Correlations

and

two-body currents in (electro)weak processes

Saori Pastore INT Program INT-17-2a - Neutrinoless Double-beta Decay Seattle WA - June 2017

WITH

Carlson & Gandolfi (LANL) - Schiavilla & Baroni (ODU/JLAB) - Wiringa & Piarulli & Pieper (ANL) Mereghetti & Dekens & Cirigliano (LANL)

REFERENCES

PRC78(2008)064002 - PRC80(2009)034004 - PRL105(2010)232502 - PRC84(2011)024001 - PRC87(2013)014006 PRC87(2013)035503 - PRL111(2013)062502 - PRC90(2014)024321 - JPhysG41(2014)123002 - PRC(2016)015501

Fundamental Physics Quests: Double Beta Decay

observation of $0\nu\beta\beta$ -decay \rightarrow lepton # $L = l - \overline{l}$ not conserved \rightarrow implications in matter-antimatter imbalance

Majorana Demonstrator

* detectors' active material ⁷⁶Ge * $0\nu\beta\beta$ -decay $\tau_{1/2} \gtrsim 10^{25}$ years (age of the universe 1.4×10^{10} years) 1 ton of material to see (if any) ~ 5 decays per year * also, if nuclear m.e.'s are known, absolute *v*-masses can be extracted *

2015 Long Range Plane for Nuclear Physics

The question

• What are the present uncertainties in nuclear matrix elements relevant for neutrinoless double beta decay, and how can they be improved?

OUTLINE

Role of correlations and many-body currents in

* Single beta-decay in A \leq 10 nuclei * * Neutrinoless double beta-decay in A \leq 12 nuclei *

Nuclear Interactions

The nucleus is made of A non-relativistic interacting nucleons and its energy is

$$H = T + V = \sum_{i=1}^{A} t_i + \sum_{i < j} v_{ij} + \sum_{i < j < k} \frac{V_{ijk}}{V_{ijk}} + \dots$$

where v_{ij} and V_{ijk} are two- and three-nucleon operators based on EXPT data fitting and fitted parameters subsume underlying QCD

Carlson et al. Rev.Mod.Phys.87(2015)1067

Correlations in our formalism

Minimize expectation value of H = T + AV18 + IL7

$$E_V = \frac{\langle \Psi_V | H | \Psi_V \rangle}{\langle \Psi_V | \Psi_V \rangle} \ge E_0$$

using trial function

$$|\Psi_V\rangle = \left[\mathscr{S}\prod_{i < j} (1 + U_{ij} + \sum_{k \neq i, j} U_{ijk})\right] \left[\prod_{i < j} f_c(r_{ij})\right] |\Phi_A(JMTT_3)\rangle$$

- * single-particle $\Phi_A(JMTT_3)$ is fully antisymmetric and translationally invariant
- * central pair correlations $f_c(r)$ keep nucleons at favorable pair separation
- * pair correlation operators U_{ij} reflect influence of v_{ij} (AV18)
- * triple correlation operators U_{ijk} reflect the influence of V_{ijk} (IL7)

In an uncorrelated wave function 1) *U_{ij}* and *U_{ijk}* are turned off, and 2) only the dominant spatial symmetry is kept

Lomnitz-Adler, Pandharipande, and Smith NPA361(1981)399 Wiringa, PRC43(1991)1585

Electroweak Reactions

* $\omega \sim 10^2$ MeV: Accelerator neutrinos * $\omega \sim 10^1$ MeV: EM decay, β -decay * $\omega \lesssim 10^1$ MeV: Nuclear Rates for Astrophysics

Nuclear Currents

* In Impulse Approximation IA nuclear currents are expressed in terms of those associated with individual protons and nucleons, *i.e.*, ρ_i and \mathbf{j}_i , 1b-operators

* Two-body 2b currents essential to satisfy current conservation

Electromagnetic Currents from Nuclear Interactions (SNPA currents)

$$\mathbf{q} \cdot \mathbf{j} = [H, \boldsymbol{\rho}] = [t_i + v_{ij} + V_{ijk}, \boldsymbol{\rho}]$$

Longitudinal component fixed by current conservation Plus transverse "phenomenological" terms

Villars, Myiazawa (40-ies), Chemtob, Riska, Schiavilla ... see, *e.g.*, Marcucci *et al.* PRC72(2005)014001 and references therein

Currents from nuclear interactions

Satisfactory description of a variety of nuclear em properties in $A \le 12$

 2 H(p, γ) 3 He capture

Marcucci et al. PRC72, 014001 (2005)

Electromagnetic Currents from Chiral Effective Field Theory

* 3 unknown Low Energy Constants: fixed so as to reproduce d, ³H, and ³He magnetic moments

Pastore et al. PRC78(2008)064002 & PRC80(2009)034004 & PRC84(2011)024001 * analogue expansion exists for the Axial nuclear current - Baroni et al. PRC93 (2016)015501 *

Electromagnetic LECs

 d^{S} , d_{1}^{V} , and d_{2}^{V} could be determined by $\pi\gamma$ -production data on the nucleon

Left with 3 LECs: Fixed in the A = 2 - 3 nucleons' sector

* Isoscalar sector:

* d^{S} and c^{S} from EXPT μ_{d} and $\mu_{S}(^{3}\text{H}/^{3}\text{He})$

* Isovector sector:

* c^V from EXPT $npd\gamma$ xsec.

* c^V from EXPT $\mu_V({}^3\text{H}/{}^3\text{He})$ m.m.

* Regulator $C(\Lambda) = exp(-(p/\Lambda)^4)$ with $\Lambda = 500 - 600$ MeV

Λ	NN/NNN	$10 \times d^S$	c^{S}
500	AV18/UIX (N3LO/N2LO)	-1.731 (2.190)	2.522 (4.072)
600	AV18/UIX (N3LO/N2LO)	-2.033 (3.231)	5.238 (11.38)

Electromagnetic LECs

 d^{S} , d_{1}^{V} , and d_{2}^{V} could be determined by $\pi\gamma$ -production data on the nucleon

Left with 3 LECs: Fixed in the A = 2 - 3 nucleons' sector

* Isoscalar sector:

* d^{S} and c^{S} from EXPT μ_{d} and $\mu_{S}(^{3}\text{H}/^{3}\text{He})$

* Isovector sector:

* c^V from EXPT $npd\gamma$ xsec.

* c^V from EXPT $\mu_V({}^3\text{H}/{}^3\text{He})$ m.m.

* Regulator $C(\Lambda) = exp(-(p/\Lambda)^4)$ with $\Lambda = 500 - 600$ MeV

Λ	NN/NNN	Current	d_1^V	c^V
600	AV18/UIX	Ι	4.98	-11.57
		п	4.98	-1.025

Convergence and cutoff dependence

np capture x-section/ μ_V of A = 3 nuclei bands represent nuclear model dependence [NN(N3LO)+3N(N2LO) – AV18+UIX]

Piarulli et al. PRC(2013)014006

Calculations with EM Currents from χ EFT with π 's and N's

▶ Park, Min, and Rho *et al.* (1996)

applications to A=2–4 systems by Song, Lazauskas, Park *at al.* (2009-2011) within the hybrid approach

* Based on EM χ EFT currents from NPA596(1996)515

```
    Meissner and Walzl (2001);
Kölling, Epelbaum, Krebs, and Meissner (2009–2011)
applications to:
d and <sup>3</sup>He photodisintegration by Rozpedzik et al. (2011); e-scattering (2014);
d magnetic f.f. by Kölling, Epelbaum, Phillips (2012);
radiative N – d capture by Skibinski et al. (2014)
```

* Based on EM χEFT currents from PRC80(2009)045502 & PRC84(2011)054008 and consistent χEFT potentials from UT method

```
    Phillips (2003-2007)
```

.

.

applications to deuteron static properties and f.f.'s

Magnetic Moments and M1 Transitions

- * 2b electromagnetic currents bring the THEORY in agreement with the EXPT
- * $\sim 40\%$ 2b-current contribution found in ⁹C m.m.
- * $\sim 60-70\%$ of total 2b-current component is due to one-pion-exchange currents
- * \sim 20-30% 2b found in M1 transitions in ⁸Be

Pastore et al. PRC87(2013)035503 & PRC90(2014)024321, Datar et al. PRL111(2013)062502

Error Estimate

* 'N3LO-\Delta' corrections can be 'large' *

* SNPA and χ EFT currents qualitatively in agreement, χ EFT isoscalar currents provide better description

exp data *

Pastore et al. PRC87(2013)035503

Two-body M1 transitions densities

$(J_i, T_i) \rightarrow (J_f, T_f)$	IA	NLO-OPE	N2LO-RC	N3LO-TPE	N3LO-CT	N3LO-A	MEC
$(1^+; 1) \rightarrow (2^+_2; 0)$	2.461 (13)	0.457 (3)	-0.058 (1)	0.095 (2)	-0.035 (3)	0.161 (21)	0.620 (5)

Pastore et al. PRC90(2014)024321

 β -decay

The " g_A problem" and the role of two-nucleon correlations and two-body currents

 g_A nucleon axial coupling constant

Preliminary results

Theory vs Experiment: The " g_A problem"

Fig. from Chou et al. PRC47(1993)163

Correlations in our formalism

Minimize expectation value of H = T + AV18 + IL7

$$E_V = \frac{\langle \Psi_V | H | \Psi_V \rangle}{\langle \Psi_V | \Psi_V \rangle} \ge E_0$$

using trial function

$$|\Psi_V\rangle = \left[\mathscr{S}\prod_{i < j} (1 + U_{ij} + \sum_{k \neq i, j} U_{ijk})\right] \left[\prod_{i < j} f_c(r_{ij})\right] |\Phi_A(JMTT_3)\rangle$$

- * single-particle $\Phi_A(JMTT_3)$ is fully antisymmetric and translationally invariant
- * central pair correlations $f_c(r)$ keep nucleons at favorable pair separation
- * pair correlation operators U_{ij} reflect influence of v_{ij} (AV18)
- * triple correlation operators U_{ijk} reflect the influence of V_{ijk} (IL7)

In an uncorrelated wave function 1) *U_{ij}* and *U_{ijk}* are turned off, and 2) only the dominant spatial symmetry is kept

Lomnitz-Adler, Pandharipande, and Smith NPA361(1981)399 Wiringa, PRC43(1991)1585

Role of correlations in beta-decay m.e.'s

q = quenching from correlations

data from TUNL compilations & Suzuki et al. PRC67(2003)044302 & Chou et al. PRC47(1993)163

* Preliminary *

SNPA Two-body Axial Currents

- 1) One body has GT, relativistic corrections, PS from pion-pole diagrams
- 2) Two-body currents
 - 2.a) Major contribution from Δ -excitation current
 - 2.b) Negligible contributions from $A\pi$, $A\rho$, $A\pi\rho$
- 3) $AN\Delta$ coupling fixed to tritium beta-decay
- 4) $\sim 3\%$ additive correction from Δ -current

Chemtob, Rho, Towner, Riska, Schiavilla, Marcucci ...

see, e.g., Marcucci et al. PRC63(2001)015801 and references therein

Two-body Axial Currents from χEFT

 c_3 and c_4

- * are saturated by the Δ and $\rho \pi$ d.o.f.
- * enter also the χ EFT two- and three-nucleon χ EFT potential
- * are taken them from Entem and Machleidt $c_3 = -3.2 \text{ GeV}^{-1}$, $c_4 = 5.4 \text{ GeV}^{-1}$ PRC68(2003)041001 & Phys.Rep.503(2011)1

A. Baroni et al. PRC93(2016)015501 & PRC94(2016)024003

Two-body Axial Currents from χ EFT

c_D

- * fitted to GT m.e. of tritium beta-decay
- * for both χ EFT potentials and AV18+UIX
- * because of N4LO two-body currents c_D value changes

Λ 500 600 500 600 c _D -0.353 -0.443 -1.847 -2.030		N3	LO	N4LO		
c _D -0.353 -0.443 -1.847 -2.030	Λ	500	600	500	600	
<i>u</i>	^{c}D	-0.353	-0.443	-1.847	-2.030	

A. Baroni et al. PRC93(2016)015501 & PRC94(2016)024003

Three-body Axial Currents from χ EFT

A. Baroni et al. PRC93(2016)015501 & PRC94(2016)024003

Convergence and cutoff dependence

Tritium β -decay

 $* \sim 2\%$ additive contribution from two-body currents

A. Baroni et al. PRC93(2016)015501 & PRC94(2016)024003

Calculations with EW Currents from χ EFT with π 's and N's

Incomplete history

- Park, Min, and Rho *et al.* (90-ies) applications to A=2–4 systems including μ -capture, *pp*-fusion, *hep* ·
- ▶ Krebs and Epelbaum *et al.* (2016)
- ► Klos *et al.* (2015)

.

Role of two-body currents in beta-decay m.e.'s

SNPA currents VMC Calculations χ EFT currents GFMC calculations

Preliminary

* SNPA and χ EFT two-body currents are qualitatively in agreement (both are fitted to the tritium β -decay)

* Two-body currents are found to provide a small (negligible) contribution to the quenching, limited to the light systems we studied

χ EFT currents: a closer look

A = 7 Captures

	gs	ex
LO	2.334	2.150
N2LO	-3.18×10^{-2}	-2.79×10^{-2}
N3LO(OPE)	-2.99×10^{-2}	-2.44×10^{-2}
N3LO(CT)	2.79×10^{-1}	2.36×10^{-1}
N4LO(2b)	-1.61×10^{-1}	-1.33×10^{-1}
N4LO(3b)	-6.59×10^{-3}	-4.86×10^{-3}
TOT(2b+3b)	0.050	0.046

* Large cancellations due to positive CT at N3LO with c_D fixed to GT m.e. of tritium

In preparation

 $\beta\beta$ -decay

The " g_A problem" and the role of two-nucleon correlations and two-body currents

 g_A nucleon axial coupling constant

Preliminary results

Double beta-decay m.e.'s: Correlations

Preliminary

Bob Wiringa et al.

Double beta-decay m.e.'s: Correlations

Preliminary

Bob Wiringa et al.

Double beta-decay m.e.'s: Two-body currents

$$\boldsymbol{\upsilon}_{\text{st}} = L_{\text{st}} \tau_{1,+} \tau_{2,+} \frac{\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}}{m_{\pi} \mathbf{q}^{2}}$$
$$\boldsymbol{\upsilon}_{\pi\pi} = L_{\pi\pi} \tau_{1,+} \tau_{2,+} \frac{\boldsymbol{\sigma}_{1} \cdot \mathbf{q} \boldsymbol{\sigma}_{2} \cdot \mathbf{q}}{m_{\pi} (\mathbf{q}^{2} + m_{\pi}^{2})^{2}}$$
$$\boldsymbol{\upsilon}_{\pi} = L_{\pi} \tau_{1,+} \tau_{2,+} \frac{\boldsymbol{\sigma}_{1} \cdot \mathbf{q} \boldsymbol{\sigma}_{2} \cdot \mathbf{q}}{m_{\pi}^{2} (\mathbf{q}^{2} + m_{\pi}^{2})}$$
$$\boldsymbol{\upsilon}_{\text{CT}} = L_{\text{CT}} \tau_{1,+} \tau_{2,+} \frac{\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}}{m_{\pi}^{3}}$$

 $L_{\pi\pi}, L_{\pi}, L_{CT}$ are model dependent

WITH

Emanuele Mereghetti & Dekens & Cirigliano & Graesser & Wiringa et al.

Double beta-decay m.e.'s in ${}^{6}\text{He}(0^+;2) \rightarrow {}^{6}\text{Be}(0^+;0)$: A test case I

Emanuele Mereghetti & Dekens & Cirigliano & Graesser & Wiringa et al.

Double beta-decay m.e.'s in ${}^{6}\text{He}(0^+;2) \rightarrow {}^{6}\text{Be}(0^+;0)$: A test case I

Emanuele Mereghetti & Dekens & Cirigliano & Graesser & Wiringa et al.

Double beta-decay m.e.'s in ${}^{8}\text{He}(0^{+};2) \rightarrow {}^{8}\text{Be}(0^{+};0)$: A test case II

Emanuele Mereghetti & Dekens & Cirigliano & Graesser & Wiringa et al.

Emanuele Mereghetti & Dekens & Cirigliano & Graesser & Wiringa et al.

Summary and Outlook

We discussed the role played by correlations and many-body currents in β - and $\upsilon 0\beta\beta$ -decay m.e.'s of $A \le 12$ nuclei

- * Two-body currents (both SNPA and χ EFT) provide negligible quenching in the β -decay m.e.'s we studied
- * Correlations provide a quenching $q \sim 0.95$ in A = 3 and $q \sim 0.76$ in A = 10 β -decay m.e.'s
- * Correlations affect $v0\beta\beta$ -decay m.e.'s leading to a quenching q ~ 0.55 in Standard Axial A = 8 and q ~ 0.93 in Standard Fermi A = 12
- * A cancellation in the Axial Standard two-body current in $A = 8 \upsilon 0\beta\beta$ -decay m.e.'s could enhance contributions from Non-Standard two-body currents

Outlook

- * Benchmark both single- and double-beta decay m.e.'s
- * Characterize two-body currents entering double-beta decay m.e.'s
- * Calculate more single- and double-beta decay m.e.'s and study model dependence using AV18+IL7 and Δ-full chiral potential by Piarulli *et al.*