be easily seen within the
microscopic IBM framework. In spherical nuclei, the ground
state is composed of S pairs (s bosons) and is well described
by generalized seniority. As the deformation increases, the
number of d-bosons in the ground state increases, reaching
a maximum of (2/3)(Nπ + Nν) in SU(3) nuclei. The effects
of the deformation are the differences between the rows GS
and IBM-2 in Table I. For the nuclei described in this article,
the effect is a reduction by about 20%. The advantage of the
method discussed in this article is that one can do calculations
in any nucleus with A >∼ 70. For semimagic nuclei, one can
use GS, whereas for all others one can use IBM-2. To study
further the effects of strong defomation, we are planning to
calculate the matrix elements in the decay of 160Gd, 232Th, and
238U, for which we need first to obtain realistic wave functions
that describe accurately all observed properties. The results of
the calculation will be presented in a forthcoming publication.

044301-9

J. Barea and F. Iachello, Phys. Rev. C 79, 044301 (2009)
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FIG. 1. (Color online) Gamow-Teller part of the nuclear matrix element, M0ν
GT, for Ca→Ti (a), Ti→Cr (b) and Cr→Fe (c) 0νββ decays,

calculated with shell model (SM) and energy density functional (EDF) methods. The D1S EDF interaction is used (circles). In the SM case,
the KB3G (squares) and GXPF1A (lozenges) effective interactions are employed.

Refs. [31,50]. Maxima are more marked in SM calculations,
where the initial and final states share the same isospin
quantum number, T . In the SM case the two states are exactly
isospin-symmetric, because Coulomb and isospin-symmetry-
breaking terms in the nuclear interaction are neglected, but the
overlap between mirror initial and final states is also maximal
in the EDF approach, which includes the Coulomb term. For
EDF calculations, however, T is not a good quantum number.

The configuration space and nuclear correlations included
in SM and EDF calculations are very different, with the SM
being able to take into account more general correlations but
in a rather limited valence space. Regarding the size of the
configuration space it is important to note that in the pf shell
the SM includes all orbitals with their corresponding spin-
orbit partner. This is relevant because in the 0νββ decay of
heavier nuclei, some spin-orbit partners are not included in
SM calculations, and this has been pointed out as a possible
cause of the relatively small SM NMEs. The SM calculations
analyzed in this work are thus free from this shortcoming.

We can get more insight in the comparison of SM and
EDF NMEs by simplifying the nuclear structure correlations
present in the initial and final states of the 0νββ decay. Figure 2
shows M0ν

GT calculated with the same transition operator as
Fig. 1, but with simplified nuclear states. For the EDF, spherical
symmetry is assumed. In the SM case, only configurations
with zero seniority (s = 0) are permitted, this is, protons and
neutrons are coupled in J = 0 pairs; no proton-neutron J =
0 pairs are included. We observe that the GT parts of the
NMEs calculated in these simplified schemes are significantly
larger than in the full calculation for both approaches, with a

striking agreement between SM and EDF NMEs. Indeed SM
GXPF1A calculations lie within 10% of EDF values, while
SM KB3G calculations are about 25% larger. The difference
between the two SM results stems from the different J = 0,
T = 1 pairing. As shown in Fig. 1, this difference between
effective interactions is washed out when full calculations are
performed. The agreement between SM and EDF NMEs is in
strong contrast with the full NME calculations shown in Fig. 1,
where SM NMEs were half of the EDF values.

This implies that the spherical EDF and seniority-zero
SM calculations, while conceptually very different, capture
approximately the same physics, leaving out the nuclear
structure correlations that reduce the 0νββ decay NMEs.
Some of these have been identified in Refs. [15,17,31] as the
correlations associated with high-seniority components in the
SM, and collective deformation effects in EDF calculations.
High seniority components have been also studied within the
QRPA in Ref. [21].

Figure 2 also shows that the trends followed by the NMEs
calculated in both approaches are very similar, and indeed
they follow to a good approximation the generalized seniority
scheme in a single shell [51]:

M0ν
GT ≃ απαν

√
Nπ + 1

√
%π − Nπ

√
Nν

√
%ν − Nν + 1,

(6)

where Nπ(ν) is the number of proton (neutron) pairs in the shell,
%π(ν) the pair degeneracy and απ(ν) coefficients characteristic
of a major shell. Deviations from Eq. (6) are due to nonperfect
shell closures and the A dependence in the neutrino potentials.
The “inverted parabola” from initial number of neutrons

20 24 28 32 36
Number of Neutrons (initial)

2

3

4

5

6

M
 G

T

EDFsph (D1S)
SMsen=0 (KB3G)
SMsen=0 (GXPF1A)

(a) Ca Ti

20 24 28 32 36
Number of Neutrons (initial)

 

(b) Ti Cr

20 24 28 32 36
Number of Neutrons (initial)

 

(c) Cr Fe

0

FIG. 2. (Color online) Gamow-Teller part of the nuclear matrix element, M0ν
GT, for Ca→Ti (a), Ti→Cr (b), and Cr→Fe (c) 0νββ decays,

with seniority-zero shell model (SM) and spherical energy density functional (EDF) states. Interactions are as in Fig. 1.
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FIG. 1. (Color online) Gamow-Teller part of the nuclear matrix element, M0ν
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calculated with shell model (SM) and energy density functional (EDF) methods. The D1S EDF interaction is used (circles). In the SM case,
the KB3G (squares) and GXPF1A (lozenges) effective interactions are employed.

Refs. [31,50]. Maxima are more marked in SM calculations,
where the initial and final states share the same isospin
quantum number, T . In the SM case the two states are exactly
isospin-symmetric, because Coulomb and isospin-symmetry-
breaking terms in the nuclear interaction are neglected, but the
overlap between mirror initial and final states is also maximal
in the EDF approach, which includes the Coulomb term. For
EDF calculations, however, T is not a good quantum number.

The configuration space and nuclear correlations included
in SM and EDF calculations are very different, with the SM
being able to take into account more general correlations but
in a rather limited valence space. Regarding the size of the
configuration space it is important to note that in the pf shell
the SM includes all orbitals with their corresponding spin-
orbit partner. This is relevant because in the 0νββ decay of
heavier nuclei, some spin-orbit partners are not included in
SM calculations, and this has been pointed out as a possible
cause of the relatively small SM NMEs. The SM calculations
analyzed in this work are thus free from this shortcoming.

We can get more insight in the comparison of SM and
EDF NMEs by simplifying the nuclear structure correlations
present in the initial and final states of the 0νββ decay. Figure 2
shows M0ν

GT calculated with the same transition operator as
Fig. 1, but with simplified nuclear states. For the EDF, spherical
symmetry is assumed. In the SM case, only configurations
with zero seniority (s = 0) are permitted, this is, protons and
neutrons are coupled in J = 0 pairs; no proton-neutron J =
0 pairs are included. We observe that the GT parts of the
NMEs calculated in these simplified schemes are significantly
larger than in the full calculation for both approaches, with a

striking agreement between SM and EDF NMEs. Indeed SM
GXPF1A calculations lie within 10% of EDF values, while
SM KB3G calculations are about 25% larger. The difference
between the two SM results stems from the different J = 0,
T = 1 pairing. As shown in Fig. 1, this difference between
effective interactions is washed out when full calculations are
performed. The agreement between SM and EDF NMEs is in
strong contrast with the full NME calculations shown in Fig. 1,
where SM NMEs were half of the EDF values.

This implies that the spherical EDF and seniority-zero
SM calculations, while conceptually very different, capture
approximately the same physics, leaving out the nuclear
structure correlations that reduce the 0νββ decay NMEs.
Some of these have been identified in Refs. [15,17,31] as the
correlations associated with high-seniority components in the
SM, and collective deformation effects in EDF calculations.
High seniority components have been also studied within the
QRPA in Ref. [21].

Figure 2 also shows that the trends followed by the NMEs
calculated in both approaches are very similar, and indeed
they follow to a good approximation the generalized seniority
scheme in a single shell [51]:
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(6)

where Nπ(ν) is the number of proton (neutron) pairs in the shell,
%π(ν) the pair degeneracy and απ(ν) coefficients characteristic
of a major shell. Deviations from Eq. (6) are due to nonperfect
shell closures and the A dependence in the neutrino potentials.
The “inverted parabola” from initial number of neutrons
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FIG. 2. (Color online) Gamow-Teller part of the nuclear matrix element, M0ν
GT, for Ca→Ti (a), Ti→Cr (b), and Cr→Fe (c) 0νββ decays,

with seniority-zero shell model (SM) and spherical energy density functional (EDF) states. Interactions are as in Fig. 1.
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- NMEs are reduced with respect to the 
spherical value when correlations are included.


- The biggest reduction is produced by angular 
momentum restoration and configuration 
mixing produces an increase of the NME.


- Cross-check nuclei: 42Ca, 50Ca, 56Fe J. Menéndez, T. R. R., A. Poves, G. Martínez-Pinedo, PRC 90, 024311 (2014).
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corresponding PES to calculate the NMEs (EDFmin). Finally,
the full EDF calculation uses self-consistent shape mixing of
the collective states, within the GCM framework, to obtain the
NMEs (EDFfull).

Figure 3 shows that the M0ν
GT pattern found with EDF

spherical states disappears when PES minima are used.
Moreover, the NMEs are significantly reduced when the
deformation effects are included. Furthermore, the full EDF
NMEs roughly follow the trends of the PES minima solution,
and configuration (shape) mixing only produces a shift to
larger values, which is larger in the Ti and Cr decays after
the neutron f7/2 orbital is filled.

Figure 4 compares SM calculations of NMEs obtained
using the KB3G interaction with seniority-zero initial and
final states and the full pf calculation. In addition, NMEs for
the exact isospin projection of seniority-zero states are also
compared. The left-hand panels in Figure 4—panels (a), (c),
and (e)—show that the Fermi components of the NMEs are
strongly reduced when projection to good isospin is performed.
Therefore, 0νββ decay calculations where isospin symmetry is
not conserved are expected to significantly overestimate M0ν

F .
In particular the ratio of Fermi to GT components, defined
as χF = (gV /gA)2M0ν

F /M0ν
GT, is reduced from −χF ∼ 0.3, for

seniority-zero calculations without good isospin, to −χF ∼
0.15, for the complete pf results where isospin symmetry is
conserved. Typical χF values obtained in QRPA and IBM cal-
culations are −χF ∼ 0.3, . . . ,0.4 [19,22], while EDF values
range −χF ∼ 0.20, . . . ,0.25. The sizable χF values reflect the
isospin nonconservation of these calculations. Very recently
Ref. [19] attempted an approximate restoration of isospin
symmetry in the context of the QRPA, leading to a reduction
of Fermi matrix elements up to −χF ∼ 0.20, . . . ,0.25.

On the other hand, the right-hand panels in Fig. 4—panels
(b), (d), and (f)—show that isospin projection is only a small
correction to M0ν

GT. For the GT component, the reduction
is maximal at N = Z nuclei, and non-negligible in general,
but it becomes very minor in the most neutron-rich systems.
Therefore, the impact of isospin projection to M0ν

GT is expected
to be modest. The correlations associated with high-seniority
components in the initial and final states are responsible for the
strong reduction of M0ν

GT, and these correlations also wash out
the trend which appears with seniority-zero initial and final
states. In addition, it follows from Figs. 3 and 4 that these
correlations reduce the NMEs more significantly than the ones
associated with collective deformation in the EDF approach.

Figure 5 gives a detailed account of the evolution of the
SM M0ν

GT and M0ν
F parts of the NMEs as a function of the

maximum seniority allowed in the initial and final nuclear
states. This figure shows that for the 50Ca→50Ti 0νββ decay,
which relates two semimagic nuclei, seniority components
up to s = 4 are necessary for a reliable M0ν

GT and M0ν
F

calculation. The seniority decomposition of the full SM states
in s = 0/s = 4/s > 4 components is 97%/3%/0% for 50Ca
and 77%/21%/2% for 50Ti. On the other hand, higher seniority
components up to s = 8 are needed in the 48Ti→48Cr decay.
In this case the decomposition in seniority is 58%/37%/5%
for the s = 0/s = 4/s > 4 parts in 48Ti and 27%/42%/31%
for 48Cr. High-seniority components are therefore associated
with the description of the deformed 48Cr.
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FIG. 5. (Color online) Gamow-Teller [M0ν
GT, panels (a),(b)] and

Fermi [M0ν
F , panels (c),(d)] parts of the nuclear matrix element of the

0νββ decays of 50Ca→50Ti [panels (a),(c)] and 48Ti→48Cr [panels
(b),(d)]. Shell model (SM) results are shown as a function of the
maximum seniority permitted in the initial and final states (squares),
and also after isospin projection (circles). Energy density functional
(EDF) results using spherical initial and final states (dashed lines)
and the full EDF calculation (dashed-dotted lines) are also shown.
The EDF Gogny D1S and SM KB3G interactions are used.

Spherical and full EDF results are also shown in Fig. 5.
We have discussed above that spherical EDF results roughly
correspond to seniority-zero SM calculations. However, the
full EDF NMEs behave quite differently in the two decays
shown in in Fig. 5. For 50Ca→50Ti decay, the final EDF number
agrees with the results of the spherical NME calculation.
This is due to the semimagic character of the initial and
final states, which prevents any collective correlation in these
nuclei (this also applies to the 42Ca→42Ti decay). In contrast,
the full NMEs for the 48Ti→48Cr decay get contributions
from collective deformation and shape mixing. These final
NMEs are roughly equivalent to the SM s = 6 results.
This suggests that correlations associated to high-seniority
components in the SM are not completely captured in EDF
calculations. These could be partially responsible for the
differences between SM and EDF NMEs shown in Fig. 1.
Since the EDF states are built as linear combinations of
projected Hartree-Fock-Bogoliubov-type states with different
axial quadrupole deformations, these intrinsic states are fully
paired—in time-reversed single-particle orbits—by definition.
Therefore, pair-breaking in the seniority scheme is obtained
by deforming the system, but not by including explicitly
quasiparticle excitations on top of each intrinsic state. A step
further, beyond the scope of this work, would include on
equal footing both pair-breaking mechanisms into the GCM
framework, and study their influence in the NMEs.
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corresponding PES to calculate the NMEs (EDFmin). Finally,
the full EDF calculation uses self-consistent shape mixing of
the collective states, within the GCM framework, to obtain the
NMEs (EDFfull).

Figure 3 shows that the M0ν
GT pattern found with EDF

spherical states disappears when PES minima are used.
Moreover, the NMEs are significantly reduced when the
deformation effects are included. Furthermore, the full EDF
NMEs roughly follow the trends of the PES minima solution,
and configuration (shape) mixing only produces a shift to
larger values, which is larger in the Ti and Cr decays after
the neutron f7/2 orbital is filled.

Figure 4 compares SM calculations of NMEs obtained
using the KB3G interaction with seniority-zero initial and
final states and the full pf calculation. In addition, NMEs for
the exact isospin projection of seniority-zero states are also
compared. The left-hand panels in Figure 4—panels (a), (c),
and (e)—show that the Fermi components of the NMEs are
strongly reduced when projection to good isospin is performed.
Therefore, 0νββ decay calculations where isospin symmetry is
not conserved are expected to significantly overestimate M0ν

F .
In particular the ratio of Fermi to GT components, defined
as χF = (gV /gA)2M0ν

F /M0ν
GT, is reduced from −χF ∼ 0.3, for

seniority-zero calculations without good isospin, to −χF ∼
0.15, for the complete pf results where isospin symmetry is
conserved. Typical χF values obtained in QRPA and IBM cal-
culations are −χF ∼ 0.3, . . . ,0.4 [19,22], while EDF values
range −χF ∼ 0.20, . . . ,0.25. The sizable χF values reflect the
isospin nonconservation of these calculations. Very recently
Ref. [19] attempted an approximate restoration of isospin
symmetry in the context of the QRPA, leading to a reduction
of Fermi matrix elements up to −χF ∼ 0.20, . . . ,0.25.

On the other hand, the right-hand panels in Fig. 4—panels
(b), (d), and (f)—show that isospin projection is only a small
correction to M0ν

GT. For the GT component, the reduction
is maximal at N = Z nuclei, and non-negligible in general,
but it becomes very minor in the most neutron-rich systems.
Therefore, the impact of isospin projection to M0ν

GT is expected
to be modest. The correlations associated with high-seniority
components in the initial and final states are responsible for the
strong reduction of M0ν

GT, and these correlations also wash out
the trend which appears with seniority-zero initial and final
states. In addition, it follows from Figs. 3 and 4 that these
correlations reduce the NMEs more significantly than the ones
associated with collective deformation in the EDF approach.

Figure 5 gives a detailed account of the evolution of the
SM M0ν

GT and M0ν
F parts of the NMEs as a function of the

maximum seniority allowed in the initial and final nuclear
states. This figure shows that for the 50Ca→50Ti 0νββ decay,
which relates two semimagic nuclei, seniority components
up to s = 4 are necessary for a reliable M0ν

GT and M0ν
F

calculation. The seniority decomposition of the full SM states
in s = 0/s = 4/s > 4 components is 97%/3%/0% for 50Ca
and 77%/21%/2% for 50Ti. On the other hand, higher seniority
components up to s = 8 are needed in the 48Ti→48Cr decay.
In this case the decomposition in seniority is 58%/37%/5%
for the s = 0/s = 4/s > 4 parts in 48Ti and 27%/42%/31%
for 48Cr. High-seniority components are therefore associated
with the description of the deformed 48Cr.
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FIG. 5. (Color online) Gamow-Teller [M0ν
GT, panels (a),(b)] and

Fermi [M0ν
F , panels (c),(d)] parts of the nuclear matrix element of the

0νββ decays of 50Ca→50Ti [panels (a),(c)] and 48Ti→48Cr [panels
(b),(d)]. Shell model (SM) results are shown as a function of the
maximum seniority permitted in the initial and final states (squares),
and also after isospin projection (circles). Energy density functional
(EDF) results using spherical initial and final states (dashed lines)
and the full EDF calculation (dashed-dotted lines) are also shown.
The EDF Gogny D1S and SM KB3G interactions are used.

Spherical and full EDF results are also shown in Fig. 5.
We have discussed above that spherical EDF results roughly
correspond to seniority-zero SM calculations. However, the
full EDF NMEs behave quite differently in the two decays
shown in in Fig. 5. For 50Ca→50Ti decay, the final EDF number
agrees with the results of the spherical NME calculation.
This is due to the semimagic character of the initial and
final states, which prevents any collective correlation in these
nuclei (this also applies to the 42Ca→42Ti decay). In contrast,
the full NMEs for the 48Ti→48Cr decay get contributions
from collective deformation and shape mixing. These final
NMEs are roughly equivalent to the SM s = 6 results.
This suggests that correlations associated to high-seniority
components in the SM are not completely captured in EDF
calculations. These could be partially responsible for the
differences between SM and EDF NMEs shown in Fig. 1.
Since the EDF states are built as linear combinations of
projected Hartree-Fock-Bogoliubov-type states with different
axial quadrupole deformations, these intrinsic states are fully
paired—in time-reversed single-particle orbits—by definition.
Therefore, pair-breaking in the seniority scheme is obtained
by deforming the system, but not by including explicitly
quasiparticle excitations on top of each intrinsic state. A step
further, beyond the scope of this work, would include on
equal footing both pair-breaking mechanisms into the GCM
framework, and study their influence in the NMEs.

024311-5

- The biggest reduction (in Shell 
model calculations) is produced by 
including higher seniority 
components in the nuclear wave 
functions.


- Isospin projection is relevant for the 
Fermi part of the NME and less 
important for the Gamow-Teller part.


- EDF does not include properly those 
higher seniority components, 
specially in spherical nuclei.


- p-n pairing effects could also be 
important in the reduction of the 
NME.
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corresponding PES to calculate the NMEs (EDFmin). Finally,
the full EDF calculation uses self-consistent shape mixing of
the collective states, within the GCM framework, to obtain the
NMEs (EDFfull).

Figure 3 shows that the M0ν
GT pattern found with EDF

spherical states disappears when PES minima are used.
Moreover, the NMEs are significantly reduced when the
deformation effects are included. Furthermore, the full EDF
NMEs roughly follow the trends of the PES minima solution,
and configuration (shape) mixing only produces a shift to
larger values, which is larger in the Ti and Cr decays after
the neutron f7/2 orbital is filled.

Figure 4 compares SM calculations of NMEs obtained
using the KB3G interaction with seniority-zero initial and
final states and the full pf calculation. In addition, NMEs for
the exact isospin projection of seniority-zero states are also
compared. The left-hand panels in Figure 4—panels (a), (c),
and (e)—show that the Fermi components of the NMEs are
strongly reduced when projection to good isospin is performed.
Therefore, 0νββ decay calculations where isospin symmetry is
not conserved are expected to significantly overestimate M0ν

F .
In particular the ratio of Fermi to GT components, defined
as χF = (gV /gA)2M0ν

F /M0ν
GT, is reduced from −χF ∼ 0.3, for

seniority-zero calculations without good isospin, to −χF ∼
0.15, for the complete pf results where isospin symmetry is
conserved. Typical χF values obtained in QRPA and IBM cal-
culations are −χF ∼ 0.3, . . . ,0.4 [19,22], while EDF values
range −χF ∼ 0.20, . . . ,0.25. The sizable χF values reflect the
isospin nonconservation of these calculations. Very recently
Ref. [19] attempted an approximate restoration of isospin
symmetry in the context of the QRPA, leading to a reduction
of Fermi matrix elements up to −χF ∼ 0.20, . . . ,0.25.

On the other hand, the right-hand panels in Fig. 4—panels
(b), (d), and (f)—show that isospin projection is only a small
correction to M0ν

GT. For the GT component, the reduction
is maximal at N = Z nuclei, and non-negligible in general,
but it becomes very minor in the most neutron-rich systems.
Therefore, the impact of isospin projection to M0ν

GT is expected
to be modest. The correlations associated with high-seniority
components in the initial and final states are responsible for the
strong reduction of M0ν

GT, and these correlations also wash out
the trend which appears with seniority-zero initial and final
states. In addition, it follows from Figs. 3 and 4 that these
correlations reduce the NMEs more significantly than the ones
associated with collective deformation in the EDF approach.

Figure 5 gives a detailed account of the evolution of the
SM M0ν

GT and M0ν
F parts of the NMEs as a function of the

maximum seniority allowed in the initial and final nuclear
states. This figure shows that for the 50Ca→50Ti 0νββ decay,
which relates two semimagic nuclei, seniority components
up to s = 4 are necessary for a reliable M0ν

GT and M0ν
F

calculation. The seniority decomposition of the full SM states
in s = 0/s = 4/s > 4 components is 97%/3%/0% for 50Ca
and 77%/21%/2% for 50Ti. On the other hand, higher seniority
components up to s = 8 are needed in the 48Ti→48Cr decay.
In this case the decomposition in seniority is 58%/37%/5%
for the s = 0/s = 4/s > 4 parts in 48Ti and 27%/42%/31%
for 48Cr. High-seniority components are therefore associated
with the description of the deformed 48Cr.
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FIG. 5. (Color online) Gamow-Teller [M0ν
GT, panels (a),(b)] and

Fermi [M0ν
F , panels (c),(d)] parts of the nuclear matrix element of the

0νββ decays of 50Ca→50Ti [panels (a),(c)] and 48Ti→48Cr [panels
(b),(d)]. Shell model (SM) results are shown as a function of the
maximum seniority permitted in the initial and final states (squares),
and also after isospin projection (circles). Energy density functional
(EDF) results using spherical initial and final states (dashed lines)
and the full EDF calculation (dashed-dotted lines) are also shown.
The EDF Gogny D1S and SM KB3G interactions are used.

Spherical and full EDF results are also shown in Fig. 5.
We have discussed above that spherical EDF results roughly
correspond to seniority-zero SM calculations. However, the
full EDF NMEs behave quite differently in the two decays
shown in in Fig. 5. For 50Ca→50Ti decay, the final EDF number
agrees with the results of the spherical NME calculation.
This is due to the semimagic character of the initial and
final states, which prevents any collective correlation in these
nuclei (this also applies to the 42Ca→42Ti decay). In contrast,
the full NMEs for the 48Ti→48Cr decay get contributions
from collective deformation and shape mixing. These final
NMEs are roughly equivalent to the SM s = 6 results.
This suggests that correlations associated to high-seniority
components in the SM are not completely captured in EDF
calculations. These could be partially responsible for the
differences between SM and EDF NMEs shown in Fig. 1.
Since the EDF states are built as linear combinations of
projected Hartree-Fock-Bogoliubov-type states with different
axial quadrupole deformations, these intrinsic states are fully
paired—in time-reversed single-particle orbits—by definition.
Therefore, pair-breaking in the seniority scheme is obtained
by deforming the system, but not by including explicitly
quasiparticle excitations on top of each intrinsic state. A step
further, beyond the scope of this work, would include on
equal footing both pair-breaking mechanisms into the GCM
framework, and study their influence in the NMEs.
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- The biggest reduction (in Shell 
model calculations) is produced by 
including higher seniority 
components in the nuclear wave 
functions.


- Isospin projection is relevant for the 
Fermi part of the NME and less 
important for the Gamow-Teller part.


- EDF does not include properly those 
higher seniority components, 
specially in spherical nuclei.


- p-n pairing effects could also be 
important in the reduction of the 
NME.
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More comparisons: see Nobuo’s talk! 
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preliminary
48Ca 48Ti NME (F/GT/T)

spherical -7.558 -20.497 -2.276/4.736/0.116

GCM:Q20 -7.670 -23.556 in progress

GCM:Q20+T=1 -7.855 -24.198 in progress

GCM:Q20+T=1+T=0 - -24.467 in progress

SM seniority 0 -7.578 -20.507 -2.287/4.783/0.116

SM full -7.959 -24.896 -0.234/0.886/0.057

• GCM and Shell Model calculations have been performed in the pf-shell with KB3G 
interactions both!


• Variational approach to SM results with GCM approaches is evident.

• Almost perfect agreement between SM seniority 0 and PN-VAP spherical calculations 

both for energies and NMEs! 

NME: pf-shell

T. R. R., J. Menéndez, … in progress
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๏ NMEs with EDF methods have been implemented exploring many 
degrees of freedom so far (axial quadrupole and octupole 
deformations, axial pp/nn pairing). Transitions between spherical 
and superfluid nuclei are the most favored ones. 

๏ Inclusion of proton-neutron pairing reduces the NMEs but it is 
difficult to implement in actual EDF applications. 

๏ Relativistic effects and tensor terms are small in the EDF 
framework 

๏ Systematic comparisons between ISM/EDF methods have been 
performed. Striking similarity between EDF spherical and SM 
seniority zero calculations is found. Is it confirmed by GCM 
calculations with SM interactions? 

Summary
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๏ Isospin mixing has to be done in the future. However, it is very 
involved (perhaps impossible) with the current Gogny EDFs? 

๏ Triaxiality has to be taken into account in A=76 decay (at least). 

๏ How relevant is the proper description of the spectra in 0νββ 
NMEs? 

๏ Odd-odd nuclei is still a major challenge for GCM calculations. 

๏ Computational time?!?

Some open questions


