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NUCLEAR HAMILTONIANS
The non-relativistic approach to nuclear physics is based on the use of a 
model nucleon-nucleon force.

Chiral EFT

Pionless EFT

Phenomenological

Ab initio calculations?  
Ok, strictly speaking we should solve QCD…. 
We are not  alone! Cfr. chemistry: 

“Ab initio”: all electrons, 
Coulomb force only

“Effective” force fields 
among atoms 

(GROMOS, AMBER,..)

?



22 S. Aoki et al. (HAL QCD Collaboration),
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Fig. 10. Left: The central potential in the 1S0 channel of the ΛN system in 2+ 1 flavor QCD as a
function of r. Right: The central potential in the 1S0 channel of the ΣN(I = 3/2) system as a
function of r.
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Fig. 11. Left: The central potential (circle) and the tensor potential (triangle) in the 3S1 −3 D1

channel of the ΛN system as a function of r. Right: The central potential (circle) and the tensor
potential (triangle) in the 3S1 −

3 D1 channel of the ΣN(I = 3/2) system as a function of r.

ΛN central potential in the 1S0 channel, while the tensor potential itself (triangle)
is weaker than the tensor potential in the NN system.44)

The right panel of Fig. 11 shows the central potential (circle) and the tensor
potential (triangle) of the ΣN(I = 3/2) system in the 3S1 −3 D1 channel. Due
to the isospin symmetry, this channel belongs solely to the flavor 10 representation
without mixture of 10 or 8a As seen from the figure, there is no clear attractive well in
the central potential (circle). This repulsive nature of the ΣN(I = 3/2,3 S1 −3 D1)
central potential is consistent with the prediction from the naive quark model.45)

The tensor force is a little stronger that that of the ΛN system but is still weaker in
magnitude than that of the NN system.

5.2. ΞN potential in quenched QCD

Experimentally, not much information is available on the NΞ interaction ex-
cept for a few studies: a recent report gives the upper limit of elastic and inelastic
cross sections46) while earlier publications suggest weak attractions of Ξ− nuclear
interactions.47)–49) The Ξ−nucleus interactions will be soon studied as one of the

RELATION TO LQCD

S. Aoki et al.(HAL-QCD collaboration)
Route 1: compute nn potentials on the lattice

Notice: 
Potential energy is not 
an observable, and 
this determination is 
not univocal!



NPLQCD Collaboration, PRD 87 034506 (2013)

• LQCD simulations with SUf (3) symmetry 
• Large pion mass mπ = 800MeV 
• Results with mπ ~ 450 MeV are available. 
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• As of today LQCD simulations for A ≥ 2 nuclei are still away from the 
physical value of the pion mass. 

• The debate about whether reliable and/or usable NN interactions can 
be derived from lattice simulations is still open. 

A REASONABLE PROCEDURE:
 
• Quark and gluon degrees of freedom are replaced by baryons and 

mesons.  
LQCD(q, G) → LNucl(N, π, . . .) 

• The LNucl(N,π,…) is constructed to retain QCD  symmetries. 
• LNucl(N,π,…) is an expansion in “low momentum” Q. 
• Contains all terms compatible with QCD up to a ”given order”. 
• The low-energy coupling constants of the theory (LECs) are explicit 

function of a “momentum cutoff” Λ.  

LQCD AND EFT (IN A NUTSHELL…)



• The  nucleon mass Mn, and the difference with 
the mass of the D baryon dM=MD-Mn

• The pion mass mp, pion exchange momentum & 
energy

• Nuclear binding energy

For mp ~ 800 MeV the natural effective theory is a pion-less 
theory, in which the only active degrees of freedom are nucleons

ENERGY SCALES
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Lattice QCD EFT for Lattice Nuclei EFT Potential at NLO AFDMC Calibration Predictions for LQCD Conclusions

EFT for Lattice Nuclei

Energy Scales

• Nucleon mass Mn, and the difference with the mass of the ∆ baryon
δM = M∆ − Mn

• The pion mass mπ , pion exchange momentum qπ = mπ/h̄c, and energy

Eπ =
h̄2q2

π

Mn
=

mπ

Mn
mπ

• Nuclear binding energy B/A

Scale Nature LQCD@mπ=500MeV LQCD@mπ=800MeV
Mn 940 MeV 1300 MeV 1600 MeV
δM 300 MeV 300 MeV 180 MeV
mπ 140 MeV 500 MeV 800 MeV
Eπ 20 MeV 200 MeV 400 MeV

B/A 10 MeV 15 Mev 25 MeV

Conclusions
• For the nature case L −→ LEFT(N, π)

• For lattice nuclei at mπ ≥ 400MeV, Eπ ≫ B/A
• In this case π/EFT is the natural theory L −→ LEFT(N)



  

•Higher order terms include more derivatives.  

• Very naively, the order goes as the number of derivatives (beware of    …) 

• The 3-body term appears at LO to avoid the Thomas collapse (theory must be 
renormalizable at all orders!)  

• The coefficients depend on the cutoff Λ. 

Some further wishes (mostly QMC related)  
• The potential needs to be local. 
• Avoid 3-body spin-isospin operators.  

L = N†
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π/EFT for Lattice Nuclei

• We write all possible terms in the Lagrangian L
ordered by the number of derivatives:

L = N†

(
i∂0 +

∇⃗
2M

)
N − a1N†NN†N − a2N†σN · N†σN

−a3N†τN · N†τN − a4N†στN · N†στN + . . .
−d1N†τN · N†τNN†N

• Higher order terms include more derivatives.
• Naively, the order goes as the number of derivatives.
• The 3-body term appears at LO to avoid the Thomas

collapse.
• Due to Fermi symmetry the number of terms can be

cut by half.
• The coefficients depend on the cutoff Λ.

Some further wishes (to be explained later)

• The potential needs to be local.
• Avoid 3-body spin-isospin operators.

PIONLESS EFT LAGRANGIAN

@



WHY PIONLESS?

For a 2 body system typical momentum related to the 
poles in the S matrix: Q2 =

p
mNB2

Can we extend it to A nucleon systems?

QA =

r
mN

BA

A

Hyp.: All nucleons contribute 
equally on average

m⇡This should be compared to        the breakdown scale of the theory.

m⇡=140MeV m⇡=510MeV m⇡=805MeV
mN (MeV) 940 1300 1600
B4 (MeV) 28 40* 120*
Q4 (MeV) 115 161 310
B16 (MeV) 127 150* 500*
Q16 (MeV) 122 156 316

N. Barnea, L. Contessi, D. Gazit, F. Pederiva, U. van Kolck, EffectiveField Theory for Lattice Nuclei, 
Phys. Rev. Lett. 114 (5) (2015) 052501.arXiv:1311.4966
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The leading order contains no momentum dependence, therefore:

V 2b
LO(r) =

⇥
CLO(⇤)1 + CLO(⇤)2 ~�1 · ~�2

⇤
e�⇤2r2/4

All expectations will have in principle 
a residual dependence on L. We 
require the theory to be renormalized 
at all orders.

If we see a cutoff dependence on 
observables, this means that we are 
not using the correct power counting.

CONSEQUENCE
We need a three-body force at 
leading order
No evidence of a 4-body 
interaction at leading order.

20/04/16 INT:	Nuclear	Physics	from	Lattice	QCD	-
Effective	theory	for	lattice	nuclei 45

About	the	cut-off
Every	order	will	have	a	residual	cut	off	dependence	that	will	be	absorbed	(in	part)	
in	the	next	order:

› If	you	see	a	cutoff	dependence	on	observables	you	are	missing	something	on	power	
counting.

Example:	3-body	 forces	in	a	contact	theory	at	LO:

Using	only	a	2-body	attractive	contact	potential,	 the	3	(and	more)	body	system	become	very	
bound	 increasing	the	cut-off	 (not	cut-off	independence).	

› No	evidence	of	a	4-body	interaction	at	leading	order.

LQCD	 He	( 	Energy i 	
EFT	w/	out	3b	forces

EFT	w/	3b	force

[1] - S. R. Beane, E. Chang and al. [Phys. rev. D 87, 034506 (2013)]

He	
( Binding	energy	¿* = 805	MeV

“Thomas collapse”

COORDINATE SPACE FORMULATION



COORDINATE SPACE FORMULATION

After regularization and renormalization the LO Hamiltonian  
becomes:

20/04/16 INT:	Nuclear	Physics	from	Lattice	QCD	-
Effective	theory	for	lattice	nuclei 49

Contact	EFT

After	regularization in	the	coordinate	space:
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Contact	EFT
VF	
( Energy	(¿* = 510	¿Fs)

Effective Field Theory for Lattice Nuclei
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We show how nuclear effective field theory (EFT) and ab initio nuclear-structure methods can turn input
from lattice quantum chromodynamics (LQCD) into predictions for the properties of nuclei. We argue that
pionless EFT is the appropriate theory to describe the light nuclei obtained in LQCD simulations carried out
at pion masses heavier than the physical pion mass. We solve the EFT using the effective-interaction
hyperspherical harmonics and auxiliary-field diffusion Monte Carlo methods. Fitting the three leading-
order EFT parameters to the deuteron, dineutron, and triton LQCD energies at mπ ≈ 800 MeV, we
reproduce the corresponding alpha-particle binding and predict the binding energies of mass-5 and mass-6
ground states.

DOI: 10.1103/PhysRevLett.114.052501 PACS numbers: 21.45.-v, 12.38.Gc, 21.30.-x

Introduction.—Understanding the low-energy dynamics
of quantum chromodynamics (QCD), which underlies the
structure of nuclei, is a longstanding challenge posed by its
nonperturbative nature. After many years of development,
lattice QCD (LQCD) simulations are fulfilling their prom-
ise of calculating static and dynamical quantities with
controlled approximations. Progress has reached the point
where meson and single-baryon properties can be predicted
quite accurately, see for example Ref. [1]. Following the
pioneering studies in quenched [2] and fully dynamical [3]
LQCD, a substantial effort is now in progress to study light
nuclei [4–7]. Multinucleon systems are significantly more
difficult to calculate than single-baryon states, as they are
more complex, demand larger lattice volumes, and better
accuracy to account for the fine-tuning of the nuclear force.
At heavier light-quark masses, the formation of quark-
antiquark pairs is suppressed, the computational resources
required to generate LQCD configurations are reduced, and
the signal-to-noise ratio in multinucleon correlation func-
tion improves [7]. Therefore, present multinucleon LQCD
simulations are performed at heavy up and down quark
masses, which result in unphysical values for hadronic
quantities. Once lattice artifacts are accounted for using
large enough volumes and extrapolating to the continuum,
LQCD results depend on a single parameter, the pion mass
mπ . However, sufficiently large volumes are harder to
achieve as the number of nucleons increases due to the
saturation of the nuclear forces.
A hadronic effective field theory (EFT) that incorporates

chiral symmetry (chiral EFT) provides a tool to extrapolate
LQCD results to a smaller, more realistic pion mass [3,8].
Here we show how EFTs, combined with ab initiomethods
for the solution of the Schrödinger equation, provide a way

to extend LQCD results also to the larger distances
involved in nuclei with several nucleons. Of course, solving
the nuclear many-body problem is not a small challenge,
yet it is considerably simpler than solving QCD on the
lattice.
We devise an EFT for existing lattice nuclei, that is,

nuclei composed of neutrons and protons living in a world
where mπ is much larger than the physical pion mass. Pion
effects can be considered short-ranged, and the appropriate
theory is pionless EFT (πEFT), an EFT based on the most
general dynamics among nucleons which is consistent with
the symmetries of QCD. (For a review, see, e.g., Ref. [9]).
We solve this EFT in leading order (LO) using the effective-
interaction hyperspherical harmonics (EIHH) method [10]
for systems with A ≤ 6 nucleons, and the auxiliary-field
diffusion Monte Carlo (AFDMC) method [11,12] for
A ≥ 4. Binding energies of nuclei with A ≤ 3 are used
as input. The energy of the A ¼ 4 ground state provides a
consistency check between both ab initio methods, and
between them and LQCD. Binding energies for A ≥ 5 are
predictions that extend LQCD into new territory. In order to
evaluate the feasibility of our approach, we present here the
first analysis of the problem using recent multinucleon
LQCD results at mπ ¼ 805 MeV from the NPLQCD
collaboration [6]. Table I summarizes nucleon and light
nuclear data in nature and in the LQCD world, including
our results.
The modern approach to nuclear physics deploys ab ini-

tio methods such as the EIHH and ADFMC methods in the
solution of chiral EFT with coupling constants tuned to
experimental few-body data. Since the latter are replaced
here by LQCD data, our approach illustrates how even-
tually one will be able to derive the structure of real nuclei
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Spectra and scattering of light lattice nuclei from effective field theory
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An effective field theory is used to describe light nuclei, calculated from quantum chromodynamics on a lattice
at unphysically large pion masses. The theory is calibrated at leading order to two available data sets on two-
and three-body nuclei for two pion masses. At those pion masses we predict the quartet and doublet neutron-
deuteron scattering lengths, and the α-particle binding energy. For mπ = 510 MeV we obtain, respectively,
4anD = 2.3 ± 1.3 fm, 2anD = 2.2 ± 2.1 fm, and Bα = 35 ± 22 MeV, while for mπ = 805 MeV 4anD = 1.6 ±
1.3 fm, 2anD = 0.62 ± 1.0 fm, and Bα = 94 ± 45 MeV are found. Phillips- and Tjon-like correlations to the
triton binding energy are established. We find the theoretical uncertainty in the respective correlation bands to be
independent of the pion mass. As a benchmark, we present results for the physical pion mass, using experimental
two-body scattering lengths and the triton binding energy as input. Hints of subtle changes in the structure of the
triton and α particle are discussed.

DOI: 10.1103/PhysRevC.92.054002 PACS number(s): 21.45.−v, 12.38.Gc, 21.10.−k, 21.30.−x

I. INTRODUCTION

The vast number of phenomena of the nuclear chart
depend on a relatively small set of quantum chromodynamics
(QCD) parameters—in the low energies relevant for nuclear
physics, a mass scale MQCD associated to the strong coupling
constant, the masses mq of the two lightest quarks, the
electromagnetic coupling strength, and the vacuum angle.
Lattice QCD (LQCD) is a numerical framework which enables
us, at least in principle, to relate nuclear and QCD parameters,
once effects due to finite lattice spacing and size are removed.
The last few years have witnessed significant progress in
predicting the properties of light nuclei with nucleon number
A ! 4, but at relatively large quark masses and neglecting
time-reversal and isospin violation. (See Ref. [1] for a review
and a list of relevant references.)

Increasing A at fixed quark masses presents significant
difficulties because the noise-to-signal rate increases expo-
nentially. Although there seem to be ways around this problem
[1], large A also requires that longer distances be covered by
the lattice, since the nuclear volume increases with A. As in
other areas of physics, it is profitable to change to a more
effective description, in this case to an effective field theory
(EFT) involving nucleons as degrees of freedom. Because
an EFT is based on the most general Hamiltonian with the
appropriate symmetries, it is guaranteed to produce S-matrix
elements consistent with the S matrix of the underlying theory
[2], here QCD. After matching the EFT amplitudes to the
LQCD-calculated quantities at small A, one can describe the
longer-distance dynamics involved in larger-A systems within
the EFT [3], which is considerably simpler than doing so
directly within LQCD.

Most LQCD results so far concern binding energies, but
reactions convey much more information and will command
increasing attention in the years to come. Unfortunately, as

discussed in Ref. [4], which also summarizes the progress
in this field, volume artifacts are more pronounced. EFT quite
naturally accounts for scattering states, and allows bound states
and scattering to be treated on equal footing. Here we elaborate
on the findings of Ref. [3] for A ! 4 and extend, for the first
time, LQCD predictions to reactions involving nuclei. As an
example, we consider neutron-deuteron (nD) scattering at low
energies, where the two S-wave channels—with total spin
s = 3/2 (quartet) and s = 1/2 (doublet)—are most important.

The noise-to-signal rate in LQCD also increases with
decreasing mq . Results obtained with unphysical mq can, in
principle, be extrapolated to the physical point in a systematic
way using chiral effective field theory (χEFT), as long as
pion masses are within the radius of convergence of the
latter. From χEFT with up to one nucleon—that is, chiral
perturbation theory (χPT)—one obtains the mq dependence
of, for example, the average pion mass (mπ ) [5], and of the
nucleon (mN ) and Delta (m$) masses [6]. The mq dependence
of some few-nucleon observables has also been estimated [7],
but unfortunately significant uncertainties still exist due to
subtleties in the proper accounting of renormalization-group
(RG) invariance in this nonperturbative context [7–9].

The average pion mass mπ is commonly used as a measure
for the detuned value of the average quark mass. At present,
LQCD can be carried out in the meson and single-hadron sector
down to values of mπ close to physical, where the low-lying
mass spectrum is reproduced within theoretical error bars (see
Ref. [10] for a status report). Comparison with LQCD data
suggests that χPT converges for pion masses no larger than
about 500 MeV [11]. In contrast, the quark masses employed
in current nuclear LQCD are likely beyond reach of χEFT.

As proposed in Ref. [3] and elaborated here, the EFT that
describes existing light-nuclear LQCD data need not include
pions explicitly. In fact, it has been understood for over 15
years that even at the physical pion mass light nuclei are well

0556-2813/2015/92(5)/054002(15) 054002-1 ©2015 American Physical Society



THE NON RELATIVISTIC NUCLEAR PROBLEM

We will focus on the treatment of the many-nucleon problem 
as a non-relativistic quantum problem for A interacting 
nucleons (baryons). This means that we assume that the system 
is well described by a Hamiltonian, and observables can be 
predicted from the solution of the time independent 
Schroedinger equation: 

where is a A nucleon state, and 

12

A



Many-nucleon systems

Very accurate results 
have been obtained in 
the years for the ground 
state and some excitation 
properties of nuclei with 
A≤12 by the Argonne 
based group (GFMC 
calculations by Pieper, 
Wiringa, Carlson, 
Schiavilla…). These 
calculations include two- 
and three-nucleon 
interactions. -100
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• IL7: 4 parameters fit to 23 states
• 600 keV rms error, 51 states
• ~60 isobaric analogs also computed

Courtesy of R. Wiringa, ANL

PROBLEM
for realistic many-nucleon Hamiltonians, propagators must be evaluated 
on wave functions that have a number of components exponentially 
growing with A (spin/isospin singlet/triplet state for each pair of nucleons)



Many-Body theory: projection Monte Carlo
We compute ground state energies of nuclei by means of projection 
Monte Carlo methods. The ground state of a many-body system is 
computed by applying an “imaginary time propagator” to an arbitrary 
state that has to be non-orthogonal to the ground state (power method):

In the limit of “short” 𝜏 (let us call it “𝜟𝜏”), the propagator can be broken 
up as follows (Trotter-Suzuki formula):

Kinetic term Potential term (“weight”)

Sample a new point from the 
Gaussian kernel

Create a number of copies 
proportional to the weight

If the weight is small, the 
points are canceled.

14



Auxiliary Field Diffusion Monte Carlo 
(AFDMC)

The computational cost of GFMC can be reduced by introducing a way 
of sampling over the space of states, rather than summing explicitly 
over the full set. 
For simplicity let us consider only one of the terms in the interaction. 
We start by observing that:

Then, we can linearize the operatorial dependence in the propagator 
by means of an integral transform:

Linear combination 
of spin operators for 
different particles

Hubbard-Stratonovich transformation
K. E. Schmidt and S. Fantoni, Phys. Lett. B 446, 99 (1999).
S. Gandolfi, F. Pederiva, S. Fantoni, and K. E. Schmidt,
Phys. Rev. Lett. 99, 022507 (2007)

auxiliary fields→Auxiliary Field Diffusion Monte Carlo

K. E. Schmidt, S. Fantoni, A quantum Monte Carlo method for nucleon systems, Phys. Lett. B446 (1999)
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The operator dependence in the exponent has become linear. 

In the Monte Carlo spirit, the integral can be performed by sampling 
values of x from the Gaussian        . For a given x the action of the 
propagator will become:

In a space of spinors, each factor corresponds to a rotation induced by 
the action of the Pauli matrices

The sum over the states  
has been replaced by sampling rotations!
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CUTOFF DEPENDENCE OF THE POTENTIAL
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Contact	EFT

Potential qualitative shape

VF	
( Energy	(¿* = 510	¿Fs)

Qualitative potential behaviour Here calculations become hard!
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16O CALCULATIONS

Released node calculations (L. Contessi, A. Lovato, unpublished)



16O CALCULATIONS
L. Contessi, unpublished



16O CALCULATIONS
L. Contessi, unpublished



LINEAR OPTIMIZATION OF THE WAVEFUNCTION

In order to improve the results it is necessary to improve the importance/
reference wavefunction. This can be obtained by expanding the correlation and 
(even more important) the orbitals in order to have a phase as close as possible 
to the exact one. An improved version of the LM by Umrigar and Toulouse was 
used in this paper (A. Roggero and A. Lovato) 

S. Sorella et al.



LINEAR OPTIMIZATION OF THE WAVEFUNCTION
We consider a trial state dependent on a set of parameters {p1…pk}:

| ̄T (p)i =
| T (p)ip

h T (p)| T (p)i

Expanding the state in the parameters at first order we get:

| ̄lin
T (p)i = | ̄T (p

0)i+
NpX

i=1

�pi| ̄i
T (p

0)i

We then look for the  variation of the parameters 𝛥p that minimizes: 

Elin(p) ⌘
h ̄lin

T (p)|H| ̄lin
T (p)i

h ̄lin
T (p)| ̄lin

T (p)i

corresponding to solve the linear equation:

H̄�p = �E S̄�p

where H̄ and S̄ are the matrix elements of the Hamiltonian and the overlaps of the basis 

{| ̄T (p
0)i, | ̄1

T (p
0)i, . . . , | ̄Np

T (p0)i} where | i
T (p

0)i = @| T (p)i
@pi

���
p=p0

J. Toulouse and C. J. Umrigar, J. Chem. Phys. {\bf 126}, 084102 (2007), A. Lovato and A. Roggero, tbp



RESULTS FOR 4He

~30% error at LO expected from theory



RESULTS FOR 16O

m𝜋=805 MeV

m𝜋=510 MeV

m𝜋=140 MeV

L. Contessi, A. Lovato, F. Pederiva, A. Roggero, J. Kirscher, U. van Kolck, arXiv:1701.06516



RESULTS FOR 16O

𝛬=2
m𝜋=805 MeV

m𝜋=510 MeV

m𝜋=140 MeV

L. Contessi, A. Lovato, F. Pederiva, A. Roggero, J. Kirscher, U. van Kolck, arXiv:1701.06516



RESULTS FOR 16O

𝛬=2

𝛬=8

m𝜋=805 MeV

m𝜋=510 MeV

m𝜋=140 MeV

L. Contessi, A. Lovato, F. Pederiva, A. Roggero, J. Kirscher, U. van Kolck, arXiv:1701.06516
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CONSISTENCY OF PREDICTIONS

At present the LQCD data 
on 2,3 and 4 baryon 
systems are affected by 
very large statistical 
errors.  

The consistency of theory 
cannot be fully tested yet. 

NEED BETTER LQCD 
STATISTICS!



BEYOND LO…

PRE
LIM
INA
RY

VNLO = f⇤(q)[C
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CONCLUSIONS

• Pionless EFT is the correct theory to describe LQCD 
data for        > 500MeV, and it should work also at the 
physical value (at least for light nuclei, definitely for A  
≤ 4)       

• Three-body forces are necessary already at LO to 
avoid Thomas collapse. No evidence of the need of a 
4-body force (some serious hint that we will need it at 
NLO…) 

• At LO 16O is not bound with repeat to breakup in 4𝛼.  
• However: we can expect LO to have an error of ~30%. 
NLO could definitely give back the missing binding. 

m⇡


