Relativistic nuclear field theory and applications to single- and double-beta decay

Caroline Robin, Elena Litvinova

INT Neutrinoless double-beta decay program Seattle, June 13, 2017

K Relativistic Nuclear Field Theory: connecting the scales of nuclear physics from Quantum Hadrodynamics to emergent collective phenomena

Current developments: ground-state correlations in RNFT

Application to double-beta decay: some ideas

K Relativistic Nuclear Field Theory: connecting the scales of nuclear physics from Quantum Hadrodynamics to emergent collective phenomena

Nuclear response to one-body isospin-transfer external field: Gamow-Teller transitions, beta-decay half-lives and the "quenching" problem

Current developments: ground-state correlations in RNFT

Application to double-beta decay: some ideas

 ※ Conclusion & perspectives

Relativistic Nuclear Field Theory: foundations

Include complex configurations of nucleons step by step to:

 \star Keep the advantages of RPA methods: description of collectivity, applicability to many nuclei \star Ultimately achieve a highly-precise description of nuclear phenomena

Kelativistic Nuclear Field Theory: connecting the scales of nuclear physics from Quantum Hadrodynamics to emergent collective phenomena

Current developments: ground-state correlations in RNFT

Application to double-beta decay: some ideas

'

 \boldsymbol{n}

 $C(T)$

 \boldsymbol{n}

 \star Theoretically, all the information about these modes is contained in the proton-neutron response function

= propagator of 2 correlated proton and neutron (in the particle-hole channel)

$$
R_{pn,n'p'}^{ph}(t-t') = \langle 0|\mathcal{T}\left(\psi_p(t)\bar{\psi}_{n'}(t)\psi_n(t')\bar{\psi}_{p'}(t')\right)|0\rangle
$$

 \rightarrow For instance, the strength distribution is:

$$
S(E) = \sum_{f} |\langle \Psi_{f} | \hat{F} | \Psi_{i} \rangle|^{2} \delta(E - E_{f} + E_{i})
$$

\n
$$
= -\frac{1}{\pi} \lim_{\Delta \to 0^{+}} \text{Im } \langle \Psi_{i} | \hat{F}^{\dagger} R(E + i\Delta) \hat{F} | \Psi_{i} \rangle
$$

\n
$$
F^{\dagger} \ll \sqrt{\frac{P}{n}}
$$

\n
$$
F^{\dagger}
$$

\n
$$
P^{\dagger}
$$

\n

 \rightarrow the response of the mother nucleus (N,Z) gives information about the states of the daughter $(N+1,Z-1)$ or $(N-1,Z+1)$ nucleus

Problem: Integration over all intermediate times ⇒ complicated BSE, NpNh configurations:

Problem: Integration over all intermediate times ⇒ complicated BSE, NpNh configurations:

Solution: Time-Blocking Approximation [V.I. Tselyaev, Yad. Fiz. 50,1252 (1989)]

$$
R(\omega) = R^{0}(\omega) - iR^{0}(\omega)(\tilde{V} + \Phi(\omega))R(\omega)
$$

→ allowed configurations:
→ blocked: 3(q)p-3(q)h, 4(q)p4(q)h...

… but can be included in a next step (under development)

Gamow-Teller transitions in Nickel isotopes (Ni → Cu)

Low-energy GT strength and beta-decay half-lives

In the allowed GT approximation, it is determined by the low-lying GT strength:

Low-energy GT strength and beta-decay half-lives

 $S = \sum_{R}(CT^+)$ p

"Quenching problem":

The observed GT strength (\sim up to the GR region) in nuclei is \sim 30-40% less than the model independent Ikeda sum rule: $S_ - S_ + = 3(N-Z)$

 \Rightarrow some strength is pushed at high energies \rightarrow possible mechanisms?

 \star Coupling of 1p1h to Δ baryon (not done here)

p

 \star Coupling of 1p1h to higher-order configurations such as 2p2h, 3p3h... ⇒ important to introduce complex configurations in large model spaces

At present with RNFT+TBA:

 $\sqrt{2(q)}p-2(q)h$ configurations \blacktriangleright in an energy window from 30 MeV up to \sim 100 MeV in light or doubly magic nuclei

n

Gamow-Teller transitions and the "quenching" problem

Kelativistic Nuclear Field Theory: connecting the scales of nuclear physics from Quantum Hadrodynamics to emergent collective phenomena

Nuclear response to one-body isospin-transfer external field: Gamow-Teller transitions, beta-decay half-lives and the "quenching" problem

Current developments: ground-state correlations in RNFT

Application to double-beta decay: some ideas

Ground-state correlations (GSC) in the Green's functions formalism are generated by the so-called "backward-going diagrams":

$*$ In R(Q)RPA:

Ground-state correlations (GSC) in the Green's functions formalism are generated by the so-called "backward-going diagrams":

★ Currently in R(Q)TBA:

No new states \rightarrow these diagrams only shift the previous R(Q)TBA poles

S.P. Kamerdzhiev, G.Ya. Tertychny, V.I. Tselyaev, Fiz. Elem. Chastits At. Yadra 28, 333–390 (1997)

→ Very preliminary results:

S.P. Kamerdzhiev, G.Ya. Tertychny, V.I. Tselyaev, Fiz. Elem. Chastits At. Yadra 28, 333–390 (1997)

Kelativistic Nuclear Field Theory: connecting the scales of nuclear physics from Quantum Hadrodynamics to emergent collective phenomena

Nuclear response to one-body isospin-transfer external field: Gamow-Teller transitions, beta-decay half-lives and the "quenching" problem

Current developments: ground-state correlations in RNFT

Application to double-beta decay: some ideas

Application to double-beta decay: some ideas

***Two-neutrino double-beta decay amplitude:**

$$
A_{i\to f}^{2\nu\beta\beta} = -\frac{1}{2} \int d^4x_1 d^4x_2
$$

\n
$$
\times \langle \Psi_f; (\mathbf{p_1}, s_1); (\mathbf{p_2}, s_2); (\mathbf{q_1}, \sigma_1); (\mathbf{q_2}, \sigma_2) | \mathcal{T} (\mathcal{H}_{weak}(x_1) \mathcal{H}_{weak}(x_2)) | \Psi_i \rangle
$$

\n(N-2, Z+2)
\n
$$
\overline{\nu}_e
$$

\n
$$
\mathcal{H}_{weak}(x) = \frac{G_F}{\sqrt{2}} J_\mu(x) L^{\dagger \mu}(x)
$$

[…] → Inclusive probability for double-beta decay (after summation over final states):

$$
P^{(2\nu\beta\beta)} \sim G_F^4 \int d^3p_1 d^3p_2 d^3q_1 d^3q_2 dx_1^0 dx_2^0 dy_1^0 dy_2^0
$$

\n
$$
\times e^{i(p_1^0 + q_1^0)(x_1^0 - y_1^0)} e^{i(p_2^0 + q_2^0)(x_2^0 - y_2^0)}
$$

\n
$$
\times W_{\alpha\beta\mu\nu}(x_1^0, x_2^0, y_1^0, y_2^0) \mathcal{L}^{\alpha\beta\mu\nu}(p_1, p_2, q_1, q_2)
$$

\nHadronic tensor
\n
$$
W_{\alpha\beta\mu\nu}(x_1^0, x_2^0, y_1^0, y_2^0) = \sum_{p_1 \dots p_4, n_1 \dots n_4} \langle n_4 | J_\alpha^\dagger | p_4 \rangle \langle n_3 | J_\beta^\dagger | p_3 \rangle
$$

\n
$$
\times \mathcal{R}^{(4)}_{n_4 p_4, n_3 p_3, p_1 n_1, p_2 n_2}(y_2^0, y_1^0, x_1^0, x_2^0) \langle p_1 | J_\mu | n_1 \rangle \langle p_2 | J_\nu | n_2
$$

\n
$$
J_\beta^\dagger \sim \frac{p_3}{\sqrt{\frac{p_3}{n_3}}} \mathcal{R}^{(4)} \mathcal{R}^{(4)} \mathcal{R}^{(4)} \mathcal{R}^{p_2} \sim J_\nu
$$

Decomposition of the four-nucleon Green's function:

$$
\mathcal{R}^{(4)} = \sum \mathcal{R}^{(2)} \mathcal{R}^{(2)} + \mathcal{R}^{(3)C} \mathcal{R}^{(1)} + \mathcal{R}^{(4)C}
$$

* Decomposition of the four-nucleon Green's function:

 \rightarrow Possible approximation: neglect pure three- and four-body correlations

Neutral particle-particle

Proton-neutron particle-particle

Kelativistic Nuclear Field Theory: connecting the scales of nuclear physics from Quantum Hadrodynamics to emergent collective phenomena

Nuclear response to one-body isospin-transfer external field: Gamow-Teller transitions, beta-decay half-lives and the "quenching" problem

Current developments: ground-state correlations in RNFT

Application to double-beta decay: some ideas

→ Conclusions/Perspectives:

- \star The RNFT appears as a powerful framework for the microscopic description of mid-mass to heavy nuclei, which allows the account for complex configurations of nucleons in a large model space.
- ★ So far encouraging applications to single Gamow-Teller/beta-decay. RNFT can tackle the challenge of describing both the low-energy strength and overall distribution to higher excitation energy.
- \star Current extensions to higher-order correlations in the ground state appear promising. Also ongoing: Inclusion of Np-Nh configurations in the response via iterative techniques.
- Ongoing extensions to double-charge exchange and double-beta decay (2νββ and 0νββ)
- ***** Long-term goals: inclusion of the Fock term, inclusion of two-body currents and Delta resonance, start from bare interaction.

Support: US-NSF Grants PHY-1404343 and PHY-1204486

Conclusion, perspectives

→ Conclusions/Perspectives:

- \star The RNFT appears as a powerful framework for the microscopic description of mid-mass to heavy nuclei, which allows the account for complex configurations of nucleons in a large model space.
- \star So far encouraging applications to single Gamow-Teller/beta-decay. RNFT can tackle the challenge of describing both the low-energy strength and overall distribution to higher excitation energy.

Thank you!

 \star Current extensions to the ground state appear promising.

Also ongoing: Inclusion of Np-Nh configuration of Np-Nh configurations in the response via iterative techniques.

Ongoing extensions to double-charge exchange and double-beta decay (2νββ and 0νββ)

***** Long-term goals: inclusion of the Fock term, inclusion of two-body currents and Delta resonance, start from bare interaction.

> **Support: US-NSF Grants PHY-1404343 and PHY-1204486**